forked from titu1994/DenseNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcifar100.py
88 lines (65 loc) · 2.77 KB
/
cifar100.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from __future__ import print_function
import sys
sys.setrecursionlimit(10000)
import densenet
import numpy as np
import sklearn.metrics as metrics
from keras.datasets import cifar100
from keras.utils import np_utils
from keras.preprocessing.image import ImageDataGenerator
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, EarlyStopping
from keras import backend as K
batch_size = 64
nb_classes = 100
nb_epoch = 15
img_rows, img_cols = 32, 32
img_channels = 3
img_dim = (img_channels, img_rows, img_cols) if K.image_dim_ordering() == "th" else (img_rows, img_cols, img_channels)
depth = 40
nb_dense_block = 3
growth_rate = 12
nb_filter = 12
bottleneck = False
reduction = 0.0
dropout_rate = 0.0 # 0.0 for data augmentation
model = densenet.DenseNet(img_dim, classes=nb_classes, depth=depth, nb_dense_block=nb_dense_block,
growth_rate=growth_rate, nb_filter=nb_filter, dropout_rate=dropout_rate,
bottleneck=bottleneck, reduction=reduction, weights=None)
print("Model created")
model.summary()
optimizer = Adam(lr=1e-4) # Using Adam instead of SGD to speed up training
model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=["accuracy"])
print("Finished compiling")
print("Building model...")
(trainX, trainY), (testX, testY) = cifar100.load_data()
trainX = trainX.astype('float32')
testX = testX.astype('float32')
trainX /= 255.
testX /= 255.
Y_train = np_utils.to_categorical(trainY, nb_classes)
Y_test = np_utils.to_categorical(testY, nb_classes)
generator = ImageDataGenerator(rotation_range=15,
width_shift_range=5./32,
height_shift_range=5./32)
generator.fit(trainX, seed=0)
# Load model
# model.load_weights("weights/DenseNet-BC-100-12-CIFAR100.h5")
# print("Model loaded.")
lr_reducer = ReduceLROnPlateau(monitor='val_loss', factor=np.sqrt(0.1),
cooldown=0, patience=10, min_lr=0.5e-6)
early_stopper = EarlyStopping(monitor='val_acc', min_delta=0.0001, patience=20)
model_checkpoint= ModelCheckpoint("weights/DenseNet-BC-100-12-CIFAR100.h5", monitor="val_acc", save_best_only=True,
save_weights_only=True)
callbacks=[lr_reducer, early_stopper, model_checkpoint]
model.fit_generator(generator.flow(trainX, Y_train, batch_size=batch_size), samples_per_epoch=len(trainX), nb_epoch=nb_epoch,
callbacks=callbacks,
validation_data=(testX, Y_test),
nb_val_samples=testX.shape[0], verbose=1)
yPreds = model.predict(testX)
yPred = np.argmax(yPreds, axis=1)
yTrue = testY
accuracy = metrics.accuracy_score(yTrue, yPred) * 100
error = 100 - accuracy
print("Accuracy : ", accuracy)
print("Error : ", error)