forked from stefan-jansen/machine-learning-for-trading
-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathdata_prep.py
45 lines (35 loc) · 1.62 KB
/
data_prep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#!/usr/bin/env python
# -*- coding: utf-8 -*-
__author__ = 'Stefan Jansen'
from pathlib import Path
import numpy as np
import pandas as pd
from scipy.stats import spearmanr
pd.set_option('display.expand_frame_repr', False)
np.random.seed(42)
PROJECT_DIR = Path('..', '..')
DATA_DIR = PROJECT_DIR / 'data'
def get_backtest_data(predictions='lasso/predictions'):
"""Combine chapter 7 lr/lasso/ridge regression predictions
with adjusted OHLCV Quandl Wiki data"""
with pd.HDFStore(DATA_DIR / 'assets.h5') as store:
prices = (store['quandl/wiki/prices']
.filter(like='adj')
.rename(columns=lambda x: x.replace('adj_', ''))
.swaplevel(axis=0))
with pd.HDFStore(PROJECT_DIR / '07_linear_models/data.h5') as store:
print(store.info())
predictions = store[predictions]
best_alpha = predictions.groupby('alpha').apply(lambda x: spearmanr(x.actuals, x.predicted)[0]).idxmax()
predictions = predictions[predictions.alpha == best_alpha]
predictions.index.names = ['ticker', 'date']
tickers = predictions.index.get_level_values('ticker').unique()
start = predictions.index.get_level_values('date').min().strftime('%Y-%m-%d')
stop = (predictions.index.get_level_values('date').max() + pd.DateOffset(1)).strftime('%Y-%m-%d')
idx = pd.IndexSlice
prices = prices.sort_index().loc[idx[tickers, start:stop], :]
predictions = predictions.loc[predictions.alpha == best_alpha, ['predicted']]
return predictions.join(prices, how='right')
df = get_backtest_data('lasso/predictions')
print(df.info())
df.to_hdf('backtest.h5', 'data')