-
Notifications
You must be signed in to change notification settings - Fork 1
/
01-Introduction.tex
214 lines (178 loc) · 6.43 KB
/
01-Introduction.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
\documentclass[MASTER.tex]{subfiles}
\begin{document}
%===========================================================
\begin{frame}
\huge
Important Components of the Python Scientific Stack
\end{frame}
\begin{frame}
\begin{figure}
\centering
\includegraphics[width=0.99\linewidth]{flowchart}
\end{figure}
\end{frame}
%===========================================================%
\begin{frame}
\frametitle{Continuum Analytics’ Anaconda}
\begin{figure}
\centering
\includegraphics[width=1.0\linewidth]{anaconda.png}
\end{figure}
\end{frame}
%===========================================================%
\begin{frame}
\frametitle{Continuum Analytics’ Anaconda}
\large
\textbf{Anaconda}
\begin{itemize}
\item Anaconda, a free product of Continuum Analytics (www.continuum.io), is a virtually complete scientific
stack (i.e. distribution) for Python.
\item It includes both the core Python interpreter and standard libraries as well as most
modules required for data analysis.
\end{itemize}
\end{frame}
%===========================================================%
\begin{frame}
\frametitle{Continuum Analytics’ Anaconda}
\large
\textbf{Anaconda}
\begin{itemize}
\item Anaconda is free to use and modules for accelerating the performance
of linear algebra on Intel processors using the \textbf{Math Kernel Library} (MKL) are available (free to
academic users and for a small cost to non-academic users).
\item Continuum Analytics also provides other
high-performance modules for reading large data files or using the GPU to further accelerate performance
for an additional, modest charge.
\end{itemize}
\end{frame}
%===========================================================%
\begin{frame}[fragile]
\frametitle{Installing Anaconda}
Most importantly, installation is extraordinarily easy onWindows, Linux
and OS X. Anaconda is also simple to update to the latest version using
\begin{framed}
\begin{verbatim}
conda update conda
conda update anaconda
\end{verbatim}
\end{framed}
\end{frame}
%===========================================================%
\begin{frame}
\frametitle{NumPy and SciPy}
\begin{itemize}
\item \textbf{NumPy} provides a set of array and matrix data types which are essential for statistics and econometrics.
\item \textbf{SciPy} contains a large number of routines needed for analysis of data.The most important include a wide
range of random number generators, linear algebra routines and optimizers.
\item Remark: SciPy depends on NumPy.
\item More on them later.
\end{itemize}
\end{frame}
%===========================================================%
\begin{frame}
\frametitle{IPython and IPython Notebooks}
IPython provides an interactive Python environment which enhances productivity when developing code
or performing interactive data analysis.\\ \bigskip
The IPython Notebook is a web-based interactive computational environment where you can combine code execution, text, mathematics, plots and rich media into a single document.
\end{frame}
%===========================================================%
\begin{frame}
\textbf{IPython Notebook}
\begin{figure}
\centering
\includegraphics[width=0.9\linewidth]{vk2Q6}
\end{figure}
\end{frame}
%===========================================================%
\begin{frame}
\textbf{Ipython Notebook / Jupyter}
\vspace{-0.4cm}
\begin{figure}
\centering
\includegraphics[width=1.0\linewidth]{jupyter}
\end{figure}
\end{frame}
\begin{frame}
\begin{figure}
\centering
\includegraphics[width=1.0\linewidth]{jupytersiteinfo}
\end{figure}
\end{frame}
\begin{frame}
\textbf{Markdown}
\\
Markdown is a text-to-HTML conversion tool for web writers. Markdown allows you to write using an easy-to-read, easy-to-write plain text format, then convert it to structurally valid XHTML (or HTML).
\begin{figure}
\centering
\includegraphics[width=0.80\linewidth]{markdownOverview}
\end{figure}
\end{frame}
%===========================================================%
\begin{frame}
\frametitle{matplotlib and seaborn}
\large
\vspace{-0.4cm}
\textbf{Graphics Packages}
\begin{itemize}
\item \textbf{matplotlib} provides a plotting environment for 2D plots, with limited support for 3D plotting.
\item \textbf{seaborn} is
a Python package that improves the default appearance of matplotlib plots without any additional code.
\end{itemize}
\end{frame}
%===========================================================%
\begin{frame}
\frametitle{pandas}
\Large
\begin{itemize}
\item \textit{pandas} is a high-performance module that provides a comprehensive set of structures for working with
data.
\item \textit{pandas} excels at handling structured data, such as data sets containing many variables, working with
missing values and merging across multiple data sets.
\end{itemize}
\end{frame}
%===========================================================%
%===========================================================%
\begin{frame}
\large
\frametitle{pandas}
\large
\begin{itemize}
\item While extremely useful, \textit{pandas} is not an essential component of the Python scientific stack unlike NumPy, SciPy or matplotlib, and so while \textit{pandas} doesn’t
make data analysis possible in Python, it makes it much easier. \item \textit{pandas} also provides high-performance,
robust methods for importing from and exporting to a wide range of formats.
\item - example \texttt{read.csv()}
\end{itemize}
\end{frame}
\begin{frame}
%=============================================================== %
\begin{figure}
\includegraphics[width=0.5\linewidth]{cythonlogo}
\end{figure}
\begin{figure}
\centering
\includegraphics[width=0.7\linewidth]{cython_vs_chart}
\end{figure}
\end{frame}
%===========================================================%
\begin{frame}
\large
\frametitle{Performance Modules : Cython and Numba}
A number of modules are available to help with performance. These include Cython and Numba.
\begin{description}
\item[Cython] Cython
is a Python module which facilitates using a simple Python-derived creole to write functions that can be
compiled to native (C code) Python extensions.
\item[Numba]
Numba uses a method of just-in-time compilation to
translate a subset of Python to native code using \textit{Low-Level Virtual Machine} (LLVM).
\end{description}
\end{frame}
%=========================================================== %
\begin{frame}
\begin{figure}
\centering
\includegraphics[width=0.99\linewidth]{numba}
\end{figure}
\end{frame}
%=======================================================================%
\end{document}