-
Notifications
You must be signed in to change notification settings - Fork 9
/
hebrew_root_tokenizer.py
408 lines (338 loc) · 15.4 KB
/
hebrew_root_tokenizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.utils import logging
from typing import List, Optional
from itertools import chain
import collections
import os
from functools import lru_cache
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
with open(vocab_file, "r", encoding="utf-8") as reader:
tokens = reader.readlines()
for index, token in enumerate(tokens):
token = token.rstrip("\n")
vocab[token] = index
return vocab
suf_replace = {
'ף': 'פ',
'ץ': 'צ',
'ך': 'כ',
'ן': 'נ',
'ם': 'מ',
}
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a piece of text."""
text = ''.join(suf_replace.get(c, c) for c in text)
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
class Piece:
def __init__(self, piece, idxs):
self.text = piece
self.idxs = idxs
def __add__(self, other):
assert isinstance(other, Piece)
return Piece(str(self)+ str(other), self.idxs + other.idxs)
def __str__(self):
return self.text
class Structre:
def __init__(self, structre=None, idxs=[], length=0, head=None, tail=None):
self.text = structre if structre else '#' * length
self.idxs = idxs
def __add__(self, piece):
assert isinstance(piece, Piece)
res = ''
last = 0
for i, p in zip(piece.idxs, str(piece)):
# i = i - 1
res += self.text[last:i] + p
last = i + 1
res += self.text[last:]
return Structre(res, sorted(self.idxs + piece.idxs))
def __str__(self):
return self.text
from collections import OrderedDict, defaultdict, Counter, namedtuple
class Word:
def __init__(self, word, count=None):
self.word = word
self.count = count
self.pieces = OrderedDict({i: Piece(p, [i, ]) for i, p in enumerate(word
)})
self.structre = Structre(length=len(word))
def _pairs(self):
pieces = list(self.pieces.values())
pieces_pairs = [a + b for a, b in zip(pieces, pieces[1:])]
struct_pairs = [self.structre + p for p in pieces if '_' not in p.text]
return struct_pairs + pieces_pairs
def make_pairs(self):
self.pairs_list = self._pairs()
self.pairs = defaultdict(list)
for pair in self.pairs_list:
self.pairs[str(pair)].append(pair)
def join(self, pair):
joined = set()
if pair in self.pairs:
for instance in self.pairs[pair]:
idxs = set(instance.idxs)
if not idxs & joined:
if isinstance(instance, Structre):
self.structre = instance
start = 0
else:
self.pieces[instance.idxs[0]] = instance
start = 1
for idx in instance.idxs[start:]:
if idx in self.pieces:
del self.pieces[idx]
joined |= idxs
def _sub_words(self):
if self.structre.idxs:
yield self.structre
for piece in self.pieces.values():
yield piece
def __repr__(self):
return str([str(v) for v in sorted(self._sub_words(), key=lambda x: x.idxs)])
def tokenized_iter(self):
last = 0
structre = str(self.structre)
for i, piece in self.pieces.items():
if i > last:
for c in structre[last:i]:
yield c
yield str(piece)
p_beg, p_end = piece.idxs[0], piece.idxs[-1]
last = p_end + 1
if any(p_beg < s_idx < p_end for s_idx in self.structre.idxs):
yield structre[p_beg:last]
if last < len(structre):
yield structre[last:]
class AlefBERTRootTokenizer(PreTrainedTokenizer):
r"""
Construct a BERT tokenizer. Based on WordPiece.
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the main methods.
Users should refer to this superclass for more information regarding those methods.
Args:
vocab_file (:obj:`str`):
File containing the vocabulary.
do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not to lowercase the input when tokenizing.
do_basic_tokenize (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not to do basic tokenization before WordPiece.
never_split (:obj:`Iterable`, `optional`):
Collection of tokens which will never be split during tokenization. Only has an effect when
:obj:`do_basic_tokenize=True`
unk_token (:obj:`str`, `optional`, defaults to :obj:`"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (:obj:`str`, `optional`, defaults to :obj:`"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences
for sequence classification or for a text and a question for question answering.
It is also used as the last token of a sequence built with special tokens.
pad_token (:obj:`str`, `optional`, defaults to :obj:`"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (:obj:`str`, `optional`, defaults to :obj:`"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole
sequence instead of per-token classification). It is the first token of the sequence when built with
special tokens.
mask_token (:obj:`str`, `optional`, defaults to :obj:`"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
tokenize_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this `issue
<https://github.com/huggingface/transformers/issues/328>`__).
strip_accents: (:obj:`bool`, `optional`):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for :obj:`lowercase` (as in the original BERT).
"""
def __init__(
self,
vocab_file,
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
**kwargs
):
super().__init__(
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
**kwargs,
)
if not os.path.isfile(vocab_file):
raise ValueError(
"Can't find a vocabulary file at path '{}'".format(vocab_file)
)
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
self.model_max_length = 512
self.cache = dict()
self.special_tokens = {unk_token, sep_token, pad_token, cls_token, mask_token}
@property
def vocab_size(self):
return len(self.vocab)
def get_vocab(self):
return dict(self.vocab, **self.added_tokens_encoder)
def _tokenize_word(self, w):
if w in self.special_tokens:
return [w]
cached = self.cache.get(w)
if cached:
return cached
word = Word(w)
while True:
min_rank = float('inf')
min_pair = None
word.make_pairs()
for pair in word.pairs_list:
pair = str(pair)
rank = self.vocab[pair] if pair in self.vocab else float('inf')
if rank < min_rank:
min_pair = pair
min_rank = rank
if min_rank == float('inf') or not min_pair:
break
word.join(min_pair)
res = list(word.tokenized_iter())
self.cache[w] = res
return res
def _tokenize(self, text):
split_tokens = list(chain(*(self._tokenize_word(word) for word in whitespace_tokenize(text))))
if not split_tokens:
print('tokenizer issue')
return split_tokens
def _convert_token_to_id(self, token):
""" Converts a token (str) in an id using the vocab. """
return self.vocab.get(token, self.vocab.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.ids_to_tokens.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
""" Converts a sequence of tokens (string) in a single string. """
print(tokens)
raise NotImplemented
# out_string = " ".join(tokens).replace(" ##", "").strip()
# return out_string
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks
by concatenating and adding special tokens.
A BERT sequence has the following format:
- single sequence: ``[CLS] X [SEP]``
- pair of sequences: ``[CLS] A [SEP] B [SEP]``
Args:
token_ids_0 (:obj:`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (:obj:`List[int]`, `optional`):
Optional second list of IDs for sequence pairs.
Returns:
:obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer ``prepare_for_model`` method.
Args:
token_ids_0 (:obj:`List[int]`):
List of IDs.
token_ids_1 (:obj:`List[int]`, `optional`):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
:obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
if token_ids_1 is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formated with special tokens for the model."
)
return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0))
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
def get_end_of_word_mask(self, text_0, text_1=None):
words_lens_0 = [len(self._tokenize_word(word)) for word in whitespace_tokenize(text_0)]
res_0 = []
for l in words_lens_0:
res_0 += ([0] * (l - 1)) + [1]
if text_1:
words_lens_1 = [len(self._tokenize_word(word)) for word in whitespace_tokenize(text_1)]
res_1 = []
for l in words_lens_1:
res_1 += ([0] * (l - 1)) + [1]
return [1] + res_0 + [1] + res_1 + [1]
return [1] + res_0 + [1]
def __call__(self, text_0, text_1=None, end_of_word=False, *argv, **kwargs):
res = super().__call__(text_0, text_1, *argv, **kwargs)
if end_of_word:
res['end_of_word_mask'] = self.get_end_of_word_mask(text_0, text_1)
return res
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task.
A BERT sequence pair mask has the following format:
::
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
If :obj:`token_ids_1` is :obj:`None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (:obj:`List[int]`):
List of IDs.
token_ids_1 (:obj:`List[int]`, `optional`):
Optional second list of IDs for sequence pairs.
Returns:
:obj:`List[int]`: List of `token type IDs <../glossary.html#token-type-ids>`_ according to the given
sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, vocab_path, filename_prefix=''):
"""
Save the vocabulary (copy original file) and special tokens file to a directory.
Args:
vocab_path (:obj:`str`):
The directory in which to save the vocabulary.
Returns:
:obj:`Tuple(str)`: Paths to the files saved.
"""
index = 0
if os.path.isdir(vocab_path):
vocab_file = os.path.join(vocab_path, VOCAB_FILES_NAMES["vocab_file"])
else:
vocab_file = vocab_path
with open(vocab_file, "w", encoding="utf-8") as writer:
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
"Saving vocabulary to {}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!".format(vocab_file)
)
index = token_index
writer.write(token + "\n")
index += 1
return (vocab_file,)