-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.cpp
238 lines (190 loc) · 10.5 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
/*
###############################################################################
# If you use PhysiCell in your project, please cite PhysiCell and the version #
# number, such as below: #
# #
# We implemented and solved the model using PhysiCell (Version x.y.z) [1]. #
# #
# [1] A Ghaffarizadeh, R Heiland, SH Friedman, SM Mumenthaler, and P Macklin, #
# PhysiCell: an Open Source Physics-Based Cell Simulator for Multicellu- #
# lar Systems, PLoS Comput. Biol. 14(2): e1005991, 2018 #
# DOI: 10.1371/journal.pcbi.1005991 #
# #
# See VERSION.txt or call get_PhysiCell_version() to get the current version #
# x.y.z. Call display_citations() to get detailed information on all cite-#
# able software used in your PhysiCell application. #
# #
# Because PhysiCell extensively uses BioFVM, we suggest you also cite BioFVM #
# as below: #
# #
# We implemented and solved the model using PhysiCell (Version x.y.z) [1], #
# with BioFVM [2] to solve the transport equations. #
# #
# [1] A Ghaffarizadeh, R Heiland, SH Friedman, SM Mumenthaler, and P Macklin, #
# PhysiCell: an Open Source Physics-Based Cell Simulator for Multicellu- #
# lar Systems, PLoS Comput. Biol. 14(2): e1005991, 2018 #
# DOI: 10.1371/journal.pcbi.1005991 #
# #
# [2] A Ghaffarizadeh, SH Friedman, and P Macklin, BioFVM: an efficient para- #
# llelized diffusive transport solver for 3-D biological simulations, #
# Bioinformatics 32(8): 1256-8, 2016. DOI: 10.1093/bioinformatics/btv730 #
# #
###############################################################################
# #
# BSD 3-Clause License (see https://opensource.org/licenses/BSD-3-Clause) #
# #
# Copyright (c) 2015-2018, Paul Macklin and the PhysiCell Project #
# All rights reserved. #
# #
# Redistribution and use in source and binary forms, with or without #
# modification, are permitted provided that the following conditions are met: #
# #
# 1. Redistributions of source code must retain the above copyright notice, #
# this list of conditions and the following disclaimer. #
# #
# 2. Redistributions in binary form must reproduce the above copyright #
# notice, this list of conditions and the following disclaimer in the #
# documentation and/or other materials provided with the distribution. #
# #
# 3. Neither the name of the copyright holder nor the names of its #
# contributors may be used to endorse or promote products derived from this #
# software without specific prior written permission. #
# #
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" #
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE #
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE #
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE #
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR #
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF #
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS #
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN #
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) #
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE #
# POSSIBILITY OF SUCH DAMAGE. #
# #
###############################################################################
*/
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <ctime>
#include <cmath>
#include <omp.h>
#include <fstream>
#include "./core/PhysiCell.h"
#include "./modules/PhysiCell_standard_modules.h"
// custom user modules
#include "./custom_modules/biorobots.h"
using namespace BioFVM;
using namespace PhysiCell;
int main( int argc, char* argv[] )
{
// load and parse settings file(s)
bool XML_status = false;
if( argc > 1 )
{ XML_status = load_PhysiCell_config_file( argv[1] ); }
else
{ XML_status = load_PhysiCell_config_file( "./PhysiCell_settings.xml" ); }
if( !XML_status )
{ exit(-1); }
// OpenMP setup
omp_set_num_threads(PhysiCell_settings.omp_num_threads);
// PNRG setup
SeedRandom();
// time setup
std::string time_units = "min";
/* Microenvironment setup */
setup_microenvironment();
/* PhysiCell setup */
// set mechanics voxel size, and match the data structure to BioFVM
double mechanics_voxel_size = 30;
Cell_Container* cell_container = create_cell_container_for_microenvironment( microenvironment, mechanics_voxel_size );
create_cell_types();
setup_tissue();
/* Users typically start modifying here. START USERMODS */
/* Users typically stop modifying here. END USERMODS */
// set MultiCellDS save options
set_save_biofvm_mesh_as_matlab( true );
set_save_biofvm_data_as_matlab( true );
set_save_biofvm_cell_data( true );
set_save_biofvm_cell_data_as_custom_matlab( true );
// save a simulation snapshot
char filename[1024];
sprintf( filename , "%s/initial" , PhysiCell_settings.folder.c_str() );
save_PhysiCell_to_MultiCellDS_xml_pugi( filename , microenvironment , PhysiCell_globals.current_time );
// save a quick SVG cross section through z = 0, after setting its
// length bar to 200 microns
PhysiCell_SVG_options.length_bar = 200;
// for simplicity, set a pathology coloring function
std::vector<std::string> (*cell_coloring_function)(Cell*) = robot_coloring_function;
sprintf( filename , "%s/initial.svg" , PhysiCell_settings.folder.c_str() );
SVG_plot( filename , microenvironment, 0.0 , PhysiCell_globals.current_time, cell_coloring_function );
display_citations();
// set the performance timers
BioFVM::RUNTIME_TIC();
BioFVM::TIC();
std::ofstream report_file;
if( PhysiCell_settings.enable_legacy_saves == true )
{
sprintf( filename , "%s/simulation_report.txt" , PhysiCell_settings.folder.c_str() );
report_file.open(filename); // create the data log file
report_file<<"simulated time\tnum cells\tnum division\tnum death\twall time"<<std::endl;
}
// main loop
try
{
while( PhysiCell_globals.current_time < PhysiCell_settings.max_time + 0.1*diffusion_dt )
{
// save data if it's time.
if( fabs( PhysiCell_globals.current_time - PhysiCell_globals.next_full_save_time ) < 0.01 * diffusion_dt )
{
display_simulation_status( std::cout );
if( PhysiCell_settings.enable_legacy_saves == true )
{
log_output( PhysiCell_globals.current_time , PhysiCell_globals.full_output_index, microenvironment, report_file);
}
if( PhysiCell_settings.enable_full_saves == true )
{
sprintf( filename , "%s/output%08u" , PhysiCell_settings.folder.c_str(), PhysiCell_globals.full_output_index );
save_PhysiCell_to_MultiCellDS_xml_pugi( filename , microenvironment , PhysiCell_globals.current_time );
}
PhysiCell_globals.full_output_index++;
PhysiCell_globals.next_full_save_time += PhysiCell_settings.full_save_interval;
}
// save SVG plot if it's time
if( fabs( PhysiCell_globals.current_time - PhysiCell_globals.next_SVG_save_time ) < 0.01 * diffusion_dt )
{
if( PhysiCell_settings.enable_SVG_saves == true )
{
sprintf( filename , "%s/snapshot%08u.svg" , PhysiCell_settings.folder.c_str() , PhysiCell_globals.SVG_output_index );
SVG_plot( filename , microenvironment, 0.0 , PhysiCell_globals.current_time, cell_coloring_function );
PhysiCell_globals.SVG_output_index++;
PhysiCell_globals.next_SVG_save_time += PhysiCell_settings.SVG_save_interval;
}
}
// update the microenvironment
microenvironment.simulate_diffusion_decay( diffusion_dt );
// run PhysiCell
((Cell_Container *)microenvironment.agent_container)->update_all_cells( PhysiCell_globals.current_time );
PhysiCell_globals.current_time += diffusion_dt;
}
if( PhysiCell_settings.enable_legacy_saves == true )
{
log_output(PhysiCell_globals.current_time, PhysiCell_globals.full_output_index, microenvironment, report_file);
report_file.close();
}
}
catch( const std::exception& e )
{ // reference to the base of a polymorphic object
std::cout << e.what(); // information from length_error printed
}
// save a final simulation snapshot
sprintf( filename , "%s/final" , PhysiCell_settings.folder.c_str() );
save_PhysiCell_to_MultiCellDS_xml_pugi( filename , microenvironment , PhysiCell_globals.current_time );
sprintf( filename , "%s/final.svg" , PhysiCell_settings.folder.c_str() );
SVG_plot( filename , microenvironment, 0.0 , PhysiCell_globals.current_time, cell_coloring_function );
// timer
std::cout << std::endl << "Total simulation runtime: " << std::endl;
BioFVM::display_stopwatch_value( std::cout , BioFVM::runtime_stopwatch_value() );
return 0;
}