forked from ashleve/lightning-hydra-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mnist_module.py
229 lines (182 loc) · 8.21 KB
/
mnist_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
from typing import Any, Dict, Tuple
import torch
from lightning import LightningModule
from torchmetrics import MaxMetric, MeanMetric
from torchmetrics.classification.accuracy import Accuracy
class MNISTLitModule(LightningModule):
"""Example of a `LightningModule` for MNIST classification.
A `LightningModule` implements 8 key methods:
```python
def __init__(self):
# Define initialization code here.
def setup(self, stage):
# Things to setup before each stage, 'fit', 'validate', 'test', 'predict'.
# This hook is called on every process when using DDP.
def training_step(self, batch, batch_idx):
# The complete training step.
def validation_step(self, batch, batch_idx):
# The complete validation step.
def test_step(self, batch, batch_idx):
# The complete test step.
def predict_step(self, batch, batch_idx):
# The complete predict step.
def configure_optimizers(self):
# Define and configure optimizers and LR schedulers.
```
Docs:
https://lightning.ai/docs/pytorch/latest/common/lightning_module.html
"""
def __init__(
self,
net: torch.nn.Module,
optimizer: torch.optim.Optimizer,
scheduler: torch.optim.lr_scheduler,
compile: bool,
) -> None:
"""Initialize a `MNISTLitModule`.
:param net: The model to train.
:param optimizer: The optimizer to use for training.
:param scheduler: The learning rate scheduler to use for training.
"""
super().__init__()
# this line allows to access init params with 'self.hparams' attribute
# also ensures init params will be stored in ckpt
self.save_hyperparameters(logger=False)
self.net = net
# loss function
self.criterion = torch.nn.CrossEntropyLoss()
# metric objects for calculating and averaging accuracy across batches
self.train_acc = Accuracy(task="multiclass", num_classes=10)
self.val_acc = Accuracy(task="multiclass", num_classes=10)
self.test_acc = Accuracy(task="multiclass", num_classes=10)
# for averaging loss across batches
self.train_loss = MeanMetric()
self.val_loss = MeanMetric()
self.test_loss = MeanMetric()
# for tracking best so far validation accuracy
self.val_acc_best = MaxMetric()
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Perform a forward pass through the model `self.net`.
:param x: A tensor of images.
:return: A tensor of logits.
"""
return self.net(x)
def on_train_start(self) -> None:
"""Lightning hook that is called when training begins."""
# by default lightning executes validation step sanity checks before training starts,
# so it's worth to make sure validation metrics don't store results from these checks
self.val_loss.reset()
self.val_acc.reset()
self.val_acc_best.reset()
def model_step(
self, batch: Tuple[torch.Tensor, torch.Tensor]
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Perform a single model step on a batch of data.
:param batch: A batch of data (a tuple) containing the input tensor of images and target labels.
:return: A tuple containing (in order):
- A tensor of losses.
- A tensor of predictions.
- A tensor of target labels.
"""
x, y = batch
logits = self.forward(x)
loss = self.criterion(logits, y)
preds = torch.argmax(logits, dim=1)
return loss, preds, y
def training_step(
self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int
) -> torch.Tensor:
"""Perform a single training step on a batch of data from the training set.
:param batch: A batch of data (a tuple) containing the input tensor of images and target
labels.
:param batch_idx: The index of the current batch.
:return: A tensor of losses between model predictions and targets.
"""
loss, preds, targets = self.model_step(batch)
# update and log metrics
self.train_loss(loss)
self.train_acc(preds, targets)
self.log(
"train/loss", self.train_loss, on_step=False, on_epoch=True, prog_bar=True
)
self.log(
"train/acc", self.train_acc, on_step=False, on_epoch=True, prog_bar=True
)
# return loss or backpropagation will fail
return loss
def on_train_epoch_end(self) -> None:
"Lightning hook that is called when a training epoch ends."
pass
def validation_step(
self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int
) -> None:
"""Perform a single validation step on a batch of data from the validation set.
:param batch: A batch of data (a tuple) containing the input tensor of images and target
labels.
:param batch_idx: The index of the current batch.
"""
loss, preds, targets = self.model_step(batch)
# update and log metrics
self.val_loss(loss)
self.val_acc(preds, targets)
self.log("val/loss", self.val_loss, on_step=False, on_epoch=True, prog_bar=True)
self.log("val/acc", self.val_acc, on_step=False, on_epoch=True, prog_bar=True)
def on_validation_epoch_end(self) -> None:
"Lightning hook that is called when a validation epoch ends."
acc = self.val_acc.compute() # get current val acc
self.val_acc_best(acc) # update best so far val acc
# log `val_acc_best` as a value through `.compute()` method, instead of as a metric object
# otherwise metric would be reset by lightning after each epoch
self.log(
"val/acc_best", self.val_acc_best.compute(), sync_dist=True, prog_bar=True
)
def test_step(
self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int
) -> None:
"""Perform a single test step on a batch of data from the test set.
:param batch: A batch of data (a tuple) containing the input tensor of images and target
labels.
:param batch_idx: The index of the current batch.
"""
loss, preds, targets = self.model_step(batch)
# update and log metrics
self.test_loss(loss)
self.test_acc(preds, targets)
self.log(
"test/loss", self.test_loss, on_step=False, on_epoch=True, prog_bar=True
)
self.log("test/acc", self.test_acc, on_step=False, on_epoch=True, prog_bar=True)
def on_test_epoch_end(self) -> None:
"""Lightning hook that is called when a test epoch ends."""
pass
def setup(self, stage: str) -> None:
"""Lightning hook that is called at the beginning of fit (train + validate), validate,
test, or predict.
This is a good hook when you need to build models dynamically or adjust something about
them. This hook is called on every process when using DDP.
:param stage: Either `"fit"`, `"validate"`, `"test"`, or `"predict"`.
"""
if self.hparams.compile and stage == "fit":
self.net = torch.compile(self.net)
def configure_optimizers(self) -> Dict[str, Any]:
"""Choose what optimizers and learning-rate schedulers to use in your optimization.
Normally you'd need one. But in the case of GANs or similar you might have multiple.
Examples:
https://lightning.ai/docs/pytorch/latest/common/lightning_module.html#configure-optimizers
:return: A dict containing the configured optimizers and learning-rate schedulers to be used for training.
"""
optimizer = self.hparams.optimizer(params=self.trainer.model.parameters())
if self.hparams.scheduler is not None:
scheduler = self.hparams.scheduler(optimizer=optimizer)
return {
"optimizer": optimizer,
"lr_scheduler": {
"scheduler": scheduler,
"monitor": "val/loss",
"interval": "epoch",
"frequency": 1,
},
}
return {"optimizer": optimizer}
if __name__ == "__main__":
_ = MNISTLitModule(None, None, None, None)