forked from pclubiitk/model-zoo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
308 lines (242 loc) · 13.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
from argparse import ArgumentParser
from utils import create_link
import itertools
import functools
import os
import torch
import torch.nn as nn
from torch.nn import init
from torch.autograd import Variable
import torch.nn.functional as F
import torchvision
import torchvision.datasets as dsets
import torchvision.transforms as transforms
import utils
from model import *
from torch.optim import lr_scheduler
# To get arguments from commandline
def get_args():
parser = ArgumentParser(description='cycleGAN PyTorch')
parser.add_argument('--epochs', type=int, default=200)
parser.add_argument('--decay_epoch', type=int, default=100)
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--lr', type=float, default=.0002)
parser.add_argument('--load_height', type=int, default=286)
parser.add_argument('--load_width', type=int, default=286)
parser.add_argument('--gpu_ids', type=str, default='0')
parser.add_argument('--crop_height', type=int, default=256)
parser.add_argument('--crop_width', type=int, default=256)
parser.add_argument('--lamda', type=int, default=10)
parser.add_argument('--idt_coef', type=float, default=0.5)
parser.add_argument('--training', type=bool, default=False)
parser.add_argument('--testing', type=bool, default=False)
parser.add_argument('--results_dir', type=str, default='./results')
parser.add_argument('--dataset_dir', type=str, default='./datasets/horse2zebra')
parser.add_argument('--checkpoint_dir', type=str, default='./checkpoints/horse2zebra')
parser.add_argument('--norm', type=str, default='instance', help='instance normalization or batch normalization')
parser.add_argument('--no_dropout', action='store_true', help='no dropout for the generator')
parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in first conv layer')
parser.add_argument('--ndf', type=int, default=64, help='# of discrim filters in first conv layer')
parser.add_argument('--gen_net', type=str, default='resnet_9blocks')
parser.add_argument('--dis_net', type=str, default='n_layers')
args = parser.parse_args()
return args
def main():
args = get_args()
create_link(args.dataset_dir)
str_ids = args.gpu_ids.split(',')
args.gpu_ids = []
for str_id in str_ids:
id = int(str_id)
if id >= 0:
args.gpu_ids.append(id)
print(not args.no_dropout)
if args.training:
print("Training")
model = cycleGAN(args)
model.train(args)
if args.testing:
print("Testing")
model = cycleGAN(args)
model.test(args)
class cycleGAN(object):
def __init__(self,args):
# Define the network
#####################################################
self.Gab = define_Gen(input_nc=3, output_nc=3, ngf=args.ngf, netG=args.gen_net, norm=args.norm,
use_dropout= not args.no_dropout, gpu_ids=args.gpu_ids)
self.Gba = define_Gen(input_nc=3, output_nc=3, ngf=args.ngf, netG=args.gen_net, norm=args.norm,
use_dropout= not args.no_dropout, gpu_ids=args.gpu_ids)
self.Da = define_Dis(input_nc=3, ndf=args.ndf, netD= args.dis_net, n_layers_D=3, norm=args.norm, gpu_ids=args.gpu_ids)
self.Db = define_Dis(input_nc=3, ndf=args.ndf, netD= args.dis_net, n_layers_D=3, norm=args.norm, gpu_ids=args.gpu_ids)
utils.print_networks([self.Gab,self.Gba,self.Da,self.Db], ['Gab','Gba','Da','Db'])
# Define Loss criterias
self.MSE = nn.MSELoss()
self.L1 = nn.L1Loss()
# Optimizers
#####################################################
self.g_optimizer = torch.optim.Adam(itertools.chain(self.Gab.parameters(),self.Gba.parameters()), lr=args.lr, betas=(0.5, 0.999))
self.d_optimizer = torch.optim.Adam(itertools.chain(self.Da.parameters(),self.Db.parameters()), lr=args.lr, betas=(0.5, 0.999))
self.g_lr_scheduler = torch.optim.lr_scheduler.LambdaLR(self.g_optimizer, lr_lambda=utils.LambdaLR(args.epochs, 0, args.decay_epoch).step)
self.d_lr_scheduler = torch.optim.lr_scheduler.LambdaLR(self.d_optimizer, lr_lambda=utils.LambdaLR(args.epochs, 0, args.decay_epoch).step)
# Try loading checkpoint
#####################################################
if not os.path.isdir(args.checkpoint_dir):
os.makedirs(args.checkpoint_dir)
try:
ckpt = utils.load_checkpoint('%s/latest.ckpt' % (args.checkpoint_dir))
self.start_epoch = ckpt['epoch']
self.Da.load_state_dict(ckpt['Da'])
self.Db.load_state_dict(ckpt['Db'])
self.Gab.load_state_dict(ckpt['Gab'])
self.Gba.load_state_dict(ckpt['Gba'])
self.d_optimizer.load_state_dict(ckpt['d_optimizer'])
self.g_optimizer.load_state_dict(ckpt['g_optimizer'])
except:
print(' [*] No checkpoint!')
self.start_epoch = 0
def train(self,args):
# For transforming the input image
transform = transforms.Compose(
[transforms.RandomHorizontalFlip(),
transforms.Resize((args.load_height,args.load_width)),
transforms.RandomCrop((args.crop_height,args.crop_width)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])])
dataset_dirs = utils.get_traindata_link(args.dataset_dir)
# Pytorch dataloader
a_loader = torch.utils.data.DataLoader(dsets.ImageFolder(dataset_dirs['trainA'], transform=transform),
batch_size=args.batch_size, shuffle=True, num_workers=4)
b_loader = torch.utils.data.DataLoader(dsets.ImageFolder(dataset_dirs['trainB'], transform=transform),
batch_size=args.batch_size, shuffle=True, num_workers=4)
a_fake_sample = utils.Sample_from_Pool()
b_fake_sample = utils.Sample_from_Pool()
for epoch in range(self.start_epoch, args.epochs):
lr = self.g_optimizer.param_groups[0]['lr']
print('learning rate = %.7f' % lr)
for i, (a_real, b_real) in enumerate(zip(a_loader, b_loader)):
# step
step = epoch * min(len(a_loader), len(b_loader)) + i + 1
# Generator Computations
##################################################
set_grad([self.Da, self.Db], False)
self.g_optimizer.zero_grad()
a_real = Variable(a_real[0])
b_real = Variable(b_real[0])
a_real, b_real = utils.cuda([a_real, b_real])
# Forward pass through generators
##################################################
a_fake = self.Gab(b_real)
b_fake = self.Gba(a_real)
a_recon = self.Gab(b_fake)
b_recon = self.Gba(a_fake)
a_idt = self.Gab(a_real)
b_idt = self.Gba(b_real)
# Identity losses
###################################################
a_idt_loss = self.L1(a_idt, a_real) * args.lamda * args.idt_coef
b_idt_loss = self.L1(b_idt, b_real) * args.lamda * args.idt_coef
# Adversarial losses
###################################################
a_fake_dis = self.Da(a_fake)
b_fake_dis = self.Db(b_fake)
real_label = utils.cuda(Variable(torch.ones(a_fake_dis.size())))
a_gen_loss = self.MSE(a_fake_dis, real_label)
b_gen_loss = self.MSE(b_fake_dis, real_label)
# Cycle consistency losses
###################################################
a_cycle_loss = self.L1(a_recon, a_real) * args.lamda
b_cycle_loss = self.L1(b_recon, b_real) * args.lamda
# Total generators losses
###################################################
gen_loss = a_gen_loss + b_gen_loss + a_cycle_loss + b_cycle_loss + a_idt_loss + b_idt_loss
# Update generators
###################################################
gen_loss.backward()
self.g_optimizer.step()
# Discriminator Computations
#################################################
set_grad([self.Da, self.Db], True)
self.d_optimizer.zero_grad()
# Sample from history of generated images
#################################################
a_fake = Variable(torch.Tensor(a_fake_sample([a_fake.cpu().data.numpy()])[0]))
b_fake = Variable(torch.Tensor(b_fake_sample([b_fake.cpu().data.numpy()])[0]))
a_fake, b_fake = utils.cuda([a_fake, b_fake])
# Forward pass through discriminators
#################################################
a_real_dis = self.Da(a_real)
a_fake_dis = self.Da(a_fake)
b_real_dis = self.Db(b_real)
b_fake_dis = self.Db(b_fake)
real_label = utils.cuda(Variable(torch.ones(a_real_dis.size())))
fake_label = utils.cuda(Variable(torch.zeros(a_fake_dis.size())))
# Discriminator losses
##################################################
a_dis_real_loss = self.MSE(a_real_dis, real_label)
a_dis_fake_loss = self.MSE(a_fake_dis, fake_label)
b_dis_real_loss = self.MSE(b_real_dis, real_label)
b_dis_fake_loss = self.MSE(b_fake_dis, fake_label)
# Total discriminators losses
a_dis_loss = (a_dis_real_loss + a_dis_fake_loss)*0.5
b_dis_loss = (b_dis_real_loss + b_dis_fake_loss)*0.5
# Update discriminators
##################################################
a_dis_loss.backward()
b_dis_loss.backward()
self.d_optimizer.step()
print("Epoch: (%3d) (%5d/%5d) | Gen Loss:%.2e | Dis Loss:%.2e" %
(epoch, i + 1, min(len(a_loader), len(b_loader)),
gen_loss,a_dis_loss+b_dis_loss))
# Override the latest checkpoint
#######################################################
utils.save_checkpoint({'epoch': epoch + 1,
'Da': self.Da.state_dict(),
'Db': self.Db.state_dict(),
'Gab': self.Gab.state_dict(),
'Gba': self.Gba.state_dict(),
'd_optimizer': self.d_optimizer.state_dict(),
'g_optimizer': self.g_optimizer.state_dict()},
'%s/latest.ckpt' % (args.checkpoint_dir))
# Update learning rates
########################
self.g_lr_scheduler.step()
self.d_lr_scheduler.step()
def test(self,args):
transform = transforms.Compose(
[transforms.Resize((args.crop_height,args.crop_width)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])])
dataset_dirs = utils.get_testdata_link(args.dataset_dir)
a_test_data = dsets.ImageFolder(dataset_dirs['testA'], transform=transform)
b_test_data = dsets.ImageFolder(dataset_dirs['testB'], transform=transform)
a_test_loader = torch.utils.data.DataLoader(a_test_data, batch_size=args.batch_size, shuffle=True, num_workers=4)
b_test_loader = torch.utils.data.DataLoader(b_test_data, batch_size=args.batch_size, shuffle=True, num_workers=4)
Gab = define_Gen(input_nc=3, output_nc=3, ngf=args.ngf, netG='resnet_9blocks', norm=args.norm,
use_dropout= not args.no_dropout, gpu_ids=args.gpu_ids)
Gba = define_Gen(input_nc=3, output_nc=3, ngf=args.ngf, netG='resnet_9blocks', norm=args.norm,
use_dropout= not args.no_dropout, gpu_ids=args.gpu_ids)
utils.print_networks([Gab,Gba], ['Gab','Gba'])
try:
ckpt = utils.load_checkpoint('%s/latest.ckpt' % (args.checkpoint_dir))
Gab.load_state_dict(ckpt['Gab'])
Gba.load_state_dict(ckpt['Gba'])
except:
print(' [*] No checkpoint!')
""" run """
a_real_test = Variable(iter(a_test_loader).next()[0], requires_grad=True)
b_real_test = Variable(iter(b_test_loader).next()[0], requires_grad=True)
a_real_test, b_real_test = utils.cuda([a_real_test, b_real_test])
Gab.eval()
Gba.eval()
with torch.no_grad():
a_fake_test = Gab(b_real_test)
b_fake_test = Gba(a_real_test)
a_recon_test = Gab(b_fake_test)
b_recon_test = Gba(a_fake_test)
pic = (torch.cat([a_real_test, b_fake_test, a_recon_test, b_real_test, a_fake_test, b_recon_test], dim=0).data + 1) / 2.0
if not os.path.isdir(args.results_dir):
os.makedirs(args.results_dir)
torchvision.utils.save_image(pic, args.results_dir+'/sample.jpg', nrow=3)
if __name__ == '__main__':
main()