Skip to content

Latest commit

 

History

History

Video-Text-Retrieval

Video-Text-Retrieval

Introduction

A model achieves the state-of-the-art video-text retrieval performance on two settings, six datasets, and ten metrics.

Our Results

Zero-Shot Video Retrieval

Dataset Setting R@1↑ R@5↑ R@10↑ MedR↓ MeanR↓
MSRVTT video-to-text 37.5 63.3 71.3 3.0 24.2
text-to-video 40 65.3 74.1 2.0 23.9
MSVD video-to-text 67.6 90.6 94.6 1.0 2.9
text-to-video 43.4 69.9 79.1 2.0 17.0
LSMDC video-to-text 13.2 27.8 34.9 33.0 113.6
text-to-video 17.6 32.4 40.2 23.0 101.7
ActivityNet video-to-text 31.4 59.4 73.1 3.0 15.6
text-to-video 30.7 57.4 70.2 4.0 23.0
DiDeMo video-to-text 33.5 60.3 71.1 3.0 21.5
text-to-video 31.5 57.6 68.2 3.0 35.7
VATEX video-to-text 69.5 95 98.1 1.0 2.1
text-to-video 49.5 79.7 87 2.0 9.7

Video Retrieval with Full Finetuning

Dataset Setting R@1↑ R@5↑ R@10↑ MedR↓ MeanR↓
MSRVTT video-to-text 57.9 79.2 86.4 1.0 7.5
text-to-video 55.2 79.6 87.5 1.0 10.7
MSVD video-to-text 76.3 96.8 98.7 1.0 2.1
text-to-video 58.4 84.5 90.4 1.0 8.2
LSMDC video-to-text 34.9 54.6 63.1 4.0 32.9
text-to-video 34.0 53.7 62.9 4.0 38.7
ActivityNet video-to-text 62.8 86.2 93.3 1.0 3.5
text-to-video 62.2 85.9 93.2 1.0 3.9
DiDeMo video-to-text 59.1 81.8 89.0 1.0 7.2
text-to-video 57.9 82.4 88.9 1.0 9.2
VATEX video-to-text 86.0 99.2 99.6 1.0 1.3
text-to-video 72.0 95.1 97.8 1.0 2.4

Main Dependencies

  • CUDA Version 11.1
  • PyTorch 1.8.1
  • torchvision 0.9.0
  • python 3.6.9

Usage

Data Preparation

Download Original Dataset: MSR-VTT, MSVD, LSMDC, DiDeMo, ActivityNet, VATEX.

All annotation files can be downloaded from here. Unzip and put them in the data/ folder.

Pre-processing (optional)

python preprocess/compress_video.py --input_root [raw_video_path] --output_root [compressed_video_path]

This script will compress the video to 3fps with width 224 (or height 224). Modify the variables for your customization.

Pre-trained weights

The pre-trained ViT weights of CLIP can be found here: ViT-B/32, ViT-B/16, ViT-L/14.

Our fine-tuned retrieval checkpoint on each dataset will be released soon.

Zeroshot evaluation

All zero-shot scripts are provided in the zeroshot_scripts/ folder. Be free to try different hyper-parameters.

./zeroshot_scripts/eval_msrvtt.sh

Fine-Tune

All fine-tune scripts are provided in the finetune_scripts/ folder, and the train_${dataset_name}.sh files are used to fine-tune our InternVideo model. Be free to try different hyper-parameters.

./finetune_scripts/train_msrvtt.sh

Evaluate the finetuned model

All the test scripts for evaluating the finetuned checkpoints are provided in the eval_finetuned_scripts/ folder. The scripts are slightly different from the zero-shot evaluation scripts.

./eval_finetuned_scripts/eval_finetuned_msrvtt.sh

License

This project is released under the MIT license.

Acknowledgments

Our codebase is based on CLIP4clip.