-
Notifications
You must be signed in to change notification settings - Fork 823
/
train.py
executable file
·200 lines (168 loc) · 7.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gym
import numpy as np
import time
import parl
from atari_model import AtariModel
from atari_agent import AtariAgent
from collections import defaultdict
from parl.env.atari_wrappers import wrap_deepmind
from parl.utils import logger, summary
from parl.utils.time_stat import TimeStat
from parl.utils.window_stat import WindowStat
from actor import Actor
from parl.algorithms import A2C
class Learner(object):
def __init__(self, config):
self.config = config
#=========== Create Agent ==========
env = gym.make(config['env_name'])
env = wrap_deepmind(env, dim=config['env_dim'], obs_format='NCHW')
obs_shape = env.observation_space.shape
act_dim = env.action_space.n
self.config['obs_shape'] = obs_shape
self.config['act_dim'] = act_dim
model = AtariModel(act_dim)
algorithm = A2C(model, vf_loss_coeff=config['vf_loss_coeff'])
self.agent = AtariAgent(algorithm, config)
#========== Learner ==========
self.total_loss_stat = WindowStat(100)
self.pi_loss_stat = WindowStat(100)
self.vf_loss_stat = WindowStat(100)
self.entropy_stat = WindowStat(100)
self.lr = None
self.entropy_coeff = None
self.learn_time_stat = TimeStat(100)
self.start_time = None
#========== Remote Actor ===========
self.sample_total_steps = 0
self.create_actors()
def create_actors(self):
""" Connect to the cluster and start sampling of the remote actor.
"""
parl.connect(self.config['master_address'])
self.remote_actors = [
Actor(self.config) for _ in range(self.config['actor_num'])
]
logger.info('Creating {} remote actors to connect.'.format(
self.config['actor_num']))
self.start_time = time.time()
def step(self):
"""
1. kick off all actors to synchronize parameters and sample data;
2. collect sample data of all actors;
3. update parameters.
"""
latest_params = self.agent.get_weights()
# setting the actor to the latest_params
for remote_actor in self.remote_actors:
remote_actor.set_weights(latest_params)
train_batch = defaultdict(list)
# get the total train data of all the actors.
sample_data_object_ids = [
remote_actor.sample() for remote_actor in self.remote_actors
]
sample_datas = [
future_object.get() for future_object in sample_data_object_ids
]
for sample_data in sample_datas:
for key, value in sample_data.items():
train_batch[key].append(value)
self.sample_total_steps += len(sample_data['obs'])
for key, value in train_batch.items():
train_batch[key] = np.concatenate(value)
with self.learn_time_stat:
total_loss, pi_loss, vf_loss, entropy, lr, entropy_coeff = self.agent.learn(
obs_np=train_batch['obs'],
actions_np=train_batch['actions'],
advantages_np=train_batch['advantages'],
target_values_np=train_batch['target_values'],
)
self.total_loss_stat.add(total_loss)
self.pi_loss_stat.add(pi_loss)
self.vf_loss_stat.add(vf_loss)
self.entropy_stat.add(entropy)
self.lr = lr
self.entropy_coeff = entropy_coeff
def log_metrics(self):
""" Log metrics of learner and actors
"""
if self.start_time is None:
return
# get the total metrics data
metric_object_ids = [
remote_actor.get_metrics() for remote_actor in self.remote_actors
]
metrics = [future_object.get() for future_object in metric_object_ids]
# if the metric of all the metrics are empty, return nothing.
total_length = sum(len(metric) for metric in metrics)
if not total_length:
return
episode_rewards, episode_steps = [], []
for x in metrics:
episode_rewards.extend(x['episode_rewards'])
episode_steps.extend(x['episode_steps'])
max_episode_rewards, mean_episode_rewards, min_episode_rewards, \
max_episode_steps, mean_episode_steps, min_episode_steps =\
None, None, None, None, None, None
if episode_rewards:
mean_episode_rewards = np.mean(np.array(episode_rewards).flatten())
max_episode_rewards = np.max(np.array(episode_rewards).flatten())
min_episode_rewards = np.min(np.array(episode_rewards).flatten())
mean_episode_steps = np.mean(np.array(episode_steps).flatten())
max_episode_steps = np.max(np.array(episode_steps).flatten())
min_episode_steps = np.min(np.array(episode_steps).flatten())
metric = {
'sample_steps': self.sample_total_steps,
'max_episode_rewards': max_episode_rewards,
'mean_episode_rewards': mean_episode_rewards,
'min_episode_rewards': min_episode_rewards,
'max_episode_steps': max_episode_steps,
'mean_episode_steps': mean_episode_steps,
'min_episode_steps': min_episode_steps,
'total_loss': self.total_loss_stat.mean,
'pi_loss': self.pi_loss_stat.mean,
'vf_loss': self.vf_loss_stat.mean,
'entropy': self.entropy_stat.mean,
'learn_time_s': self.learn_time_stat.mean,
'elapsed_time_s': int(time.time() - self.start_time),
'lr': self.lr,
'entropy_coeff': self.entropy_coeff,
}
for key, value in metric.items():
if value is not None:
summary.add_scalar(key, value, self.sample_total_steps)
logger.info(metric)
def should_stop(self):
return self.sample_total_steps >= self.config['max_sample_steps']
if __name__ == '__main__':
from a2c_config import config
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
'--max_sample_steps',
type=int,
default=None,
help='stop condition: number of sample step')
args = parser.parse_args()
if args.max_sample_steps is not None:
config['max_sample_steps'] = args.max_sample_steps
learner = Learner(config)
assert config['log_metrics_interval_s'] > 0
while not learner.should_stop():
start = time.time()
while time.time() - start < config['log_metrics_interval_s']:
learner.step()
learner.log_metrics()