-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
gscnn_dual_task_loss.py
141 lines (118 loc) · 5.11 KB
/
gscnn_dual_task_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddleseg.cvlibs import manager
@manager.LOSSES.add_component
class DualTaskLoss(nn.Layer):
"""
The dual task loss implement of GSCNN
Args:
ignore_index (int64): Specifies a target value that is ignored
and does not contribute to the input gradient. Default ``255``.
tau (float): the tau of gumbel softmax sample.
"""
def __init__(self, ignore_index=255, tau=0.5):
super().__init__()
self.ignore_index = ignore_index
self.tau = tau
def _gumbel_softmax_sample(self, logit, tau=1, eps=1e-10):
"""
Draw a sample from the Gumbel-Softmax distribution
based on
https://github.com/ericjang/gumbel-softmax/blob/3c8584924603869e90ca74ac20a6a03d99a91ef9/Categorical%20VAE.ipynb
(MIT license)
"""
gumbel_noise = paddle.rand(logit.shape)
gumbel_noise = -paddle.log(eps - paddle.log(gumbel_noise + eps))
logit = logit + gumbel_noise
return F.softmax(logit / tau, axis=1)
def compute_grad_mag(self, x):
eps = 1e-6
n, c, h, w = x.shape
if h <= 1 or w <= 1:
raise ValueError(
'The width and height of tensor to compute grad must be greater than 1, but the shape is {}.'
.format(x.shape))
x = self.conv_tri(x, r=4)
kernel = [[-1, 0, 1]]
kernel = paddle.to_tensor(kernel).astype('float32')
kernel = 0.5 * kernel
kernel_x = paddle.concat([kernel.unsqueeze((0, 1))] * c, axis=0)
grad_x = F.conv2d(x, kernel_x, padding='same', groups=c)
kernel_y = paddle.concat([kernel.t().unsqueeze((0, 1))] * c, axis=0)
grad_y = F.conv2d(x, kernel_y, padding='same', groups=c)
mag = paddle.sqrt(grad_x * grad_x + grad_y * grad_y + eps)
return mag / mag.max()
def conv_tri(self, input, r):
"""
Convolves an image by a 2D triangle filter (the 1D triangle filter f is
[1:r r+1 r:-1:1]/(r+1)^2, the 2D version is simply conv2(f,f'))
"""
if r <= 1:
raise ValueError(
'`r` should be greater than 1, but it is {}.'.format(r))
kernel = [
list(range(1, r + 1)) + [r + 1] + list(reversed(range(1, r + 1)))
]
kernel = paddle.to_tensor(kernel).astype('float32')
kernel = kernel / (r + 1)**2
input_ = F.pad(input, [1, 1, 0, 0], mode='replicate')
input_ = F.pad(input_, [r, r, 0, 0], mode='reflect')
input_ = [input_[:, :, :, :r], input, input_[:, :, :, -r:]]
input_ = paddle.concat(input_, axis=3)
tem = input_.clone()
input_ = F.pad(input_, [0, 0, 1, 1], mode='replicate')
input_ = F.pad(input_, [0, 0, r, r], mode='reflect')
input_ = [input_[:, :, :r, :], tem, input_[:, :, -r:, :]]
input_ = paddle.concat(input_, axis=2)
c = input.shape[1]
kernel_x = paddle.concat([kernel.unsqueeze((0, 1))] * c, axis=0)
output = F.conv2d(input_, kernel_x, padding=0, groups=c)
kernel_y = paddle.concat([kernel.t().unsqueeze((0, 1))] * c, axis=0)
output = F.conv2d(output, kernel_y, padding=0, groups=c)
return output
def forward(self, logit, labels):
# import pdb; pdb.set_trace()
n, c, h, w = logit.shape
th = 1e-8
eps = 1e-10
if len(labels.shape) == 3:
labels = labels.unsqueeze(1)
mask = (labels != self.ignore_index)
mask.stop_gradient = True
logit = logit * mask.astype(logit.dtype)
labels = labels * mask.astype(labels.dtype)
if len(labels.shape) == 4:
labels = labels.squeeze(1)
labels.stop_gradient = True
labels = F.one_hot(labels, logit.shape[1]).transpose((0, 3, 1, 2))
labels.stop_gradient = True
g = self._gumbel_softmax_sample(logit, tau=self.tau)
g = self.compute_grad_mag(g)
g_hat = self.compute_grad_mag(labels)
loss = F.l1_loss(g, g_hat, reduction='none')
loss = loss * mask.astype(loss.dtype)
g_mask = (g > th).astype('float32')
g_mask.stop_gradient = True
g_mask_sum = paddle.sum(g_mask)
loss_g = paddle.sum(loss * g_mask)
if g_mask_sum > eps:
loss_g = loss_g / g_mask_sum
g_hat_mask = (g_hat > th).astype('float32')
g_hat_mask.stop_gradient = True
g_hat_mask_sum = paddle.sum(g_hat_mask)
loss_g_hat = paddle.sum(loss * g_hat_mask)
if g_hat_mask_sum > eps:
loss_g_hat = loss_g_hat / g_hat_mask_sum
total_loss = 0.5 * loss_g + 0.5 * loss_g_hat
return total_loss