Skip to content

Latest commit

 

History

History
31 lines (31 loc) · 2.12 KB

Global and Local Optimal Solution.md

File metadata and controls

31 lines (31 loc) · 2.12 KB

Optimization Problems

$$\begin{array}{ll}\textrm{minimize}& f (\textbf{x}) \ \textrm{subject to} & \textbf{x} \in S\end{array}$$ a feasible solution of a given problem is a vector that satisfies the constraints of the problem

Global and Local Optimizers

A global minimizer is a vector $\bar{\textbf{x}}$ such that $$\bar{\textbf{x}}̄\in S\textrm{ and }f(\bar{\textbf{x}})\leq f(\bar{\textbf{x}}) \quad \forall \bar{\textbf{x}}\in S$$ local minimizer, that is, a vector $\bar{\textbf{x}}$ such that $$\bar{\textbf{x}}\in S\textrm{ and }f(\bar{\textbf{x}})\leq f(x) \quad \forall x\in S\cap N(\bar{\textbf{x}})$$ where $N(\bar{\textbf{x}})$ is a neighbourhood of $\bar{\textbf{x}}$. Typically, $N(\bar{\textbf{x}})$ is a ball centered at $\bar{\textbf{x}}$ having suitably small radius. The value of the objective function $f$ at a global minimizer or a local minimizer is also of interest. The global minimum value or a local minimum value, according to whether $\bar{\textbf{x}}$ is a global minimizer or a local minimizer, respectively.

Minimization of Convex Function

![[Pasted image 20240515161807.png]] 该定理较为trival。即定义在凸集上的凸函数,取到minimum的集合是凸集,且local minimum均为global minimum

Optimality Conditions in $\mathbb{R}$

![[Pasted image 20240515162107.png]] 即定义域为实数轴的特殊情况,可使用导数以及二阶导来判断local minimizer

Descent directions 下降方向

![[Pasted image 20240515162702.png]] 利用梯度 ![[Pasted image 20240515162737.png]]梯度的反方向即为最速下降方向 ![[Pasted image 20240515162844.png]]

Feasible directions 可行方向

![[Pasted image 20240515162928.png]] 例子: ![[Pasted image 20240515163114.png]]

First-Order Necessary Condition

![[Pasted image 20240515164122.png]] 即向任何可行方向都不能变得更小

Second-Order Necessary Condition

![[Pasted image 20240515164257.png]] 在[[#First-Order Necessary Condition]]的基础上,若 $\nabla f(x^)^Td=0$ ,则还需满足 $d^TH(x^)d\geq 0$ 。证明与上都直接使用Taylor展开[[Taylor's Theorem]]即可。注意以上均为必要条件