diff --git a/data.json b/data.json index 85ea606..7a017a1 100755 --- a/data.json +++ b/data.json @@ -23,7 +23,7 @@ "title": "Time domain signal", "decomBlock": "Pre-processing", "description": "The time-dependent beat signal before digital processing", - "references": "", + "references": "[1004, Elghandour and Ren, Modeling and comparative study of various detection techniques for FMCW LIDAR using optisystem, https://doi.org/10.1117/12.2034878]", "nodeType": "systemIndependent" }, { @@ -32,7 +32,7 @@ "title": "Signal thresholding", "decomBlock": "Pre-processing", "description": "The tresholding is influences the the false detection and true detection.", - "references": "", + "references": "[1004, Gu et al., Learning Moving-Object Tracking with FMCW LiDAR, https://doi.org/10.1109/IROS47612.2022.9981346]", "nodeType": "designParameter" }, { @@ -41,7 +41,7 @@ "title": "Signal windowing", "decomBlock": "Pre-processing", "description": "The windowing of the time domain signal influences the frequency domain.", - "references": "", + "references": "[1004, Gu et al., Learning Moving-Object Tracking with FMCW LiDAR, https://doi.org/10.1109/IROS47612.2022.9981346]", "nodeType": "designParameter" }, { @@ -49,8 +49,8 @@ "parentIds": ["1000", "1100"], "title": "Detection algorithm", "decomBlock": "Detection identification", - "description": "The choice of the peak detection algorithm defined the false detection and true detection.", - "references": "", + "description": "The choice of the peak detection algorithm defines the false detection and true detection.", + "references": "[1000, Gu et al., Learning Moving-Object Tracking with FMCW LiDAR, https://doi.org/10.1109/IROS47612.2022.9981346] [1100, Gu et al., Learning Moving-Object Tracking with FMCW LiDAR, https://doi.org/10.1109/IROS47612.2022.9981346]", "nodeType": "designParameter" }, { @@ -59,16 +59,16 @@ "title": "Incoupling efficiency", "decomBlock": "Reception", "description": "Capablity to inject the returned light in the single mode waveguides.", - "references": "[1005, Schwab et al., Coupling light emission of single-photon sources into single-mode fibers: mode matching; coupling efficiencies and thermo-optical effects, https://opg.optica.org/oe/fulltext.cfm?uri=oe-30-18-32292&id=493226]", + "references": "[1001, Li et al., Analysis on coupling efficiency of the fiber probe used in frequency scanning interference distance measurement, https://doi.org/10.1016/j.ijleo.2019.164006] [1001, Schwab et al., Coupling light emission of single-photon sources into single-mode fibers: mode matching; coupling efficiencies and thermo-optical effects, https://opg.optica.org/oe/fulltext.cfm?uri=oe-30-18-32292&id=493226]", "nodeType": "effect" }, { "id": "1006", - "parentIds": ["1005"], + "parentIds": ["1005", "1023"], "title": "Speckles", "decomBlock": "Signal propagation", "description": "Coherent light effect due to rough surfaces.", - "references": "[1006, Dainty, The Statistics of Speckle Patterns, https://www.sciencedirect.com/science/article/abs/pii/S007966380870249X?via%3Dihub]", + "references": "[1023, Baumann et al., Speckle phase noise in coherent laser ranging: fundamental precision limitations, http://dx.doi.org/10.1364/OL.39.004776]", "nodeType": "effect" }, { @@ -76,8 +76,8 @@ "parentIds": ["1005"], "title": "Other Losses", "decomBlock": "Signal propagation", - "description": "Includes all other optical losses, like material absorptions, Fresnel reflections ...", - "references": "", + "description": "Includes all other optical losses, like material absorptions, Fresnel reflections.", + "references": "[1005, Son et al., High-efficiency broadband light coupling between optical fibers and photonic integrated circuits, https://doi.org/10.1515/nanoph-2018-0075]", "nodeType": "designParameter" }, { @@ -95,25 +95,25 @@ "title": "Wavelength", "decomBlock": "Emission", "description": "System central wave length.", - "references": "", + "references": "[1019, DIN, DIN EN 60825-1:2022-07, https://www.vde-verlag.de/standards/0800758/din-en-60825-1-vde-0837-1-2022-07.html][1006, Dainty et al., Laser Speckle and Related Phenomena, https://link.springer.com/chapter/10.1007/978-3-662-43205-1_2]", "nodeType": "designParameter" }, { "id": "1010", - "parentIds": ["1005", "1006"], + "parentIds": ["1005", "1023"], "title": "Scan Speed", "decomBlock": "Emission", - "description": "The angular speed of non-solid state scan units. Mitgates the speckle effect but reduces coupling efficiency.", - "references": "[1010, Dabas et al., Characterization of pulsed coherent Doppler LIDAR with the speckle effect, https://opg.optica.org/ao/abstract.cfm?uri=ao-33-27-6524]", + "description": "The angular speed of non-solid state scan units. Mitgates speckle-induced noise but reduces coupling efficiency.", + "references": "[1023, Baumann et al., Speckle phase noise in coherent laser ranging: fundamental precision limitations, http://dx.doi.org/10.1364/OL.39.004776]", "nodeType": "designParameter" }, { "id": "1011", - "parentIds": ["1006"], + "parentIds": ["1023"], "title": "Target Distance and Velocity", "decomBlock": "Signal propagation", "description": "The distance and velocity of the target to be measured.", - "references": "", + "references": "[1023, Baumann et al., Speckle phase noise in coherent laser ranging: fundamental precision limitations, http://dx.doi.org/10.1364/OL.39.004776, Impact of scan speed on speckle-induced noise being used as confirmation of dependency between relative movement of target and sensor.]", "nodeType": "systemIndependent" }, { @@ -131,7 +131,7 @@ "title": "Beam quality", "decomBlock": "Emission", "description": "The overall beam quality influence the beam propgation and thus the coupling efficiciency.", - "references": "", + "references": "[1005, Ding et al., Study of Fiber Coupling Efficiency and Adaptive Optics Correction Technique in Atmospheric Slant-Range Channels, https://doi.org/10.20944/preprints202309.1784.v1]", "nodeType": "effect" }, { @@ -140,7 +140,7 @@ "title": "Output power", "decomBlock": "Emission", "description": "The power of each beam. More power allows a better coupling efficiency.", - "references": "", + "references": "[1005, Son et al., High-efficiency broadband light coupling between optical fibers and photonic integrated circuits, https://doi.org/10.1515/nanoph-2018-0075]", "nodeType": "designParameter" }, { @@ -149,7 +149,7 @@ "title": "Entrance pupil", "decomBlock": "Reception", "description": "The entrance pupil (aperture) of the optical system.", - "references": "", + "references": "[1005, Son et al., High-efficiency broadband light coupling between optical fibers and photonic integrated circuits, https://doi.org/10.1515/nanoph-2018-0075]", "nodeType": "designParameter" }, { @@ -158,7 +158,7 @@ "title": "Beam size", "decomBlock": "Emission", "description": "Size of the out-going laser beam.", - "references": "", + "references": "[1013, Edmund Optics GmbH, Beam Quality and Strehl Ratio, https://www.edmundoptics.com/knowledge-center/application-notes/lasers/beam-quality-and-strehl-ratio/, See Strehl Ratio.]", "nodeType": "systemIndependent" }, { @@ -167,7 +167,7 @@ "title": "PIC mode field", "decomBlock": "Emission", "description": "The mode field distribution used for beam generation and in-coupling.", - "references": "", + "references": "[1005, Son et al., High-efficiency broadband light coupling between optical fibers and photonic integrated circuits, https://doi.org/10.1515/nanoph-2018-0075] [1016, Son et al., High-efficiency broadband light coupling between optical fibers and photonic integrated circuits, https://doi.org/10.1515/nanoph-2018-0075]", "nodeType": "designParameter" }, { @@ -176,7 +176,7 @@ "title": "Focal length", "decomBlock": "Emission", "description": "Focal length of the optical system.", - "references": "", + "references": "[1016, Pan et al., Micron-precision measurement using a combined frequency-modulated continuous wave ladar autofocusing system at 60 meters standoff distance, https://doi.org/10.1364/OE.26.015186]", "nodeType": "designParameter" }, { @@ -185,7 +185,7 @@ "title": "Laser Safety Class", "decomBlock": "Emission", "description": "The laser safety class limits the optical power that can be used.", - "references": "[1014, Laser Norm, DIN EN 60825-1:2022-07, https://www.vde-verlag.de/standards/0800758/din-en-60825-1-vde-0837-1-2022-07.html]", + "references": "[1014, DIN, DIN EN 60825-1:2022-07, https://www.vde-verlag.de/standards/0800758/din-en-60825-1-vde-0837-1-2022-07.html]", "nodeType": "systemIndependent" }, { @@ -194,7 +194,7 @@ "title": "Wavefront Errors", "decomBlock": "Emission", "description": "The overall wavefront errors of the optical system influence the beam quality", - "references": "", + "references": "[1013, Edmund Optics GmbH, Beam Quality and Strehl Ratio, https://www.edmundoptics.com/knowledge-center/application-notes/lasers/beam-quality-and-strehl-ratio/, See Strehl Ratio.]", "nodeType": "designParameter" }, { @@ -214,5 +214,14 @@ "description": "General noises influencing the chirp linearity and stability and thus the SNR of the detection. Better chirp linearity improves SNR.", "references": "", "nodeType": "designParameter" + }, + { + "id": "1023", + "parentIds": [], + "title": "Speckle-induced noise", + "decomBlock": "Signal propagation", + "description": "Phase noise created by speckle effect.", + "references": "", + "nodeType": "effect" } ]