forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 1
/
pixel_contrast_cross_entropy_loss.py
203 lines (166 loc) · 7.81 KB
/
pixel_contrast_cross_entropy_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddleseg.cvlibs import manager
@manager.LOSSES.add_component
class PixelContrastCrossEntropyLoss(nn.Layer):
"""
The PixelContrastCrossEntropyLoss implementation based on PaddlePaddle.
The original article refers to
Wenguan Wang, Tianfei Zhou, et al. "Exploring Cross-Image Pixel Contrast for Semantic Segmentation"
(https://arxiv.org/abs/2101.11939).
Args:
temperature (float, optional): Controling the numerical similarity of features. Default: 0.1.
base_temperature (float, optional): Controling the numerical range of contrast loss. Default: 0.07.
ignore_index (int, optional): Specifies a target value that is ignored
and does not contribute to the input gradient. Default 255.
max_samples (int, optional): Max sampling anchors. Default: 1024.
max_views (int): Sampled samplers of a class. Default: 100.
"""
def __init__(self,
temperature=0.1,
base_temperature=0.07,
ignore_index=255,
max_samples=1024,
max_views=100):
super().__init__()
self.temperature = temperature
self.base_temperature = base_temperature
self.ignore_index = ignore_index
self.max_samples = max_samples
self.max_views = max_views
def _hard_anchor_sampling(self, X, y_hat, y):
"""
Args:
X (Tensor): reshaped feats, shape = [N, H * W, feat_channels]
y_hat (Tensor): reshaped label, shape = [N, H * W]
y (Tensor): reshaped predict, shape = [N, H * W]
"""
batch_size, feat_dim = paddle.shape(X)[0], paddle.shape(X)[-1]
classes = []
total_classes = 0
for i in range(batch_size):
current_y = y_hat[i]
current_classes = paddle.unique(current_y)
current_classes = [
x for x in current_classes if x != self.ignore_index
]
current_classes = [
x for x in current_classes
if (current_y == x).nonzero().shape[0] > self.max_views
]
classes.append(current_classes)
total_classes += len(current_classes)
n_view = self.max_samples // total_classes
n_view = min(n_view, self.max_views)
X_ = []
y_ = paddle.zeros([total_classes], dtype='float32')
X_ptr = 0
for i in range(batch_size):
this_y_hat = y_hat[i]
current_y = y[i]
current_classes = classes[i]
for cls_id in current_classes:
hard_indices = paddle.logical_and(
(this_y_hat == cls_id), (current_y != cls_id)).nonzero()
easy_indices = paddle.logical_and(
(this_y_hat == cls_id), (current_y == cls_id)).nonzero()
num_hard = hard_indices.shape[0]
num_easy = easy_indices.shape[0]
if num_hard >= n_view / 2 and num_easy >= n_view / 2:
num_hard_keep = n_view // 2
num_easy_keep = n_view - num_hard_keep
elif num_hard >= n_view / 2:
num_easy_keep = num_easy
num_hard_keep = n_view - num_easy_keep
elif num_easy >= n_view / 2:
num_hard_keep = num_hard
num_easy_keep = n_view - num_hard_keep
else:
num_hard_keep = num_hard
num_easy_keep = num_easy
indices = None
if num_hard > 0:
perm = paddle.randperm(num_hard)
hard_indices = hard_indices[perm[:num_hard_keep]].reshape(
(-1, hard_indices.shape[-1]))
indices = hard_indices
if num_easy > 0:
perm = paddle.randperm(num_easy)
easy_indices = easy_indices[perm[:num_easy_keep]].reshape(
(-1, easy_indices.shape[-1]))
if indices is None:
indices = easy_indices
else:
indices = paddle.concat((indices, easy_indices), axis=0)
if indices is None:
raise UserWarning('hard sampling indice error')
X_.append(paddle.index_select(X[i, :, :], indices.squeeze(1)))
y_[X_ptr] = float(cls_id)
X_ptr += 1
X_ = paddle.stack(X_, axis=0)
return X_, y_
def _contrastive(self, feats_, labels_):
"""
Args:
feats_ (Tensor): sampled pixel, shape = [total_classes, n_view, feat_dim], total_classes = batch_size * single image classes
labels_ (Tensor): label, shape = [total_classes]
"""
anchor_num, n_view = feats_.shape[0], feats_.shape[1]
labels_ = labels_.reshape((-1, 1))
mask = paddle.equal(labels_, paddle.transpose(labels_,
[1, 0])).astype('float32')
contrast_count = n_view
contrast_feature = paddle.concat(paddle.unbind(feats_, axis=1), axis=0)
anchor_feature = contrast_feature
anchor_count = contrast_count
anchor_dot_contrast = paddle.matmul(
anchor_feature, paddle.transpose(contrast_feature,
[1, 0])) / self.temperature
logits_max = paddle.max(anchor_dot_contrast, axis=1, keepdim=True)
logits = anchor_dot_contrast - logits_max
mask = paddle.tile(mask, [anchor_count, contrast_count])
neg_mask = 1 - mask
logits_mask = 1 - paddle.eye(mask.shape[0]).astype('float32')
mask = mask * logits_mask
neg_logits = paddle.exp(logits) * neg_mask
neg_logits = neg_logits.sum(1, keepdim=True)
exp_logits = paddle.exp(logits)
log_prob = logits - paddle.log(exp_logits + neg_logits)
mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1)
loss = -(self.temperature / self.base_temperature) * mean_log_prob_pos
loss = loss.mean()
return loss
def contrast_criterion(self, feats, labels=None, predict=None):
labels = labels.unsqueeze(1)
labels = F.interpolate(labels, feats.shape[2:], mode='nearest')
labels = labels.squeeze(1)
batch_size = feats.shape[0]
labels = labels.reshape((batch_size, -1))
predict = predict.reshape((batch_size, -1))
feats = paddle.transpose(feats, [0, 2, 3, 1])
feats = feats.reshape((feats.shape[0], -1, feats.shape[-1]))
feats_, labels_ = self._hard_anchor_sampling(feats, labels, predict)
loss = self._contrastive(feats_, labels_)
return loss
def forward(self, preds, label):
assert "seg" in preds, "The input of PixelContrastCrossEntropyLoss should include 'seg' output, but not found."
assert "embed" in preds, "The input of PixelContrastCrossEntropyLoss should include 'embed' output, but not found."
seg = preds['seg']
embedding = preds['embed']
predict = paddle.argmax(seg, axis=1)
loss = self.contrast_criterion(embedding, label, predict)
return loss