You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
use_gpu: true
use_xpu: false
use_mlu: false
use_npu: false
log_iter: 100
save_dir: output
snapshot_epoch: 1
print_flops: false
print_params: false
# Exporting the model
export:
post_process: True # Whether post-processing is included in the network when export model.
nms: True # Whether NMS is included in the network when export model.
benchmark: False # It is used to testing model performance, if set `True`, post-process and NMS will not be exported.
fuse_conv_bn: False
metric: MCMOT
num_classes: 228
# for MCMOT training
TrainDataset:
!MCMOTDataSet
dataset_dir: /home/aistudio/work/dataset # 需要更改为自己对应的文件目录下
image_lists: ['IKCEST.train']
data_fields: ['image', 'gt_bbox', 'gt_class', 'gt_ide']
label_list: /home/aistudio/work/dataset/label_list.txt
EvalMOTDataset:
!MOTImageFolder
dataset_dir: /home/aistudio/work/dataset
data_root: IKCEST/images/test/
keep_ori_im: False # set True if save visualization images or video, or used in DeepSORT
anno_path: /home/aistudio/work/dataset/label_list.txt
# for MCMOT video inference
#TestMOTDataset:
# !MOTImageFolder
# dataset_dir: /home/aistudio/work/dataset
# keep_ori_im: True # set True if save visualization images or video
# anno_path: /home/aistudio/work/dataset/label_list.txt
pretrain_weights: https://paddledet.bj.bcebos.com/models/centernet_dla34_140e_coco.pdparams
architecture: FairMOT
for_mot: True
FairMOT:
detector: CenterNet
reid: FairMOTEmbeddingHead
loss: FairMOTLoss
tracker: JDETracker # multi-class tracker
CenterNet:
backbone: DLA
neck: CenterNetDLAFPN
head: CenterNetHead
post_process: CenterNetPostProcess
CenterNetDLAFPN:
down_ratio: 4
last_level: 5
out_channel: 0
dcn_v2: True
with_sge: False
CenterNetHead:
head_planes: 256
prior_bias: -2.19
regress_ltrb: False
size_loss: 'L1'
loss_weight: {'heatmap': 1.0, 'size': 0.1, 'offset': 1.0, 'iou': 0.0}
add_iou: False
FairMOTEmbeddingHead:
ch_head: 256
ch_emb: 128
CenterNetPostProcess:
max_per_img: 200
down_ratio: 4
regress_ltrb: False
JDETracker:
min_box_area: 0
vertical_ratio: 0 # no need to filter bboxes according to w/h
use_byte: True
match_thres: 0.8
conf_thres: 0.4
low_conf_thres: 0.2
tracked_thresh: 0.4
metric_type: cosine
weights: output/mcfairmot_dla34_30e_1088x608_visdrone_vehicle_bytetracker/model_final
epoch: 30
LearningRate:
base_lr: 0.0005
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [10, 20]
use_warmup: False
OptimizerBuilder:
optimizer:
type: Adam
regularizer: NULL
worker_num: 4
TrainReader:
inputs_def:
image_shape: [3, 608, 1088]
sample_transforms:
- Decode: {}
- RGBReverse: {}
- AugmentHSV: {}
- LetterBoxResize: {target_size: [608, 1088]}
- MOTRandomAffine: {reject_outside: False}
- RandomFlip: {}
- BboxXYXY2XYWH: {}
- NormalizeBox: {}
- NormalizeImage: {mean: [0, 0, 0], std: [1, 1, 1]}
- RGBReverse: {}
- Permute: {}
batch_transforms:
- Gt2FairMOTTarget: {}
batch_size: 2
shuffle: True
drop_last: True
use_shared_memory: True
EvalMOTReader:
sample_transforms:
- Decode: {}
- LetterBoxResize: {target_size: [608, 1088]}
- NormalizeImage: {mean: [0, 0, 0], std: [1, 1, 1], is_scale: True}
- Permute: {}
batch_size: 1
#TestMOTReader:
# inputs_def:
# image_shape: [3, 608, 1088]
# sample_transforms:
# - Decode: {}
# - LetterBoxResize: {target_size: [608, 1088]}
# - NormalizeImage: {mean: [0, 0, 0], std: [1, 1, 1], is_scale: True}
# - Permute: {}
# batch_size: 1
运行时报异常,
Traceback (most recent call last):
File "/home/aistudio/PaddleDetection/tools/train.py", line 209, in <module>
main()
File "/home/aistudio/PaddleDetection/tools/train.py", line 205, in main
run(FLAGS, cfg)
File "/home/aistudio/PaddleDetection/tools/train.py", line 158, in run
trainer.train(FLAGS.eval)
File "/home/aistudio/PaddleDetection/ppdet/engine/trainer.py", line 463, in train
self.cfg['EvalDataset'] = self.cfg.EvalDataset = create(
File "/home/aistudio/PaddleDetection/ppdet/core/workspace.py", line 292, in create
return cls(**cls_kwargs)
File "/home/aistudio/PaddleDetection/ppdet/data/source/dataset.py", line 278, in __init__
type = dataset_args.pop("name")
KeyError: 'name'
我确认已经提供了Bug复现步骤、代码改动说明、以及环境信息,确认问题是可以复现的。I confirm that the bug replication steps, code change instructions, and environment information have been provided, and the problem can be reproduced.
是否愿意提交PR? Are you willing to submit a PR?
我愿意提交PR!I'd like to help by submitting a PR!
The text was updated successfully, but these errors were encountered:
问题确认 Search before asking
Bug组件 Bug Component
Training
Bug描述 Describe the Bug
来自于ikcest2024 baseline https://aistudio.baidu.com/projectdetail/7933300
在aistudio上运行,配置我全部放到一个文件里
运行时报异常,
感觉就是EvalMOTDataset没能正确创建出来,而且我看代码里面对metrics MCMOT也没处理
复现环境 Environment
aistudio环境,直接运行项目就能复现
Bug描述确认 Bug description confirmation
是否愿意提交PR? Are you willing to submit a PR?
The text was updated successfully, but these errors were encountered: