-
Notifications
You must be signed in to change notification settings - Fork 0
/
denoiser2.py
295 lines (232 loc) · 9.42 KB
/
denoiser2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
"""
Title: Convolutional Autoencoder For Image Denoising
Author: [Santiago L. Valdarrama](https://twitter.com/svpino)
Date created: 2021/03/01
Last modified: 2021/03/01
Description: How to train a deep convolutional autoencoder for image denoising.
"""
"""
## Introduction
This example demonstrates how to implement a deep convolutional autoencoder
for image denoising, mapping noisy digits images from the MNIST dataset to
clean digits images. This implementation is based on an original blog post
titled [Building Autoencoders in Keras](https://blog.keras.io/building-autoencoders-in-keras.html)
by [François Chollet](https://twitter.com/fchollet).
"""
"""
## Setup
"""
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from keras import layers
from keras.datasets import mnist
from keras.models import Model
import numpy as np
import matplotlib.pyplot as plt
import os
import random
import keras.optimizers
import librosa
import librosa.display
import pandas as pd
import warnings
import tensorflow as tf
dataSize=128
timesteps = 128 # Length of your sequences
input_dim = 128
latent_dim = 8
# Your data source for wav files
#dataSourceBase = '/home/paul/Downloads/ava_vidprep_supportingModels/ESC-50-aug/'
#dataSourceBase = '/home/paul/Downloads/ava_vidprep_supportingModels/ESC-50-clone/'
dataSourceBase = '/home/paul/Downloads/ESC-50-tst2/'
def preprocess(array):
"""
Normalizes the supplied array and reshapes it into the appropriate format.
"""
array = np.array(array).astype("float32") / np.max(array)
array = np.reshape(array, (len(array), dataSize, dataSize,1))
return array
def noise(array):
"""
Adds random noise to each image in the supplied array.
"""
noise_factor = 0.4
noisy_array = array + noise_factor * np.random.normal(
loc=0.0, scale=1.0, size=array.shape
)
return np.clip(noisy_array, 0.0, 1.0)
def display(array1, array2):
"""
Displays ten random images from each one of the supplied arrays.
"""
n = 10
indices = np.random.randint(len(array1), size=n)
images1 = array1[indices, :]
images2 = array2[indices, :]
plt.figure(figsize=(20, 4))
for i, (image1, image2) in enumerate(zip(images1, images2)):
ax = plt.subplot(2, n, i + 1)
plt.imshow(image1.reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
ax = plt.subplot(2, n, i + 1 + n)
plt.imshow(image2.reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()
def importData():
dataSet = []
lblmap ={}
lblid=0
totalCount = 0
progressThreashold = 100
dirlist = os.listdir(dataSourceBase)
for dr in dirlist:
dataSource = os.path.join(dataSourceBase,dr)
for root, _, files in os.walk(dataSource):
for file in files:
fileName, fileExtension = os.path.splitext(file)
if fileExtension != '.wav': continue
if totalCount % progressThreashold == 0:
print('Importing data count:{}'.format(totalCount))
wavFilePath = os.path.join(root, file)
y, sr = librosa.load(wavFilePath, duration=2.97)
ps = librosa.feature.melspectrogram(y=y, sr=sr)
if ps.shape != (128, 128): continue
# extract the class label from the FileName
label0 = dr.split('-')[1]
if label0 not in lblmap:
lblmap[label0] =lblid
lblid+=1
label=lblmap[label0]
#label = dr#fileName.split('-')[1]
print(fileName, label0, label)
dataSet.append( (ps, label) )
totalCount += 1
f = open('dict50.csv','w')
f.write("classID,class")
for lb in lblmap:
f.write(str(lblmap[lb])+','+lb)
f.close()
global totalRecordCount
totalRecordCount = totalCount
print('TotalCount: {}'.format(totalRecordCount))
trainDataEndIndex = int(totalRecordCount*0.7)
random.shuffle(dataSet)
train = dataSet[:trainDataEndIndex]
test = dataSet[trainDataEndIndex:]
print('Total training data:{}'.format(len(train)))
print('Total test data:{}'.format(len(test)))
# Get the data (128, 128) and label from tuple
print("train 0 shape is ",train[0][0].shape)
X_train, y_train = zip(*train)
X_test, y_test = zip(*test)
return (X_train, y_train), (X_test, y_test)#dataSet
# Display the train data and a version of it with added noise
#display(train_data, noisy_train_data)
"""
## Build the autoencoder
We are going to use the Functional API to build our convolutional autoencoder.
"""
"""
## Prepare the data
"""
# Since we only need images from the dataset to encode and decode, we
# won't use the labels.
(train_data, _), (test_data, _) = importData()#.load_data()
# Normalize and reshape the data
train_data = preprocess(train_data)
test_data = preprocess(test_data)
inp = keras.Input(shape=[timesteps, input_dim,1])
#inputs = layers.Reshape(target_shape=(timesteps,input_dim,1),input_shape =(None,timesteps,input_dim,1))(inputs)
inp2 = layers.Reshape(target_shape=(input_dim,input_dim,1))(inp)
print(inp.shape)
filter1 = layers.MaxPool2D(pool_size=(1, input_dim//latent_dim))(inp2)
print(filter1.shape, ' vs (',input_dim, ',' ,input_dim//latent_dim, ',',1,')' )
filter1 = layers.Reshape((input_dim, input_dim//latent_dim *2))(filter1)
print('after reshape', filter1.shape)
filter1 = layers.Bidirectional(layers.LSTM(input_dim//latent_dim, return_sequences=True))(filter1)
filter1 = layers.LSTM(input_dim//latent_dim)(filter1)
#encoded = layers.Reshape((input_dim, input_dim//latent_dim *2))(encoded)
filter2 = layers.MaxPool2D(pool_size=(1, latent_dim))(inp2)
print(filter2.shape, ' vs (',input_dim, ',' ,latent_dim//2, ',',1,')' )
filter2 = layers.Reshape((input_dim, latent_dim//2))(filter2)
print('after reshape', filter2.shape)
filter2 = layers.Bidirectional(layers.LSTM(input_dim//latent_dim, return_sequences=True))(filter2)
filter2 = layers.LSTM(latent_dim)(filter2)
#encoded = layers.Reshape((input_dim, input_dim//latent_dim *2))(encoded)
encoded = layers.Concatenate(axis=1)([filter1,filter2])
print('after ls', encoded.shape)
decoded = layers.RepeatVector(timesteps)(encoded)
decoded = layers.LSTM(input_dim, return_sequences=True)(decoded)
decoded = layers.Bidirectional(layers.LSTM(input_dim//2, return_sequences=True))(decoded)
print(decoded.shape, ' vs (',input_dim, ',' ,input_dim//latent_dim * 2,',',1,')' )
decoded = layers.Reshape((input_dim, input_dim,1))(decoded)
print(decoded.shape, ' b4 con2d ', )
#decoded = layers.Conv2DTranspose( kernel_size=(2,2), activation='relu', padding='valid',input_shape=decoded.shape)(decoded)
#print(decoded.shape, ' after con2d ', )
#decoded = layers.Reshape((timesteps, input_dim, 1))(decoded)
'''
inp = layers.Input((latent_dim))
x = layers.Reshape((1, latent_dim))(inp)
x = layers.ZeroPadding1D((0, length - 1))(x)
x = layers.LSTM(latent_dim, return_sequences=True)(x)
x = layers.Bidirectional(layers.LSTM(output_dim // 2, return_sequences=True))(x)
x = layers.Reshape((length, output_dim, 1))(x)
x = layers.Conv2DTranspose(n_filters, kernel_size=kernel_size, activation='relu', padding='same')(x)
x = layers.Conv2DTranspose(1, kernel_size=(1, 1), activation='linear', padding='same')(x)
'''
#print(' inputs shape is ', inputs.shape)
#mergedModel = Model(inputs=[firstModel.input, secondModel.input], outputs=secondModel.layers[-1].output)
autoencoder = keras.Model(inputs=inp,outputs= decoded)
encoder = keras.Model(inp, encoded)
'''
input = layers.Input(shape=(dataSize, dataSize, 1))
# Encoder
x = layers.Conv2D(latent_dim, (3, 3), activation="relu", padding="same")(input)
x = layers.MaxPooling2D((2, 2), padding="same")(x)
x = layers.Conv2D(latent_dim, (3, 3), activation="relu", padding="same")(x)
x = layers.MaxPooling2D((2, 2), padding="same")(x)
#x = layers.Conv2D(latent_dim, (3, 3), activation="relu", padding="same")(x)
#x = layers.MaxPooling2D((2, 2), padding="same")(x)
# Decoder
#x = layers.Conv2DTranspose(latent_dim, (3, 3), strides=2, activation="relu", padding="same")(x)
x = layers.Conv2DTranspose(latent_dim, (3, 3), strides=2, activation="relu", padding="same")(x)
x = layers.Conv2DTranspose(latent_dim, (3, 3), strides=2, activation="relu", padding="same")(x)
x = layers.Conv2D(1, (3, 3), activation="sigmoid", padding="same")(x)
'''
# Autoencoder
#autoencoder = Model(input, x)
autoencoder.compile(optimizer="adam", loss="mse")
#autoencoder.summary()
"""
Now we can train our autoencoder using `train_data` as both our input data
and target. Notice we are setting up the validation data using the same
format.
"""
autoencoder.fit(
x=train_data,
y=train_data,
epochs=20,
batch_size=128,
shuffle=True,
validation_data=(test_data, test_data)
)
"""
Let's predict on our test dataset and display the original image together with
the prediction from our autoencoder.
Notice how the predictions are pretty close to the original images, although
not quite the same.
"""
autoencoder.save("denoiser_"+str(latent_dim)+".hdf5")
autoencoder.save("encoder"+str(latent_dim)+".hdf5")
#predictions = autoencoder.predict(test_data)
#display(test_data, predictions)
"""
Now that we know that our autoencoder works, let's retrain it using the noisy
data as our input and the clean data as our target. We want our autoencoder to
learn how to denoise the images.
"""