-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathff.cpp
1243 lines (1116 loc) · 40.5 KB
/
ff.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//Code written by Richard O. Lee and Christian Bienia
//Modified by Christian Fensch
// FastFlow version by Daniele De Sensi ([email protected])
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <fstream>
#if defined(WIN32)
#define NOMINMAX
#include <windows.h>
#endif
#include <math.h>
#include <pthread.h>
#include <assert.h>
#include <float.h>
#include "fluid.hpp"
#include "cellpool.hpp"
#ifdef ENABLE_VISUALIZATION
#include "fluidview.hpp"
#endif
#ifdef ENABLE_PARSEC_HOOKS
#include <hooks.h>
#endif
#ifdef ENABLE_NORNIR
#include <nornir/instrumenter.hpp>
#include <stdlib.h>
#include <iostream>
std::string getParametersPath(){
return std::string(getenv("PARSECDIR")) + std::string("/parameters.xml");
}
#endif //ENABLE_NORNIR
#include <ff/parallel_for.hpp>
//Uncomment to add code to check that Courant–Friedrichs–Lewy condition is satisfied at runtime
//#define ENABLE_CFL_CHECK
////////////////////////////////////////////////////////////////////////////////
cellpool *pools; //each thread has its private cell pool
fptype restParticlesPerMeter, h, hSq;
fptype densityCoeff, pressureCoeff, viscosityCoeff;
int nx, ny, nz; // number of grid cells in each dimension
Vec3 delta; // cell dimensions
int numParticles = 0;
int numCells = 0;
Cell *cells = 0;
Cell *cells2 = 0;
int *cnumPars = 0;
int *cnumPars2 = 0;
Cell **last_cells = NULL; //helper array with pointers to last cell structure of "cells" array lists
#ifdef ENABLE_VISUALIZATION
Vec3 vMax(0.0,0.0,0.0);
Vec3 vMin(0.0,0.0,0.0);
#endif
int XDIVS = 1; // number of partitions in X
int ZDIVS = 1; // number of partitions in Z
#define NUM_GRIDS ((XDIVS) * (ZDIVS))
#define MUTEXES_PER_CELL 128
#define CELL_MUTEX_ID 0
struct Grid
{
union {
struct {
int sx, sy, sz;
int ex, ey, ez;
};
unsigned char pp[CACHELINE_SIZE];
};
} *grids;
bool *border;
pthread_mutex_t **mutex; // used to lock cells in RebuildGrid and also particles in other functions
ff::ParallelFor* ffpf;
int frames;
#ifdef ENABLE_NORNIR
nornir::Instrumenter* instr;
#endif //ENABLE_NORNIR
////////////////////////////////////////////////////////////////////////////////
/*
* hmgweight
*
* Computes the hamming weight of x
*
* x - input value
* lsb - if x!=0 position of smallest bit set, else -1
*
* return - the hamming weight
*/
unsigned int hmgweight(unsigned int x, int *lsb) {
unsigned int weight=0;
unsigned int mask= 1;
unsigned int count=0;
*lsb=-1;
while(x > 0) {
unsigned int temp;
temp=(x&mask);
if((x&mask) == 1) {
weight++;
if(*lsb == -1) *lsb = count;
}
x >>= 1;
count++;
}
return weight;
}
void InitSim(char const *fileName, unsigned int threadnum)
{
//Compute partitioning based on square root of number of threads
//NOTE: Other partition sizes are possible as long as XDIVS * ZDIVS == threadnum,
// but communication is minimal (and hence optimal) if XDIVS == ZDIVS
int lsb;
if(hmgweight(threadnum,&lsb) != 1) {
std::cerr << "Number of threads must be a power of 2" << std::endl;
exit(1);
}
XDIVS = 1<<(lsb/2);
ZDIVS = 1<<(lsb/2);
if(XDIVS*ZDIVS != threadnum) XDIVS*=2;
assert(XDIVS * ZDIVS == threadnum);
grids = new struct Grid[NUM_GRIDS];
assert(sizeof(Grid) <= CACHELINE_SIZE); // as we put and aligh grid on the cacheline size to avoid false-sharing
// if asserts fails - increase pp union member in Grid declarationi
// and change this macro
pools = new cellpool[NUM_GRIDS];
//Load input particles
std::cout << "Loading file \"" << fileName << "\"..." << std::endl;
std::ifstream file(fileName, std::ios::binary);
if(!file) {
std::cerr << "Error opening file. Aborting." << std::endl;
exit(1);
}
//Always use single precision float variables b/c file format uses single precision
float restParticlesPerMeter_le;
int numParticles_le;
file.read((char *)&restParticlesPerMeter_le, FILE_SIZE_FLOAT);
file.read((char *)&numParticles_le, FILE_SIZE_INT);
if(!isLittleEndian()) {
restParticlesPerMeter = bswap_float(restParticlesPerMeter_le);
numParticles = bswap_int32(numParticles_le);
} else {
restParticlesPerMeter = restParticlesPerMeter_le;
numParticles = numParticles_le;
}
for(int i=0; i<NUM_GRIDS; i++) cellpool_init(&pools[i], numParticles/NUM_GRIDS);
h = kernelRadiusMultiplier / restParticlesPerMeter;
hSq = h*h;
#ifndef ENABLE_DOUBLE_PRECISION
fptype coeff1 = 315.0 / (64.0*pi*powf(h,9.0));
fptype coeff2 = 15.0 / (pi*powf(h,6.0));
fptype coeff3 = 45.0 / (pi*powf(h,6.0));
#else
fptype coeff1 = 315.0 / (64.0*pi*pow(h,9.0));
fptype coeff2 = 15.0 / (pi*pow(h,6.0));
fptype coeff3 = 45.0 / (pi*pow(h,6.0));
#endif //ENABLE_DOUBLE_PRECISION
fptype particleMass = 0.5*doubleRestDensity / (restParticlesPerMeter*restParticlesPerMeter*restParticlesPerMeter);
densityCoeff = particleMass * coeff1;
pressureCoeff = 3.0*coeff2 * 0.50*stiffnessPressure * particleMass;
viscosityCoeff = viscosity * coeff3 * particleMass;
Vec3 range = domainMax - domainMin;
nx = (int)(range.x / h);
ny = (int)(range.y / h);
nz = (int)(range.z / h);
assert(nx >= 1 && ny >= 1 && nz >= 1);
numCells = nx*ny*nz;
std::cout << "Number of cells: " << numCells << std::endl;
delta.x = range.x / nx;
delta.y = range.y / ny;
delta.z = range.z / nz;
assert(delta.x >= h && delta.y >= h && delta.z >= h);
std::cout << "Grids steps over x, y, z: " << delta.x << " " << delta.y << " " << delta.z << std::endl;
assert(nx >= XDIVS && nz >= ZDIVS);
int gi = 0;
int sx, sz, ex, ez;
ex = 0;
for(int i = 0; i < XDIVS; ++i)
{
sx = ex;
ex = (int)((fptype)(nx)/(fptype)(XDIVS) * (i+1) + 0.5);
assert(sx < ex);
ez = 0;
for(int j = 0; j < ZDIVS; ++j, ++gi)
{
sz = ez;
ez = (int)((fptype)(nz)/(fptype)(ZDIVS) * (j+1) + 0.5);
assert(sz < ez);
grids[gi].sx = sx;
grids[gi].ex = ex;
grids[gi].sy = 0;
grids[gi].ey = ny;
grids[gi].sz = sz;
grids[gi].ez = ez;
}
}
assert(gi == NUM_GRIDS);
border = new bool[numCells];
for(int i = 0; i < NUM_GRIDS; ++i)
for(int iz = grids[i].sz; iz < grids[i].ez; ++iz)
for(int iy = grids[i].sy; iy < grids[i].ey; ++iy)
for(int ix = grids[i].sx; ix < grids[i].ex; ++ix)
{
int index = (iz*ny + iy)*nx + ix;
border[index] = false;
for(int dk = -1; dk <= 1; ++dk)
{
for(int dj = -1; dj <= 1; ++dj)
{
for(int di = -1; di <= 1; ++di)
{
int ci = ix + di;
int cj = iy + dj;
int ck = iz + dk;
if(ci < 0) ci = 0; else if(ci > (nx-1)) ci = nx-1;
if(cj < 0) cj = 0; else if(cj > (ny-1)) cj = ny-1;
if(ck < 0) ck = 0; else if(ck > (nz-1)) ck = nz-1;
if( ci < grids[i].sx || ci >= grids[i].ex ||
cj < grids[i].sy || cj >= grids[i].ey ||
ck < grids[i].sz || ck >= grids[i].ez ) {
border[index] = true;
break;
}
} // for(int di = -1; di <= 1; ++di)
if(border[index])
break;
} // for(int dj = -1; dj <= 1; ++dj)
if(border[index])
break;
} // for(int dk = -1; dk <= 1; ++dk)
}
mutex = new pthread_mutex_t *[numCells];
for(int i = 0; i < numCells; ++i)
{
assert(CELL_MUTEX_ID < MUTEXES_PER_CELL);
int n = (border[i] ? MUTEXES_PER_CELL : CELL_MUTEX_ID+1);
mutex[i] = new pthread_mutex_t[n];
for(int j = 0; j < n; ++j)
pthread_mutex_init(&mutex[i][j], NULL);
}
//make sure Cell structure is multiple of estiamted cache line size
assert(sizeof(Cell) % CACHELINE_SIZE == 0);
//make sure helper Cell structure is in sync with real Cell structure
assert(offsetof(struct Cell_aux, padding) == offsetof(struct Cell, padding));
#if defined(WIN32)
cells = (struct Cell*)_aligned_malloc(sizeof(struct Cell) * numCells, CACHELINE_SIZE);
cells2 = (struct Cell*)_aligned_malloc(sizeof(struct Cell) * numCells, CACHELINE_SIZE);
cnumPars = (int*)_aligned_malloc(sizeof(int) * numCells, CACHELINE_SIZE);
cnumPars2 = (int*)_aligned_malloc(sizeof(int) * numCells, CACHELINE_SIZE);
last_cells = (struct Cell **)_aligned_malloc(sizeof(struct Cell *) * numCells, CACHELINE_SIZE);
assert((cells!=NULL) && (cells2!=NULL) && (cnumPars!=NULL) && (cnumPars2!=NULL) && (last_cells!=NULL));
#elif defined(SPARC_SOLARIS)
cells = (Cell*)memalign(CACHELINE_SIZE, sizeof(struct Cell) * numCells);
cells2 = (Cell*)memalign(CACHELINE_SIZE, sizeof(struct Cell) * numCells);
cnumPars = (int*)memalign(CACHELINE_SIZE, sizeof(int) * numCells);
cnumPars2 = (int*)memalign(CACHELINE_SIZE, sizeof(int) * numCells);
last_cells = (Cell**)memalign(CACHELINE_SIZE, sizeof(struct Cell *) * numCells);
assert((cells!=0) && (cells2!=0) && (cnumPars!=0) && (cnumPars2!=0) && (last_cells!=0));
#else
int rv0 = posix_memalign((void **)(&cells), CACHELINE_SIZE, sizeof(struct Cell) * numCells);
int rv1 = posix_memalign((void **)(&cells2), CACHELINE_SIZE, sizeof(struct Cell) * numCells);
int rv2 = posix_memalign((void **)(&cnumPars), CACHELINE_SIZE, sizeof(int) * numCells);
int rv3 = posix_memalign((void **)(&cnumPars2), CACHELINE_SIZE, sizeof(int) * numCells);
int rv4 = posix_memalign((void **)(&last_cells), CACHELINE_SIZE, sizeof(struct Cell *) * numCells);
assert((rv0==0) && (rv1==0) && (rv2==0) && (rv3==0) && (rv4==0));
#endif
// because cells and cells2 are not allocated via new
// we construct them here
for(int i=0; i<numCells; ++i)
{
new (&cells[i]) Cell;
new (&cells2[i]) Cell;
}
memset(cnumPars, 0, numCells*sizeof(int));
//Always use single precision float variables b/c file format uses single precision float
int pool_id = 0;
float px, py, pz, hvx, hvy, hvz, vx, vy, vz;
for(int i = 0; i < numParticles; ++i)
{
file.read((char *)&px, FILE_SIZE_FLOAT);
file.read((char *)&py, FILE_SIZE_FLOAT);
file.read((char *)&pz, FILE_SIZE_FLOAT);
file.read((char *)&hvx, FILE_SIZE_FLOAT);
file.read((char *)&hvy, FILE_SIZE_FLOAT);
file.read((char *)&hvz, FILE_SIZE_FLOAT);
file.read((char *)&vx, FILE_SIZE_FLOAT);
file.read((char *)&vy, FILE_SIZE_FLOAT);
file.read((char *)&vz, FILE_SIZE_FLOAT);
if(!isLittleEndian()) {
px = bswap_float(px);
py = bswap_float(py);
pz = bswap_float(pz);
hvx = bswap_float(hvx);
hvy = bswap_float(hvy);
hvz = bswap_float(hvz);
vx = bswap_float(vx);
vy = bswap_float(vy);
vz = bswap_float(vz);
}
int ci = (int)((px - domainMin.x) / delta.x);
int cj = (int)((py - domainMin.y) / delta.y);
int ck = (int)((pz - domainMin.z) / delta.z);
if(ci < 0) ci = 0; else if(ci > (nx-1)) ci = nx-1;
if(cj < 0) cj = 0; else if(cj > (ny-1)) cj = ny-1;
if(ck < 0) ck = 0; else if(ck > (nz-1)) ck = nz-1;
int index = (ck*ny + cj)*nx + ci;
Cell *cell = &cells[index];
//go to last cell structure in list
int np = cnumPars[index];
while(np > PARTICLES_PER_CELL) {
cell = cell->next;
np = np - PARTICLES_PER_CELL;
}
//add another cell structure if everything full
if( (np % PARTICLES_PER_CELL == 0) && (cnumPars[index] != 0) ) {
//Get cells from pools in round-robin fashion to balance load during parallel phase
cell->next = cellpool_getcell(&pools[pool_id]);
pool_id = (pool_id+1) % NUM_GRIDS;
cell = cell->next;
np = np - PARTICLES_PER_CELL;
}
cell->p[np].x = px;
cell->p[np].y = py;
cell->p[np].z = pz;
cell->hv[np].x = hvx;
cell->hv[np].y = hvy;
cell->hv[np].z = hvz;
cell->v[np].x = vx;
cell->v[np].y = vy;
cell->v[np].z = vz;
#ifdef ENABLE_VISUALIZATION
vMin.x = std::min(vMin.x, cell->v[np].x);
vMax.x = std::max(vMax.x, cell->v[np].x);
vMin.y = std::min(vMin.y, cell->v[np].y);
vMax.y = std::max(vMax.y, cell->v[np].y);
vMin.z = std::min(vMin.z, cell->v[np].z);
vMax.z = std::max(vMax.z, cell->v[np].z);
#endif
++cnumPars[index];
}
std::cout << "Number of particles: " << numParticles << std::endl;
}
////////////////////////////////////////////////////////////////////////////////
void SaveFile(char const *fileName)
{
std::cout << "Saving file \"" << fileName << "\"..." << std::endl;
std::ofstream file(fileName, std::ios::binary);
assert(file);
//Always use single precision float variables b/c file format uses single precision
if(!isLittleEndian()) {
float restParticlesPerMeter_le;
int numParticles_le;
restParticlesPerMeter_le = bswap_float((float)restParticlesPerMeter);
numParticles_le = bswap_int32(numParticles);
file.write((char *)&restParticlesPerMeter_le, FILE_SIZE_FLOAT);
file.write((char *)&numParticles_le, FILE_SIZE_INT);
} else {
file.write((char *)&restParticlesPerMeter, FILE_SIZE_FLOAT);
file.write((char *)&numParticles, FILE_SIZE_INT);
}
int count = 0;
for(int i = 0; i < numCells; ++i)
{
Cell *cell = &cells[i];
int np = cnumPars[i];
for(int j = 0; j < np; ++j)
{
//Always use single precision float variables b/c file format uses single precision
float px, py, pz, hvx, hvy, hvz, vx,vy, vz;
if(!isLittleEndian()) {
px = bswap_float((float)(cell->p[j % PARTICLES_PER_CELL].x));
py = bswap_float((float)(cell->p[j % PARTICLES_PER_CELL].y));
pz = bswap_float((float)(cell->p[j % PARTICLES_PER_CELL].z));
hvx = bswap_float((float)(cell->hv[j % PARTICLES_PER_CELL].x));
hvy = bswap_float((float)(cell->hv[j % PARTICLES_PER_CELL].y));
hvz = bswap_float((float)(cell->hv[j % PARTICLES_PER_CELL].z));
vx = bswap_float((float)(cell->v[j % PARTICLES_PER_CELL].x));
vy = bswap_float((float)(cell->v[j % PARTICLES_PER_CELL].y));
vz = bswap_float((float)(cell->v[j % PARTICLES_PER_CELL].z));
} else {
px = (float)(cell->p[j % PARTICLES_PER_CELL].x);
py = (float)(cell->p[j % PARTICLES_PER_CELL].y);
pz = (float)(cell->p[j % PARTICLES_PER_CELL].z);
hvx = (float)(cell->hv[j % PARTICLES_PER_CELL].x);
hvy = (float)(cell->hv[j % PARTICLES_PER_CELL].y);
hvz = (float)(cell->hv[j % PARTICLES_PER_CELL].z);
vx = (float)(cell->v[j % PARTICLES_PER_CELL].x);
vy = (float)(cell->v[j % PARTICLES_PER_CELL].y);
vz = (float)(cell->v[j % PARTICLES_PER_CELL].z);
}
file.write((char *)&px, FILE_SIZE_FLOAT);
file.write((char *)&py, FILE_SIZE_FLOAT);
file.write((char *)&pz, FILE_SIZE_FLOAT);
file.write((char *)&hvx, FILE_SIZE_FLOAT);
file.write((char *)&hvy, FILE_SIZE_FLOAT);
file.write((char *)&hvz, FILE_SIZE_FLOAT);
file.write((char *)&vx, FILE_SIZE_FLOAT);
file.write((char *)&vy, FILE_SIZE_FLOAT);
file.write((char *)&vz, FILE_SIZE_FLOAT);
++count;
//move pointer to next cell in list if end of array is reached
if(j % PARTICLES_PER_CELL == PARTICLES_PER_CELL-1) {
cell = cell->next;
}
}
}
assert(count == numParticles);
}
////////////////////////////////////////////////////////////////////////////////
void CleanUpSim()
{
// first return extended cells to cell pools
for(int i=0; i< numCells; ++i)
{
Cell& cell = cells[i];
while(cell.next)
{
Cell *temp = cell.next;
cell.next = temp->next;
cellpool_returncell(&pools[0], temp);
}
}
// now return cell pools
//NOTE: Cells from cell pools can migrate to different pools during the parallel phase.
// This is no problem as long as all cell pools are destroyed together. Each pool
// uses its internal meta information to free exactly the cells which it allocated
// itself. This guarantees that all allocated cells will be freed but it might
// render other cell pools unusable so they also have to be destroyed.
for(int i=0; i<NUM_GRIDS; i++) cellpool_destroy(&pools[i]);
for(int i = 0; i < numCells; ++i)
{
assert(CELL_MUTEX_ID < MUTEXES_PER_CELL);
int n = (border[i] ? MUTEXES_PER_CELL : CELL_MUTEX_ID+1);
for(int j = 0; j < n; ++j)
pthread_mutex_destroy(&mutex[i][j]);
delete[] mutex[i];
}
delete[] mutex;
delete[] border;
#if defined(WIN32)
_aligned_free(cells);
_aligned_free(cells2);
_aligned_free(cnumPars);
_aligned_free(cnumPars2);
_aligned_free(last_cells);
#else
free(cells);
free(cells2);
free(cnumPars);
free(cnumPars2);
free(last_cells);
#endif
delete[] grids;
}
////////////////////////////////////////////////////////////////////////////////
void ClearParticlesMT()
{
ffpf->parallel_for(0, NUM_GRIDS,[&](const int tid) {
for(int iz = grids[tid].sz; iz < grids[tid].ez; ++iz)
for(int iy = grids[tid].sy; iy < grids[tid].ey; ++iy)
for(int ix = grids[tid].sx; ix < grids[tid].ex; ++ix)
{
int index = (iz*ny + iy)*nx + ix;
cnumPars[index] = 0;
cells[index].next = NULL;
last_cells[index] = &cells[index];
}
}, NUM_GRIDS);
}
////////////////////////////////////////////////////////////////////////////////
void RebuildGridMT()
{
// Note, in parallel versions the below swaps
// occure outside RebuildGrid()
// swap src and dest arrays with particles
// std::swap(cells, cells2);
// swap src and dest arrays with counts of particles
// std::swap(cnumPars, cnumPars2);
ffpf->parallel_for(0, NUM_GRIDS,[&](const int tid) {
//iterate through source cell lists
for(int iz = grids[tid].sz; iz < grids[tid].ez; ++iz)
for(int iy = grids[tid].sy; iy < grids[tid].ey; ++iy)
for(int ix = grids[tid].sx; ix < grids[tid].ex; ++ix)
{
int index2 = (iz*ny + iy)*nx + ix;
Cell *cell2 = &cells2[index2];
int np2 = cnumPars2[index2];
//iterate through source particles
for(int j = 0; j < np2; ++j)
{
//get destination for source particle
int ci = (int)((cell2->p[j % PARTICLES_PER_CELL].x - domainMin.x) / delta.x);
int cj = (int)((cell2->p[j % PARTICLES_PER_CELL].y - domainMin.y) / delta.y);
int ck = (int)((cell2->p[j % PARTICLES_PER_CELL].z - domainMin.z) / delta.z);
if(ci < 0) ci = 0; else if(ci > (nx-1)) ci = nx-1;
if(cj < 0) cj = 0; else if(cj > (ny-1)) cj = ny-1;
if(ck < 0) ck = 0; else if(ck > (nz-1)) ck = nz-1;
#if 0
assert(ci>=ix-1);
assert(ci<=ix+1);
assert(cj>=iy-1);
assert(cj<=iy+1);
assert(ck>=iz-1);
assert(ck<=iz+1);
#endif
#ifdef ENABLE_CFL_CHECK
//check that source cell is a neighbor of destination cell
bool cfl_cond_satisfied=false;
for(int di = -1; di <= 1; ++di)
for(int dj = -1; dj <= 1; ++dj)
for(int dk = -1; dk <= 1; ++dk)
{
int ii = ci + di;
int jj = cj + dj;
int kk = ck + dk;
if(ii >= 0 && ii < nx && jj >= 0 && jj < ny && kk >= 0 && kk < nz)
{
int index = (kk*ny + jj)*nx + ii;
if(index == index2)
{
cfl_cond_satisfied=true;
break;
}
}
}
if(!cfl_cond_satisfied)
{
std::cerr << "FATAL ERROR: Courant–Friedrichs–Lewy condition not satisfied." << std::endl;
exit(1);
}
#endif //ENABLE_CFL_CHECK
int index = (ck*ny + cj)*nx + ci;
// this assumes that particles cannot travel more than one grid cell per time step
if(border[index])
pthread_mutex_lock(&mutex[index][CELL_MUTEX_ID]);
Cell *cell = last_cells[index];
int np = cnumPars[index];
//add another cell structure if everything full
if( (np % PARTICLES_PER_CELL == 0) && (cnumPars[index] != 0) ) {
cell->next = cellpool_getcell(&pools[tid]);
cell = cell->next;
last_cells[index] = cell;
}
++cnumPars[index];
if(border[index])
pthread_mutex_unlock(&mutex[index][CELL_MUTEX_ID]);
//copy source to destination particle
cell->p[np % PARTICLES_PER_CELL] = cell2->p[j % PARTICLES_PER_CELL];
cell->hv[np % PARTICLES_PER_CELL] = cell2->hv[j % PARTICLES_PER_CELL];
cell->v[np % PARTICLES_PER_CELL] = cell2->v[j % PARTICLES_PER_CELL];
//move pointer to next source cell in list if end of array is reached
if(j % PARTICLES_PER_CELL == PARTICLES_PER_CELL-1) {
Cell *temp = cell2;
cell2 = cell2->next;
//return cells to pool that are not statically allocated head of lists
if(temp != &cells2[index2]) {
//NOTE: This is thread-safe because temp and pool are thread-private, no need to synchronize
cellpool_returncell(&pools[tid], temp);
}
}
} // for(int j = 0; j < np2; ++j)
//return cells to pool that are not statically allocated head of lists
if((cell2 != NULL) && (cell2 != &cells2[index2])) {
cellpool_returncell(&pools[tid], cell2);
}
}
}, NUM_GRIDS);
}
////////////////////////////////////////////////////////////////////////////////
int InitNeighCellList(int ci, int cj, int ck, int *neighCells)
{
int numNeighCells = 0;
// have the nearest particles first -> help branch prediction
int my_index = (ck*ny + cj)*nx + ci;
neighCells[numNeighCells] = my_index;
++numNeighCells;
for(int di = -1; di <= 1; ++di)
for(int dj = -1; dj <= 1; ++dj)
for(int dk = -1; dk <= 1; ++dk)
{
int ii = ci + di;
int jj = cj + dj;
int kk = ck + dk;
if(ii >= 0 && ii < nx && jj >= 0 && jj < ny && kk >= 0 && kk < nz)
{
int index = (kk*ny + jj)*nx + ii;
if((index < my_index) && (cnumPars[index] != 0))
{
neighCells[numNeighCells] = index;
++numNeighCells;
}
}
}
return numNeighCells;
}
////////////////////////////////////////////////////////////////////////////////
void InitDensitiesAndForcesMT()
{
ffpf->parallel_for(0, NUM_GRIDS,[&](const int tid) {
for(int iz = grids[tid].sz; iz < grids[tid].ez; ++iz)
for(int iy = grids[tid].sy; iy < grids[tid].ey; ++iy)
for(int ix = grids[tid].sx; ix < grids[tid].ex; ++ix)
{
int index = (iz*ny + iy)*nx + ix;
Cell *cell = &cells[index];
int np = cnumPars[index];
for(int j = 0; j < np; ++j)
{
cell->density[j % PARTICLES_PER_CELL] = 0.0;
cell->a[j % PARTICLES_PER_CELL] = externalAcceleration;
//move pointer to next cell in list if end of array is reached
if(j % PARTICLES_PER_CELL == PARTICLES_PER_CELL-1) {
cell = cell->next;
}
}
}
}, NUM_GRIDS);
}
////////////////////////////////////////////////////////////////////////////////
void ComputeDensitiesMT()
{
ffpf->parallel_for(0, NUM_GRIDS,[&](const int tid) {
int neighCells[3*3*3];
for(int iz = grids[tid].sz; iz < grids[tid].ez; ++iz)
for(int iy = grids[tid].sy; iy < grids[tid].ey; ++iy)
for(int ix = grids[tid].sx; ix < grids[tid].ex; ++ix)
{
int index = (iz*ny + iy)*nx + ix;
int np = cnumPars[index];
if(np == 0)
continue;
int numNeighCells = InitNeighCellList(ix, iy, iz, neighCells);
Cell *cell = &cells[index];
for(int ipar = 0; ipar < np; ++ipar)
{
for(int inc = 0; inc < numNeighCells; ++inc)
{
int indexNeigh = neighCells[inc];
Cell *neigh = &cells[indexNeigh];
int numNeighPars = cnumPars[indexNeigh];
for(int iparNeigh = 0; iparNeigh < numNeighPars; ++iparNeigh)
{
//Check address to make sure densities are computed only once per pair
if(&neigh->p[iparNeigh % PARTICLES_PER_CELL] < &cell->p[ipar % PARTICLES_PER_CELL])
{
fptype distSq = (cell->p[ipar % PARTICLES_PER_CELL] - neigh->p[iparNeigh % PARTICLES_PER_CELL]).GetLengthSq();
if(distSq < hSq)
{
fptype t = hSq - distSq;
fptype tc = t*t*t;
if(border[index])
{
pthread_mutex_lock(&mutex[index][ipar % MUTEXES_PER_CELL]);
cell->density[ipar % PARTICLES_PER_CELL] += tc;
pthread_mutex_unlock(&mutex[index][ipar % MUTEXES_PER_CELL]);
}
else
cell->density[ipar % PARTICLES_PER_CELL] += tc;
if(border[indexNeigh])
{
pthread_mutex_lock(&mutex[indexNeigh][iparNeigh % MUTEXES_PER_CELL]);
neigh->density[iparNeigh % PARTICLES_PER_CELL] += tc;
pthread_mutex_unlock(&mutex[indexNeigh][iparNeigh % MUTEXES_PER_CELL]);
}
else
neigh->density[iparNeigh % PARTICLES_PER_CELL] += tc;
}
}
//move pointer to next cell in list if end of array is reached
if(iparNeigh % PARTICLES_PER_CELL == PARTICLES_PER_CELL-1) {
neigh = neigh->next;
}
}
}
//move pointer to next cell in list if end of array is reached
if(ipar % PARTICLES_PER_CELL == PARTICLES_PER_CELL-1) {
cell = cell->next;
}
}
}
}, NUM_GRIDS);
}
////////////////////////////////////////////////////////////////////////////////
void ComputeDensities2MT()
{
ffpf->parallel_for(0, NUM_GRIDS,[&](const int tid) {
const fptype tc = hSq*hSq*hSq;
for(int iz = grids[tid].sz; iz < grids[tid].ez; ++iz)
for(int iy = grids[tid].sy; iy < grids[tid].ey; ++iy)
for(int ix = grids[tid].sx; ix < grids[tid].ex; ++ix)
{
int index = (iz*ny + iy)*nx + ix;
Cell *cell = &cells[index];
int np = cnumPars[index];
for(int j = 0; j < np; ++j)
{
cell->density[j % PARTICLES_PER_CELL] += tc;
cell->density[j % PARTICLES_PER_CELL] *= densityCoeff;
//move pointer to next cell in list if end of array is reached
if(j % PARTICLES_PER_CELL == PARTICLES_PER_CELL-1) {
cell = cell->next;
}
}
}
}, NUM_GRIDS);
}
////////////////////////////////////////////////////////////////////////////////
void ComputeForcesMT()
{
ffpf->parallel_for(0, NUM_GRIDS,[&](const int tid) {
int neighCells[3*3*3];
for(int iz = grids[tid].sz; iz < grids[tid].ez; ++iz)
for(int iy = grids[tid].sy; iy < grids[tid].ey; ++iy)
for(int ix = grids[tid].sx; ix < grids[tid].ex; ++ix)
{
int index = (iz*ny + iy)*nx + ix;
int np = cnumPars[index];
if(np == 0)
continue;
int numNeighCells = InitNeighCellList(ix, iy, iz, neighCells);
Cell *cell = &cells[index];
for(int ipar = 0; ipar < np; ++ipar)
{
for(int inc = 0; inc < numNeighCells; ++inc)
{
int indexNeigh = neighCells[inc];
Cell *neigh = &cells[indexNeigh];
int numNeighPars = cnumPars[indexNeigh];
for(int iparNeigh = 0; iparNeigh < numNeighPars; ++iparNeigh)
{
//Check address to make sure forces are computed only once per pair
if(&neigh->p[iparNeigh % PARTICLES_PER_CELL] < &cell->p[ipar % PARTICLES_PER_CELL])
{
Vec3 disp = cell->p[ipar % PARTICLES_PER_CELL] - neigh->p[iparNeigh % PARTICLES_PER_CELL];
fptype distSq = disp.GetLengthSq();
if(distSq < hSq)
{
#ifndef ENABLE_DOUBLE_PRECISION
fptype dist = sqrtf(std::max(distSq, (fptype)1e-12));
#else
fptype dist = sqrt(std::max(distSq, 1e-12));
#endif //ENABLE_DOUBLE_PRECISION
fptype hmr = h - dist;
Vec3 acc = disp * pressureCoeff * (hmr*hmr/dist) * (cell->density[ipar % PARTICLES_PER_CELL]+neigh->density[iparNeigh % PARTICLES_PER_CELL] - doubleRestDensity);
acc += (neigh->v[iparNeigh % PARTICLES_PER_CELL] - cell->v[ipar % PARTICLES_PER_CELL]) * viscosityCoeff * hmr;
acc /= cell->density[ipar % PARTICLES_PER_CELL] * neigh->density[iparNeigh % PARTICLES_PER_CELL];
if( border[index])
{
pthread_mutex_lock(&mutex[index][ipar % MUTEXES_PER_CELL]);
cell->a[ipar % PARTICLES_PER_CELL] += acc;
pthread_mutex_unlock(&mutex[index][ipar % MUTEXES_PER_CELL]);
}
else
cell->a[ipar % PARTICLES_PER_CELL] += acc;
if( border[indexNeigh])
{
pthread_mutex_lock(&mutex[indexNeigh][iparNeigh % MUTEXES_PER_CELL]);
neigh->a[iparNeigh % PARTICLES_PER_CELL] -= acc;
pthread_mutex_unlock(&mutex[indexNeigh][iparNeigh % MUTEXES_PER_CELL]);
}
else
neigh->a[iparNeigh % PARTICLES_PER_CELL] -= acc;
}
}
//move pointer to next cell in list if end of array is reached
if(iparNeigh % PARTICLES_PER_CELL == PARTICLES_PER_CELL-1) {
neigh = neigh->next;
}
}
}
//move pointer to next cell in list if end of array is reached
if(ipar % PARTICLES_PER_CELL == PARTICLES_PER_CELL-1) {
cell = cell->next;
}
}
}
}, NUM_GRIDS);
}
////////////////////////////////////////////////////////////////////////////////
// ProcessCollisions() with container walls
// Under the assumptions that
// a) a particle will not penetrate a wall
// b) a particle will not migrate further than once cell
// c) the parSize is smaller than a cell
// then only the particles at the perimiters may be influenced by the walls
#if 0
void ProcessCollisionsMT(int tid)
{
for(int iz = grids[tid].sz; iz < grids[tid].ez; ++iz)
for(int iy = grids[tid].sy; iy < grids[tid].ey; ++iy)
for(int ix = grids[tid].sx; ix < grids[tid].ex; ++ix)
{
int index = (iz*ny + iy)*nx + ix;
Cell *cell = &cells[index];
int np = cnumPars[index];
for(int j = 0; j < np; ++j)
{
Vec3 pos = cell->p[j % PARTICLES_PER_CELL] + cell->hv[j % PARTICLES_PER_CELL] * timeStep;
fptype diff = parSize - (pos.x - domainMin.x);
if(diff > epsilon)
cell->a[j % PARTICLES_PER_CELL].x += stiffnessCollisions*diff - damping*cell->v[j % PARTICLES_PER_CELL].x;
diff = parSize - (domainMax.x - pos.x);
if(diff > epsilon)
cell->a[j % PARTICLES_PER_CELL].x -= stiffnessCollisions*diff + damping*cell->v[j % PARTICLES_PER_CELL].x;
diff = parSize - (pos.y - domainMin.y);
if(diff > epsilon)
cell->a[j % PARTICLES_PER_CELL].y += stiffnessCollisions*diff - damping*cell->v[j % PARTICLES_PER_CELL].y;
diff = parSize - (domainMax.y - pos.y);
if(diff > epsilon)
cell->a[j % PARTICLES_PER_CELL].y -= stiffnessCollisions*diff + damping*cell->v[j % PARTICLES_PER_CELL].y;
diff = parSize - (pos.z - domainMin.z);
if(diff > epsilon)
cell->a[j % PARTICLES_PER_CELL].z += stiffnessCollisions*diff - damping*cell->v[j % PARTICLES_PER_CELL].z;
diff = parSize - (domainMax.z - pos.z);
if(diff > epsilon)
cell->a[j % PARTICLES_PER_CELL].z -= stiffnessCollisions*diff + damping*cell->v[j % PARTICLES_PER_CELL].z;
//move pointer to next cell in list if end of array is reached
if(j % PARTICLES_PER_CELL == PARTICLES_PER_CELL-1) {
cell = cell->next;
}
}
}
}
#else
void ProcessCollisionsMT()
{
ffpf->parallel_for(0, NUM_GRIDS,[&](const int tid) {
for(int iz = grids[tid].sz; iz < grids[tid].ez; ++iz)
{
for(int iy = grids[tid].sy; iy < grids[tid].ey; ++iy)
{
for(int ix = grids[tid].sx; ix < grids[tid].ex; ++ix)
{
if(!((ix==0)||(iy==0)||(iz==0)||(ix==(nx-1))||(iy==(ny-1))==(iz==(nz-1))))
continue; // not on domain wall
int index = (iz*ny + iy)*nx + ix;
Cell *cell = &cells[index];
int np = cnumPars[index];
for(int j = 0; j < np; ++j)
{
int ji = j % PARTICLES_PER_CELL;
Vec3 pos = cell->p[ji] + cell->hv[ji] * timeStep;
if(ix==0)
{
fptype diff = parSize - (pos.x - domainMin.x);
if(diff > epsilon)
cell->a[ji].x += stiffnessCollisions*diff - damping*cell->v[ji].x;
}
if(ix==(nx-1))
{
fptype diff = parSize - (domainMax.x - pos.x);
if(diff > epsilon)
cell->a[ji].x -= stiffnessCollisions*diff + damping*cell->v[ji].x;
}
if(iy==0)
{
fptype diff = parSize - (pos.y - domainMin.y);
if(diff > epsilon)
cell->a[ji].y += stiffnessCollisions*diff - damping*cell->v[ji].y;
}
if(iy==(ny-1))
{
fptype diff = parSize - (domainMax.y - pos.y);
if(diff > epsilon)
cell->a[ji].y -= stiffnessCollisions*diff + damping*cell->v[ji].y;
}
if(iz==0)
{
fptype diff = parSize - (pos.z - domainMin.z);
if(diff > epsilon)
cell->a[ji].z += stiffnessCollisions*diff - damping*cell->v[ji].z;
}
if(iz==(nz-1))
{
fptype diff = parSize - (domainMax.z - pos.z);
if(diff > epsilon)
cell->a[ji].z -= stiffnessCollisions*diff + damping*cell->v[ji].z;
}
//move pointer to next cell in list if end of array is reached
if(ji == PARTICLES_PER_CELL-1) {
cell = cell->next;
}
}
}
}
}
}, NUM_GRIDS);
}
#endif
#define USE_ImpeneratableWall
#if defined(USE_ImpeneratableWall)
void ProcessCollisions2MT()
{
ffpf->parallel_for(0, NUM_GRIDS,[&](const int tid) {
for(int iz = grids[tid].sz; iz < grids[tid].ez; ++iz)
{
for(int iy = grids[tid].sy; iy < grids[tid].ey; ++iy)
{
for(int ix = grids[tid].sx; ix < grids[tid].ex; ++ix)
{
#if 0
// Chris, the following test should be valid