-
Notifications
You must be signed in to change notification settings - Fork 21
/
main.py
169 lines (130 loc) · 5.48 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import tensorflow as tf
from tensorflow.python.platform import app
import os
import numpy as np
import cv2
import sys
import argparse
import datasets
import models
def main(unused_args):
PROJECT_DIR = FLAGS.proj_dir
NUAA_DATA_DIR = PROJECT_DIR + 'data/NUAA/'
MODEL_DIR = PROJECT_DIR + 'model/'
LOG_DIR = PROJECT_DIR + 'log/'
if not os.path.exists(MODEL_DIR):
os.mkdir(MODEL_DIR)
if not os.path.exists(LOG_DIR):
os.mkdir(LOG_DIR)
face_landmark_path = MODEL_DIR + 'shape_predictor_68_face_landmarks.dat'
INPUT_SIZE = 128
BATCH_SIZE = 64
EPOCHS = 50
CLASS_NAMES = ['fake', 'live']
CLASS_NUM = len(CLASS_NAMES)
LOAD_WEIGHT = True
if FLAGS.train:
LOAD_WEIGHT = False
dataset = datasets.NUAA(NUAA_DATA_DIR, batch_size=BATCH_SIZE, input_size=INPUT_SIZE, class_num=CLASS_NUM)
net = models.FasNet(dataset, CLASS_NUM, batch_size=BATCH_SIZE, input_size=INPUT_SIZE,
fine_tune_model_file=MODEL_DIR + 'vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5')
net.train(MODEL_DIR + 'fas_model.h5', MODEL_DIR, LOG_DIR, max_epoches=EPOCHS, load_weight=LOAD_WEIGHT)
if FLAGS.train:
net.predict()
if FLAGS.online:
import dlib
from imutils import face_utils
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print("Unable to connect to camera.")
exit(-1)
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(face_landmark_path)
frames = []
def crop_face_loosely(shape, img, input_size):
x = []
y = []
for (_x, _y) in shape:
x.append(_x)
y.append(_y)
max_x = min(max(x), img.shape[1])
min_x = max(min(x), 0)
max_y = min(max(y), img.shape[0])
min_y = max(min(y), 0)
Lx = max_x - min_x
Ly = max_y - min_y
Lmax = int(max(Lx, Ly))
delta = Lmax // 2
center_x = (max(x) + min(x)) // 2
center_y = (max(y) + min(y)) // 2
start_x = int(center_x - delta)
start_y = int(center_y - delta - 30)
end_x = int(center_x + delta)
end_y = int(center_y + delta)
if start_y < 0:
start_y = 0
if start_x < 0:
start_x = 0
if end_x > img.shape[1]:
end_x = img.shape[1]
if end_y > img.shape[0]:
end_y = img.shape[0]
crop_face = img[start_y:end_y, start_x:end_x]
# cv2.imshow('crop_face', crop_face)
img_hsv = cv2.cvtColor(crop_face, cv2.COLOR_BGR2HSV)
img_ycrcb = cv2.cvtColor(crop_face, cv2.COLOR_BGR2YCrCb)
img_hsv = cv2.resize(img_hsv, (input_size, input_size)) / 255.0
img_ycrcb = cv2.resize(img_ycrcb, (input_size, input_size)) / 255.0
return img_hsv, img_ycrcb, start_y, end_y, start_x, end_x
while cap.isOpened():
ret, frame = cap.read()
if ret:
face_rects = detector(frame, 0)
if len(face_rects) > 0:
shape = predictor(frame, face_rects[0])
shape = face_utils.shape_to_np(shape)
input_img_hsv, input_img_ycrcb, start_y, end_y, start_x, end_x = crop_face_loosely(shape, frame,
INPUT_SIZE)
cv2.rectangle(frame, (start_x, start_y), (end_x, end_y), (0, 255, 0), thickness=2)
frames.append({'hsv': input_img_hsv, 'yuv': input_img_ycrcb})
if len(frames) == 1:
# print(shape[30])
pred = net.test_online(frames)
# print(pred)
idx = np.argmax(pred[0])
if pred[0][0] < 0.85:
idx = 1
text = CLASS_NAMES[idx] + ":" + str(pred[0][idx])
print(text)
cv2.putText(frame, text, (start_x, start_y), cv2.FONT_HERSHEY_COMPLEX, 0.7, (0, 255, 0), 1)
frames = []
cv2.imshow("frame", frame)
# cv2.waitKey(0)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
def parse_args():
"""Parses command line arguments."""
parser = argparse.ArgumentParser()
parser.register("type", "bool", lambda v: v.lower() == "true")
parser.add_argument(
"--proj_dir",
type=str,
default="",
help="Project dir"
)
parser.add_argument(
"--train",
type=bool,
default=False,
help="Train model"
)
parser.add_argument(
"--online",
type=bool,
default=False,
help="Test face input via camera"
)
return parser.parse_known_args()
if __name__ == "__main__":
FLAGS, unparsed = parse_args()
app.run(main=main, argv=[sys.argv[0]] + unparsed)