-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
187 lines (157 loc) · 7.37 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import click
import cv2
from tqdm import tqdm
import os, sys
from src.frames_source import FramesSource
from src.sort import Sort
from src.save_results import SaveResults
from src.vizualizer import Vizualizer
from src.yolov9 import YOLOv9
from src.keypoints import KeyPoints
def is_our_tracker(tracker: str) -> bool:
return tracker in [
'sort', 'sort-flow',
'sort-pf', 'sort-pf-flow',
]
@click.command()
@click.option('--task', '-t', help='Task to perform', required=True, type=click.Choice(['pred', 'viz', 'vid', 'rois']))
@click.option('--tracker', '-tr', help='Tracker to use', default='none', type=str)
@click.option('--source', '-s', help='Source of the video (video file or catalog)', required=True)
@click.option('--weights', help='Path to the model weight', default='./data/best-yolov9.onnx')
@click.option('--cache-yolo', help='Cache YOLO predictions', is_flag=True)
@click.option('--kmodel-path', help='Path to the keypoints model weight', default='./data/porpoises_keypoints_128.onnx')
@click.option('--engine', help='Engine to use', default='cuda', type=click.Choice(['cuda', 'cpu']))
@click.option('--disable-viz', help='Disable additional visualization (only bounding boxes)', is_flag=True)
@click.option('--disable-particles', help='Disable particles filter visualization', is_flag=True)
@click.option('--enable-keypoints', help='Enable keypoints for porpoise (tongue, tail)', is_flag=True)
@click.option('--keypoint-thresh', help='Keypoint threshold', default=0.5)
def main(task: str, tracker: str, source: str, weights: str, cache_yolo: bool, kmodel_path: str, engine: str, disable_viz: bool, disable_particles: bool, enable_keypoints: bool, keypoint_thresh: float):
detector = YOLOv9(weights, engine, cache_yolo=cache_yolo,
video_name=source.split('/')[-2] if source.endswith('/') else source.split('/')[-1].split('.')[0])
if enable_keypoints:
keypoints = KeyPoints(kmodel_path, engine, keypoint_thresh)
frame_source = FramesSource(source)
if is_our_tracker(tracker):
track = Sort(
particle='pf' in tracker,
flow='flow' in tracker,
)
elif tracker == 'ocsort':
sys.path.append('./trackers/OC_SORT/')
from trackers.ocsort_tracker.ocsort import OCSort
from src.ocsort_utils import preds_to_ocsort
# default parameters
ocsort_track = OCSort(
det_thresh = 0.6,
iou_threshold= 0.3,
asso_func="iou",
delta_t=3,
inertia=0.2,
use_byte=False,
)
elif 'botsort' in tracker:
sys.path.append('./trackers/BoT-SORT/')
from tracker.bot_sort import BoTSORT
from src.botsort_utils import preds_to_botsort
if '-' not in tracker:
cmc_method = "none"
else:
cmc_method = tracker.split('-')[1]
class BotArgs:
track_high_thresh = 0.6
track_low_thresh = 0.1
new_track_thresh = 0.7
track_buffer = 30
match_thresh = 0.8
aspect_ratio_thresh = 5
min_box_area = 10
fuse_score = False
cmc_method = "none"
proximity_thresh = 0.5
appearance_thresh = 0.25
with_reid = False
name = "bot"
ablation = False
mot20 = False
args = BotArgs()
args.cmc_method = cmc_method
botsort_tracker = BoTSORT(args, frame_rate=4)
elif tracker == 'strongsort':
sys.path.append('./trackers/StrongSORT/')
from deep_sort.tracker import Tracker
from deep_sort import nn_matching
from src.strongsort_utils import preds_to_strongsort
metric = nn_matching.NearestNeighborDistanceMetric(
'cosine',
0.2,
None
)
strongsort_tracker = Tracker(
metric
)
if task == 'viz':
cv2.namedWindow('Video')
vizualizer = Vizualizer(
disable_viz=disable_viz,
disable_keypoints=not enable_keypoints,
disable_particles=disable_particles,
)
if task == 'vid':
vizualizer = Vizualizer(
out_name = source.split('/')[-2] if source.endswith('/') else source.split('/')[-1].split('.')[0],
disable_viz = disable_viz,
disable_keypoints=not enable_keypoints,
disable_particles=disable_particles
)
if task == 'pred' or task == 'rois':
save_results = SaveResults(
root=f'./track_data/trackers/MOT17-test/{tracker}/',
sequence=source.split('/')[-2] if source.endswith('/') else source.split('/')[-1].split('.')[0],
save_rois=task == 'rois',
disable_keypoints=not enable_keypoints,
)
print(f'[LOGS] Start tracking...')
for frame, index, frame_name in tqdm(frame_source):
predictions = detector.predict(frame, frame_id=index)
if is_our_tracker(tracker):
track_predictions = track(frame, index, predictions)
if enable_keypoints:
keypoints.predict_and_update(frame, track_predictions)
elif tracker == 'ocsort':
ocsort_predictions = ocsort_track.update(preds_to_ocsort(predictions), frame.shape[:2], frame.shape[:2])
elif 'botsort' in tracker:
botsort_preditions = botsort_tracker.update(preds_to_botsort(predictions), frame)
elif tracker == 'strongsort':
strongsort_tracker.predict()
strongsort_tracker.update(preds_to_strongsort(predictions))
if task == 'viz' or task == 'vid':
if is_our_tracker(tracker):
frame = vizualizer.draw_tracks(frame, track_predictions)
elif tracker == 'ocsort':
frame = vizualizer.draw_tracks_ocsort(frame, ocsort_predictions, frame.shape[:2])
elif 'botsort' in tracker:
frame = vizualizer.draw_tracks_botsort(frame, botsort_preditions, frame.shape[:2])
elif tracker == 'strongsort':
frame = vizualizer.draw_tracks_strongsort(frame, strongsort_tracker.tracks)
else:
frame = vizualizer.draw_predictions(frame, predictions)
if task == 'pred' or task == 'rois':
if tracker == 'none':
raise NotImplementedError('Prediction task is not implemented for tracking')
elif is_our_tracker(tracker):
save_results.update(index, frame, track_predictions)
elif tracker == 'ocsort':
save_results.update_ocsort(index, frame, ocsort_predictions)
elif 'botsort' in tracker:
save_results.update_botsort(index, frame, botsort_preditions)
elif tracker == 'strongsort':
save_results.update_strongsort(index, frame, strongsort_tracker.tracks)
if task == 'viz':
cv2.imshow('Video', cv2.resize(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR), (1280, int(1280 * frame_source.height / frame_source.width))))
key = cv2.waitKey(100 if cache_yolo else 1)
if key == 27:
break
if task == 'pred':
save_results.save()
if __name__ == '__main__':
main()