-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathjobstats.py
418 lines (389 loc) · 17.1 KB
/
jobstats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import csv
import os
import subprocess
import sys
import time
import requests
import json
import base64
import gzip
import syslog
import config as c
# number of seconds between measurements
SAMPLING_PERIOD = c.SAMPLING_PERIOD
# conversion factors
SECONDS_PER_MINUTE = 60
SECONDS_PER_HOUR = 3600
# for convenience
DEVNULL = open(os.devnull, 'w')
# next line produces unix times
os.environ['SLURM_TIME_FORMAT'] = "%s"
# class that gets and holds per job prometheus statistics
class Jobstats:
# initialize basic job stats, can be called either with those stats
# provided and if not it will fetch them
def __init__(self,
jobid=None,
jobidraw=None,
start=None,
end=None,
gpus=None,
cluster=None,
prom_server=None,
debug=False,
debug_syslog=False,
force_recalc=False):
self.cluster = cluster
self.prom_server = prom_server
self.debug = debug
self.debug_syslog = debug_syslog
self.force_recalc = force_recalc
self.sp_node = {}
# translate cluster name
if self.cluster in c.CLUSTER_TRANS:
self.cluster = c.CLUSTER_TRANS[self.cluster]
if self.debug_syslog:
syslog.openlog('jobstat[%s]' % jobid)
if jobidraw is None:
self.jobid = jobid
if not self.__get_job_info():
if self.state == "PENDING":
self.error("Failed to get details for job %s since it is a PENDING job." % jobid)
else:
self.error("Failed to get details for job %s." % jobid)
else:
if jobid is None:
jobid = jobidraw
self.jobid = jobid
self.jobidraw = jobidraw
self.start = start
self.end = end
self.gpus = gpus
self.data = None
self.timelimitraw = None
self.diff = self.end - self.start
# translate cluster name
if self.cluster in c.CLUSTER_TRANS_INV:
self.cluster = c.CLUSTER_TRANS_INV[self.cluster]
self.debug_print("jobid=%s, jobidraw=%s, start=%s, end=%s, gpus=%s, diff=%s, cluster=%s, data=%s, timelimitraw=%s" %
(self.jobid,self.jobidraw,self.start,self.end,self.gpus,self.diff,self.cluster,self.data,self.timelimitraw))
if self.data is not None and self.data.startswith('JS1:') and len(self.data) > 10:
try:
t = json.loads(gzip.decompress(base64.b64decode(self.data[4:])))
self.sp_node = t["nodes"]
except Exception as e:
print("ERROR: %s" %e)
if not self.sp_node:
# call prometheus to get detailed statistics (if long enough)
if self.diff >= 2 * SAMPLING_PERIOD:
self.get_job_stats()
self.parse_stats()
def nodes(self):
return self.sp_node
def jobid(self):
return self.jobidraw
def diff(self):
return self.diff
def gpus(self):
return self.gpus
# report an error on stderr and fail
def error(self, msg):
sys.stderr.write("%s\n" % msg)
if self.debug_syslog:
syslog.syslog(msg)
sys.exit(1)
def debug_print(self, msg):
if self.debug:
print('DEBUG: %s' % msg)
if self.debug_syslog:
syslog.syslog(msg)
# Get basic info from sacct and set instance variables
def __get_job_info(self):
fields = ["jobidraw",
"start",
"end",
"cluster",
"alloctres",
"admincomment",
"user",
"account",
"state",
"nnodes",
"ncpus",
"reqmem",
"qos",
"partition",
"timelimitraw",
"jobname"]
# jobname must be the last field to handle "|" chars later on
assert fields[-1] == "jobname"
fields = ",".join(fields)
cmd = ["sacct", "-P", "-X", "-o", fields, "-j", self.jobid]
if self.cluster:
cmd += ["-M", self.cluster]
self.start = None
self.end = None
self.jobidraw = None
try:
sacct_output = subprocess.check_output(cmd, stderr=DEVNULL).decode("utf-8").split('\n')
for i in csv.DictReader(sacct_output, delimiter='|'):
self.jobidraw = i.get('JobIDRaw', None)
self.start = i.get('Start', None)
self.end = i.get('End', None)
self.cluster = i.get('Cluster', None)
self.tres = i.get('AllocTRES', None)
if self.force_recalc:
self.data = None
else:
self.data = i.get('AdminComment', None)
self.user = i.get('User', None)
self.account = i.get('Account', None)
self.state = i.get('State', None)
self.timelimitraw = i.get('TimelimitRaw', None)
self.nnodes = i.get('NNodes', None)
self.ncpus = i.get('NCPUS', None)
self.reqmem = i.get('ReqMem', None)
self.qos = i.get('QOS', None)
self.partition = i.get('Partition', None)
self.jobname = i.get('JobName', None)
self.debug_print('jobidraw=%s, start=%s, end=%s, cluster=%s, tres=%s, data=%s, user=%s, account=%s, state=%s, timelimit=%s, nodes=%s, ncpus=%s, reqmem=%s, qos=%s, partition=%s, jobname=%s' % (self.jobidraw, self.start, self.end, self.cluster, self.tres, self.data, self.user, self.account, self.state, self.timelimitraw, self.nnodes, self.ncpus, self.reqmem, self.qos, self.partition, self.jobname))
except Exception:
msg = (f"\nFailed to lookup job {self.jobid}. Make sure the cluster is correct by\n"
"specifying the -c option (e.g., $ jobstats 1234567 -c frontier).\n")
self.error(msg)
if self.jobidraw is None:
if self.cluster:
clstr = c.CLUSTER_TRANS[self.cluster] if self.cluster in c.CLUSTER_TRANS else self.cluster
msg = f"Failed to lookup job {self.jobid} on {clstr}."
self.error(msg)
else:
msg = (f"\nFailed to lookup job {self.jobid}. Make sure the cluster is correct by\n"
"specifying the -c option (e.g., $ jobstats 1234567 -c frontier).\n")
self.error(msg)
self.gpus = 0
if self.tres is not None and 'gres/gpu=' in self.tres and 'gres/gpu=0,' not in self.tres:
for part in self.tres.split(","):
if "gres/gpu=" in part:
self.gpus = int(part.split("=")[-1])
if self.timelimitraw.isnumeric():
self.timelimitraw = int(self.timelimitraw)
if "CANCEL" in self.state:
self.state = "CANCELLED"
if len(self.jobname) > c.MAX_JOBNAME_LEN:
self.jobname = self.jobname[:c.MAX_JOBNAME_LEN] + "..."
# currently running jobs will have Unknown as time
if self.end == 'Unknown':
self.end = time.time()
else:
if self.end.isnumeric():
self.end = int(self.end)
else:
return False
if self.start.isnumeric():
self.start = int(self.start)
return True
else:
return False
# extract info out of what was returned
# sp = hash indexed by node
# d = data returned from prometheus
# n = what name to give this data
#{'metric': {'__name__': 'cgroup_memory_total_bytes', 'cluster': 'stellar', 'instance': 'stellar-m02n30:9306', 'job': 'Stellar Nodes', 'jobid': '50783'}, 'values': [[1629592582, '536870912000']]}
# or
#{'metric': {'cluster': 'stellar', 'instance': 'stellar-m06n4:9306', 'job': 'Stellar Nodes', 'jobid': '50783'}, 'value': [1629592575, '190540828672']}
def get_data_out(self, d, n):
if 'data' in d:
j = d['data']['result']
for i in j:
node=i['metric']['instance'].split(':')[0]
minor = i['metric'].get('minor_number', None)
if 'value' in i:
v=i['value'][1]
if 'values' in i:
v=i['values'][0][0]
# trim unneeded precision
if '.' in v:
v = round(float(v), 1)
else:
v = int(v)
if node not in self.sp_node:
self.sp_node[node] = {}
if minor is not None:
if n not in self.sp_node[node]:
self.sp_node[node][n] = {}
self.sp_node[node][n][minor] = v
else:
self.sp_node[node][n] = v
def get_data(self, where, query):
# run a query against prometheus
def __run_query(q, start=None, end=None, time=None, step=2*SAMPLING_PERIOD):
params = { 'query': q, }
if start:
params['start'] = start
params['end'] = end
params['step'] = step
qstr = 'query_range'
else:
qstr = 'query'
if time:
params['time'] = time
response = requests.get('{0}/api/v1/{1}'.format(self.prom_server, qstr), params)
return response.json()
expanded_query = query % (self.cluster, self.jobidraw, self.diff)
self.debug_print("query=%s, time=%s" % (expanded_query,self.end))
try:
j = __run_query(expanded_query, time=self.end)
except Exception as e:
self.error("ERROR: Failed to query jobstats database, got error: %s:" % e)
self.debug_print("query result=%s" % j)
if j["status"] == 'success':
self.get_data_out(j, where)
elif j["status"] == 'error':
self.error("ERROR: Failed to get run query %s with time %s, error: %s" % (expanded_query, self.end, j["error"]))
else:
self.error("ERROR: Unknown result when running query %s with time %s, full output: %s" %(expanded_query, self.end, j))
def get_job_stats(self):
# query CPU and Memory utilization data
self.get_data('total_memory', "max_over_time(cgroup_memory_total_bytes{cluster='%s',jobid='%s',step='',task=''}[%ds])")
self.get_data('used_memory', "max_over_time(cgroup_memory_rss_bytes{cluster='%s',jobid='%s',step='',task=''}[%ds])")
self.get_data('total_time', "max_over_time(cgroup_cpu_total_seconds{cluster='%s',jobid='%s',step='',task=''}[%ds])")
self.get_data('cpus', "max_over_time(cgroup_cpus{cluster='%s',jobid='%s',step='',task=''}[%ds])")
# and now GPUs
if self.gpus:
self.get_data('gpu_total_memory', "max_over_time((nvidia_gpu_memory_total_bytes{cluster='%s'} and nvidia_gpu_jobId == %s)[%ds:])")
self.get_data('gpu_used_memory', "max_over_time((nvidia_gpu_memory_used_bytes{cluster='%s'} and nvidia_gpu_jobId == %s)[%ds:])")
self.get_data('gpu_utilization', "avg_over_time((nvidia_gpu_duty_cycle{cluster='%s'} and nvidia_gpu_jobId == %s)[%ds:])")
def parse_stats(self):
sp_node = self.sp_node
if len(sp_node) == 0:
if self.diff < SAMPLING_PERIOD:
cmd = ["seff", f"{self.jobid}"]
try:
seff = subprocess.check_output(cmd, stderr=DEVNULL).decode("utf-8")
except Exception as e:
self.error(f"No job statistics are available ({e}).")
else:
print("\nRun time is very short so only providing seff output:\n")
print(seff)
self.error("")
else:
self.error(f"No data was found for job {self.jobid}. This is probably because it is too old\n"
+ "or it expired from Jobstats database. If you are not running this command on the\n"
+ "cluster where the job was run then use the -c option to specify the cluster.\n"
+f'If the run time was very short then try running "seff {self.jobid}".')
# cpu utilization
total = 0
total_used = 0
total_cores = 0
self.cpu_util_error_code = 0
self.cpu_util__node_used_alloc_cores = []
for n in sp_node:
d = sp_node[n]
if 'total_time' in d and 'cpus' in d:
used = sp_node[n]['total_time']
cores = sp_node[n]['cpus']
alloc = self.diff * cores
total += alloc
total_used += used
total_cores += cores
self.cpu_util__node_used_alloc_cores.append((n, used, alloc, cores))
else:
self.cpu_util_error_code = 1
self.cpu_util__node_used_alloc_cores.append((n, None, None, None))
break
if self.cpu_util_error_code == 0:
if total_used > total:
self.cpu_util_error_code = 2
if total == 0:
self.cpu_util_error_code = 3
self.cpu_util_total__used_alloc_cores = (total_used, total, total_cores)
# cpu memory
total = 0
total_used = 0
total_cores = 0
self.cpu_mem_error_code = 0
self.cpu_mem__node_used_alloc_cores = []
for n in sp_node:
d = sp_node[n]
if 'used_memory' in d and 'total_memory' in d and 'cpus' in d:
used = sp_node[n]['used_memory']
alloc = sp_node[n]['total_memory']
cores = sp_node[n]['cpus']
total += alloc
total_used += used
total_cores += cores
self.cpu_mem__node_used_alloc_cores.append((n, used, alloc, cores))
else:
self.cpu_mem_error_code = 1
self.cpu_mem__node_used_alloc_cores.append((n, None, None, None))
break
if self.cpu_mem_error_code == 0:
if total_used > total:
self.cpu_mem_error_code = 2
if total == 0:
self.cpu_mem_error_code = 3
self.cpu_mem_total__used_alloc_cores = (total_used, total, total_cores)
if self.gpus:
# gpu utilization
overall = 0
overall_gpu_count = 0
self.gpu_util_error_code = 0
self.gpu_util__node_util_index = []
for n in sp_node:
d = sp_node[n]
if 'gpu_utilization' in d:
gpus = list(d['gpu_utilization'].keys())
gpus.sort()
for g in gpus:
util = d['gpu_utilization'][g]
overall += util
overall_gpu_count += 1
self.gpu_util__node_util_index.append((n, util, g))
else:
self.gpu_util_error_code = 1
self.gpu_util__node_util_index.append((n, None, None))
break
self.gpu_util_total__util_gpus = (overall, overall_gpu_count)
# gpu memory
overall = 0
overall_total = 0
self.gpu_mem_error_code = 0
self.gpu_mem__node_used_total_index = []
for n in sp_node:
d = sp_node[n]
if 'gpu_used_memory' in d and 'gpu_total_memory' in d:
gpus = list(d['gpu_total_memory'].keys())
gpus.sort()
for g in gpus:
used = d['gpu_used_memory'][g]
total = d['gpu_total_memory'][g]
overall += used
overall_total += total
self.gpu_mem__node_used_total_index.append((n, used, total, g))
else:
self.gpu_mem_error_code = 1
self.gpu_mem__node_used_total_index.append((n, None, None, None))
break
if self.gpu_mem_error_code == 0:
if overall > overall_total:
self.gpu_mem_error_code == 2
if overall_total == 0:
self.gpu_mem_error_code == 3
self.gpu_mem_total__used_alloc = (overall, overall_total)
def __str__(self, compact=False):
js_data = {'nodes': self.sp_node, 'total_time': self.diff, 'gpus': self.gpus}
if compact:
return json.dumps(js_data, separators=(',', ':'))
else:
return json.dumps(js_data, sort_keys=True, indent=4)
def report_job_json(self, encode):
data = self.__str__(encode)
if encode:
if self.diff < 2 * SAMPLING_PERIOD:
return 'Short'
elif len(self.sp_node) == 0:
return 'None'
else:
return base64.b64encode(gzip.compress(data.encode('ascii'))).decode('ascii')
else:
return data