forked from hildensia/bayesian_changepoint_detection
-
Notifications
You must be signed in to change notification settings - Fork 1
/
test.py
39 lines (33 loc) · 1.31 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from functools import partial
import numpy as np
from scipy.stats import multivariate_normal, norm
from bayesian_changepoint_detection.bayesian_models import online_changepoint_detection
from bayesian_changepoint_detection.hazard_functions import constant_hazard
from bayesian_changepoint_detection.online_likelihoods import StudentT
def test_multivariate():
np.random.seed(seed=34)
# 10-dimensional multivariate normal, that shifts its mean at t=50, 100, and 150
dataset = np.vstack((
multivariate_normal.rvs([0] * 10, size=50),
multivariate_normal.rvs([4] * 10, size=50),
multivariate_normal.rvs([0] * 10, size=50),
multivariate_normal.rvs([-4] * 10, size=50)
))
r, maxes = online.online_changepoint_detection(
dataset,
partial(online.constant_hazard, 50),
online.MultivariateT(dims=10)
)
# Assert that we detected the mean shifts
for brkpt in [50, 100, 150]:
assert maxes[brkpt + 1] < maxes[brkpt - 1]
def test_univariate():
np.random.seed(seed=34)
# 10-dimensional univariate normal
dataset = np.hstack((norm.rvs(0, size=50), norm.rvs(2, size=50)))
r, maxes = online_changepoint_detection(
dataset,
partial(constant_hazard, 20),
StudentT(0.1, .01, 1, 0)
)
assert maxes[50] - maxes[51] > 40