forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
262 lines (239 loc) · 8.52 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import random
import paddle
import numpy as np
import cv2
from paddleseg.cvlibs import manager, Config
from paddleseg.utils import get_sys_env, logger
from paddleseg.core import train
def parse_args():
parser = argparse.ArgumentParser(description='Model training')
# params of training
parser.add_argument(
"--config", dest="cfg", help="The config file.", default=None, type=str)
parser.add_argument(
'--iters',
dest='iters',
help='Iterations in training.',
type=int,
default=None)
parser.add_argument(
'--batch_size',
dest='batch_size',
help='Mini batch size of one gpu or cpu.',
type=int,
default=None)
parser.add_argument(
'--learning_rate',
dest='learning_rate',
help='Learning rate',
type=float,
default=None)
parser.add_argument(
'--opts',
help='Update the key-value pairs of all options.',
default=None,
nargs='+')
parser.add_argument(
'--save_interval',
dest='save_interval',
help='How many iters to save a model snapshot once during training.',
type=int,
default=1000)
parser.add_argument(
'--resume_model',
dest='resume_model',
help='The path of the model to resume.',
type=str,
default=None)
parser.add_argument(
'--save_dir',
dest='save_dir',
help='The directory for saving the model snapshot.',
type=str,
default='./output')
parser.add_argument(
'--keep_checkpoint_max',
dest='keep_checkpoint_max',
help='Maximum number of checkpoints to save.',
type=int,
default=5)
parser.add_argument(
'--num_workers',
dest='num_workers',
help='Number of workers for data loader.',
type=int,
default=0)
parser.add_argument(
'--do_eval',
dest='do_eval',
help='Whether to do evaluation while training.',
action='store_true')
parser.add_argument(
'--log_iters',
dest='log_iters',
help='Display logging information at every `log_iters`.',
default=10,
type=int)
parser.add_argument(
'--use_vdl',
dest='use_vdl',
help='Whether to record the data to VisualDL during training.',
action='store_true')
parser.add_argument(
'--seed',
dest='seed',
help='Set the random seed during training.',
default=None,
type=int)
parser.add_argument(
"--precision",
default="fp32",
type=str,
choices=["fp32", "fp16"],
help="Use AMP (Auto mixed precision) if precision='fp16'. If precision='fp32', the training is normal."
)
parser.add_argument(
"--amp_level",
default="O1",
type=str,
choices=["O1", "O2"],
help="Auto mixed precision level. Accepted values are “O1” and “O2”: O1 represent mixed precision, the input \
data type of each operator will be casted by white_list and black_list; O2 represent Pure fp16, all operators \
parameters and input data will be casted to fp16, except operators in black_list, don’t support fp16 kernel \
and batchnorm. Default is O1(amp).")
parser.add_argument(
'--data_format',
dest='data_format',
help='Data format that specifies the layout of input. It can be "NCHW" or "NHWC". Default: "NCHW".',
type=str,
default='NCHW')
parser.add_argument(
'--profiler_options',
type=str,
default=None,
help='The option of train profiler. If profiler_options is not None, the train ' \
'profiler is enabled. Refer to the paddleseg/utils/train_profiler.py for details.'
)
parser.add_argument(
'--device',
dest='device',
help='Device place to be set, which can be gpu, xpu, npu, mlu or cpu.',
default='gpu',
choices=['cpu', 'gpu', 'xpu', 'npu', 'mlu'],
type=str)
parser.add_argument(
'--repeats',
type=int,
default=1,
help="Repeat the samples in the dataset for `repeats` times in each epoch."
)
return parser.parse_args()
def main(args):
if args.seed is not None:
paddle.seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
env_info = get_sys_env()
info = ['{}: {}'.format(k, v) for k, v in env_info.items()]
info = '\n'.join(['', format('Environment Information', '-^48s')] + info +
['-' * 48])
logger.info(info)
if args.device == 'gpu' and env_info[
'Paddle compiled with cuda'] and env_info['GPUs used']:
place = 'gpu'
elif args.device == 'xpu' and paddle.is_compiled_with_xpu():
place = 'xpu'
elif args.device == 'npu' and paddle.is_compiled_with_npu():
place = 'npu'
elif args.device == 'mlu' and paddle.is_compiled_with_mlu():
place = 'mlu'
else:
place = 'cpu'
paddle.set_device(place)
if not args.cfg:
raise RuntimeError('No configuration file specified.')
nranks = paddle.distributed.ParallelEnv().nranks
# Limit cv2 threads if too many subprocesses are spawned.
# This should reduce resource allocation and thus boost performance.
if nranks >= 8 and args.num_workers >= 8:
logger.warning(
"The number of threads used by OpenCV is set to 1 to improve performance."
)
cv2.setNumThreads(1)
cfg = Config(
args.cfg,
learning_rate=args.learning_rate,
iters=args.iters,
batch_size=args.batch_size,
opts=args.opts)
cfg.check_sync_info()
# Only support for the DeepLabv3+ model
if args.data_format == 'NHWC':
if cfg.dic['model']['type'] != 'DeepLabV3P':
raise ValueError(
'The "NHWC" data format only support the DeepLabV3P model!')
cfg.dic['model']['data_format'] = args.data_format
cfg.dic['model']['backbone']['data_format'] = args.data_format
loss_len = len(cfg.dic['loss']['types'])
for i in range(loss_len):
cfg.dic['loss']['types'][i]['data_format'] = args.data_format
train_dataset = cfg.train_dataset
if train_dataset is None:
raise RuntimeError(
'The training dataset is not specified in the configuration file.')
elif len(train_dataset) == 0:
raise ValueError(
'The length of train_dataset is 0. Please check if your dataset is valid'
)
if args.repeats > 1:
train_dataset.file_list *= args.repeats
val_dataset = cfg.val_dataset if args.do_eval else None
losses = cfg.loss
msg = '\n---------------Config Information---------------\n'
msg += str(cfg)
msg += '------------------------------------------------'
logger.info(msg)
# convert bn to sync_bn if necessary
if place == 'gpu' and paddle.distributed.ParallelEnv().nranks > 1:
model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(cfg.model)
else:
model = cfg.model
train(
model,
train_dataset,
val_dataset=val_dataset,
optimizer=cfg.optimizer,
save_dir=args.save_dir,
iters=cfg.iters,
batch_size=cfg.batch_size,
resume_model=args.resume_model,
save_interval=args.save_interval,
log_iters=args.log_iters,
num_workers=args.num_workers,
use_vdl=args.use_vdl,
losses=losses,
keep_checkpoint_max=args.keep_checkpoint_max,
test_config=cfg.test_config,
precision=args.precision,
amp_level=args.amp_level,
profiler_options=args.profiler_options,
to_static_training=cfg.to_static_training)
logger.warning("This `train.py` will be removed in version 2.8, "
"please use `tools/train.py`.")
if __name__ == '__main__':
args = parse_args()
main(args)