forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 1
/
medical2video.py
83 lines (70 loc) · 2.57 KB
/
medical2video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import os.path as osp
import SimpleITK as sitk
import cv2
from cv2 import VideoWriter_fourcc
import numpy as np
from tqdm import tqdm
def load_medical_data(f):
"""
load data of different format into numpy array, return data is in xyz
f: the complete path to the file that you want to load
"""
filename = osp.basename(f).lower()
if filename.endswith((".nii", ".nii.gz", ".dcm")):
itkimage = sitk.ReadImage(f)
if itkimage.GetDimension() == 4:
slicer = sitk.ExtractImageFilter()
s = list(itkimage.GetSize())
s[-1] = 0
slicer.SetSize(s)
images = []
for slice_idx in range(itkimage.GetSize()[-1]):
slicer.SetIndex([0, 0, 0, slice_idx])
sitk_volume = slicer.Execute(itkimage)
images.append(sitk_volume)
images = [sitk.DICOMOrient(img, "SLP") for img in images]
f_nps = [sitk.GetArrayFromImage(img) for img in images]
else:
image = sitk.DICOMOrient(itkimage, "SLP")
f_np = sitk.GetArrayFromImage(image)
f_nps = [f_np]
elif filename.endswith((".mha", ".mhd", "nrrd")):
itkimage = sitk.DICOMOrient(sitk.ReadImage(f), "SLP")
f_np = sitk.GetArrayFromImage(itkimage)
if f_np.ndim == 4:
f_nps = [f_np[:, :, :, idx] for idx in range(f_np.shape[3])]
else:
f_nps = [f_np]
elif filename.endswith(".raw"):
raise RuntimeError(
f"Received {f}. Please only provide path to .mhd file, not to .raw file"
)
else:
raise NotImplementedError
return f_nps
def normalize(frame, ww=400, wc=0):
wl = wc - ww / 2
wh = wc + ww / 2
frame = frame.astype("float16")
np.clip(frame, wl, wh, out=frame)
frame = (frame - wl) / ww * 255
frame = frame.astype(np.uint8)
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2BGR)
return frame
def array_to_video(array_data, video_path, fps=15):
h, w, s = array_data.shape
fourcc = VideoWriter_fourcc(*"mp4v")
videoWriter = cv2.VideoWriter(video_path, fourcc, fps, (w, h))
for idx in tqdm(range(s)):
frame = array_data[:, :, idx]
frame = normalize(frame)
videoWriter.write(frame)
videoWriter.release()
cv2.destroyAllWindows()
print("转视频结束!")
if __name__ == "__main__":
path = "/home/lin/Desktop/data/coronacases_org_001.nii.gz"
video_path = "/home/lin/Desktop/temp.mp4"
total_data = load_medical_data(path)
for data in total_data:
array_to_video(data, video_path)