forked from pclubiitk/model-zoo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
120 lines (87 loc) · 3.38 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import numpy as np
import matplotlib.pyplot as plt
from torch.autograd import Variable
import torch.utils.data as loader
import torch.optim as optim
import os
import time
from collections import OrderedDict
import logging
import argparse
from dataloader import ModelNet10GAN
from models import generator, discriminator
from utils import *
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
torch.autograd.set_detect_anomaly(True)
parser=argparse.ArgumentParser()
parser.add_argument('--latent_dim', type=int, default=200)
parser.add_argument('--directory', type=str, default='./')
parser.add_argument('--epochs', type=int, default=10000)
parser.add_argument('--batch_size', type=int, default=50)
parser.add_argument('--gen_lr', type=float, default=0.0025)
parser.add_argument('--dis_lr', type=float, default=0.00001)
parser.add_argument('--threshold', type=float, default=0.8)
parser.add_argument('--filename', type=str, default='monitor.npy.gz')
args = parser.parse_args()
# Defining ModelNet10 dataset for GAN
dataset=ModelNet10GAN(filename=args.filename,dir=args.directory)
# loading dataset into Dataloader
data_loader=loader.DataLoader(dataset, batch_size=args.batch_size)
G_=generator(args.latent_dim).to(device)
D_=discriminator().to(device)
num_epochs=args.epochs
optimizerD=optim.Adam(D_.parameters(),lr=args.dis_lr,betas=(0.5,0.999))
optimizerG=optim.Adam(G_.parameters(),lr=args.gen_lr,betas=(0.5,0.999))
# Lists to store d_losses and g_losses.
G_losses=[]
D_losses=[]
iters = 0
print("Starting training loop...")
for epoch in range(num_epochs):
# For each batch in epoch.
RunningLossG=0
RunningLossD=0
for i,data in enumerate(data_loader,1):
optimizerG.zero_grad(), G_.zero_grad()
optimizerD.zero_grad(), D_.zero_grad()
bSize=data.size(0)
# Train D
real_data=data.to(device).float()
noise=torch.normal(torch.zeros(bSize, 200),
torch.ones(bSize, 200) * .33).to(device)
fake_data=G_(noise)
dReal=D_(real_data)
dFake=D_(fake_data)
d_loss=-torch.mean(torch.log(dReal)+torch.log(1-dFake))
d_accuracy=((dReal>=0.5).float().mean()+(dFake<0.5).float().mean())/2
g_accuracy=(dFake>=0.5).float().mean()
train_dis=d_accuracy<0.8
if train_dis:
D_.zero_grad()
d_loss.backward()
optimizerD.step()
# Train G
noise = torch.normal(torch.zeros(bSize, 200),
torch.ones(bSize, 200) * .33).to(device)
fake_data=G_(noise)
dFake=D_(fake_data)
g_loss=-torch.mean(torch.log(dFake))
D_.zero_grad()
G_.zero_grad()
g_loss.backward()
optimizerG.step()
RunningLossD+=d_loss.item()
RunningLossG+=g_loss.item()
if (i+1)%5==0 :
print('[%d/%d] D-Loss: %.4f G-Loss: %.4f dis: %.4f gen: %.4f'%(epoch+1,num_epochs,d_loss.item(),g_loss.item(),d_accuracy.item(),g_accuracy.item()))
G_losses.append(RunningLossG)
D_losses.append(RunningLossD)
directory=args.directory
threshold=args.threshold
torch.save(G_.state_dict(),'./G_{0}.pth'.format(args.epochs))
torch.save(D_.state_dict(),'./D_{0}.pth'.format(args.epochs))
voxel_plot(directory=directory, threshold=threshold)
loss_plot(G_losses=G_losses, D_losses=D_losses)