From 62603ecfee3fa0be53fc72272480a89f6dbcc127 Mon Sep 17 00:00:00 2001 From: Max Parzen Date: Tue, 10 Jan 2023 15:06:17 +0000 Subject: [PATCH 01/24] add energy storage tech --- Snakefile | 1 + config.yaml | 5 +- environment.yaml | 2 + inputs/parzen-energy-storage-database.xlsx | Bin 0 -> 32618 bytes latex_tables/bib_transition.bib | 23 ++ scripts/compile_cost_assumptions.py | 256 ++++++++++++++++++--- 6 files changed, 248 insertions(+), 39 deletions(-) create mode 100644 inputs/parzen-energy-storage-database.xlsx diff --git a/Snakefile b/Snakefile index 32f878b..f3bd289 100644 --- a/Snakefile +++ b/Snakefile @@ -15,6 +15,7 @@ rule compile_cost_assumptions: dea_heating = "inputs/technologydatafor_heating_installations_marts_2018.xlsx", dea_industrial = "inputs/technology_data_for_industrial_process_heat.xlsx", dea_ccts = "inputs/technology_data_for_carbon_capture_transport_storage.xlsx", + parzen_energy_storage = "inputs/parzen-energy-storage-database.xlsx", manual_input = "inputs/manual_input.csv" output: expand("outputs/costs_{year}.csv", year = config["years"]) diff --git a/config.yaml b/config.yaml index 46a7b9e..4ba8074 100644 --- a/config.yaml +++ b/config.yaml @@ -20,9 +20,12 @@ solar_rooftop_from_etip : false # add fuel cell/electrolysis efficiencies from Budischak (DEA assumptions very conservative) h2_from_budischak : false +# add storage data from Parzen +parzen_energy_storage: true + # remove grid connection costs from DEA for offwind because they are calculated # seperately in pypsa-eur -offwind_no_gridcosts : true +offwind_no_gridcosts : false desalination: salinity: 35 # in PSU (Practical Salinity Unit) = kg/m^3 diff --git a/environment.yaml b/environment.yaml index f9bae7c..09ee14d 100644 --- a/environment.yaml +++ b/environment.yaml @@ -11,6 +11,8 @@ dependencies: - beautifulsoup4 - xlrd - openpyxl + - scipy - pip: - tabula-py + - currencyconverter diff --git a/inputs/parzen-energy-storage-database.xlsx b/inputs/parzen-energy-storage-database.xlsx new file mode 100644 index 0000000000000000000000000000000000000000..487c8f8d12333626c3592b8feb2e20609c909efb GIT binary patch literal 32618 zcmaI+WmuF^_x=wfAzed@Gy~E~N+>DPAPqx@#L(SHGk^#~3rL89bayk9NF&`PHKdXP z{|mgo&vCzaezyl)GtBI3&yI6{&b8L4rig}4ih_lOg)&*rqK)!j|8Rll#x9n2t~}g# z*AjS#O4n1o@B`l{_A`M639Ov2O-gc24E(h1%nsBwu+NB)<5L+D5Z?RBu2|=Qz#FqK zi%Jfhi%(e;jbK`OFw_TvvkKkZ#Ko9Zr*XoYa>@FWv6@LF%k^G+L>lUYg zvvs1ZIQrn1`JM&J3yBC9LoH9<8;i)zP`$kvkh7I`?sOn}bEvXCRKP)=?y=8HzEvH@ z1O|^j1*Ok^`Olj{_?F=~-iwz04FgLDi3C)5Pvw+}Qy4b)`^d-ZVi~Rz2ewmFNg5kA zU7XB*KOAfZg+8@%^HpZ@ms8r$BBS9mR*2UB^mkyBL`@MBE9@ix$9-TChEP#Z)c&8# zLVIzqXn9@2)PfSXprO|MFiO}Fo6?HY%To7({hLsA(zBT)+G$9$$jY^Y_ z1~u#QS04l-`8e;a8@*s@*9K zhwSY3y`k1u_U8nCA4!J2#ibP*IbcyF1nT=$<%}t$e6ErYTy=U%5o9TsJk|`T9clrE zgi+65(a59yWHkgKqDHunrtA&(1mxBcK1AVfFmYM`T95kkjKMz+1@-Xn ziIJQBaF*Z&S7EK7E6dHHdzD^sYx?}r)eOskHGEqn(^6dCiojh(b#}bYdMm#n!q)ez zVV2KeN$%h`lm?d{s0#Z_u_jJh-;XKoR5WDod5#SzC>-s7sR;j{id@~i?JQmIG=$U} zbx40o>c6C;8(_>}1Ft1fbI(jY<<)|+D}Ov)e)piLN49o6JmA_64}C0eV9Z7l>{a3K zKityWE2!JkWUxUhX2O7N_409MJ&_6dQEK@_gy+fOwJ^Fm13A-os#8-KxEXKJTRn+% z=`AHkHq+DXE~Rg)A!~h4x`g4Z&FxBO%m(Xn+h65q^sr*gY$Sx;drC!JU1TWn#A<(Z z8OReIfi+$}u46HY=Bd~eOqVd}GCa}MxQL-5kCd`1I;lR``&3_g-riUy5(=grQVS^V{zl|J+G$1!f=U}_)CZc`F8rVN3F9*0 z)8%qyP15`yXjaX1BF14eZ;NnVe8-@uSacqI{<{2GP-=D}pUeRc9ZRGF9%P*LrtgvY z@|%n&nX+;Gd|y_>OuLd+8%p^pr4h0Y93uXqY%KzFXTFt-&ZPv63ZEQ>v;}@cI-JUi z1l1QLUP%tbrPC{LI@_P?HvCr7NzCKyrH&N}=6L*V2dR;UMko+VzZNXEJ@U38?~j8J z563G;^UAd_iIt?w9K8KH9!Lde_6nM}2q}4|&njf_^Yqu;lmt z{*nT;PmN|aPKg|i=Hz0uOCf*M)KDsncJTIf{W6%Z9*%K z`ZfJoT(y!lrqMTiGpELOqNVIcKdtkK$UGF1TsI&)j7niNUAIj-KMa?AB?v5ZP#)%r{ z^(&}+o9b^2LB8P`IF=vJcrZw&Q364$cHmHJa_zh=H=n{MF#hbD^|TKkd(ee8o^MqB zgV{0%4=?6#`-_bi8{&*K(@fvXLbB8aJ+Xfpzok9!!F9x*D^UyB`^$WCT$lE$q-=4) z5A|+kR1YtF#(;T)|ECd={s$q}rY@Ei8g4E&4p#Rh>DIS*oO=$s31~AjF(BxFYp+dNs4Y9(f+EtYaRBpZ`Tw!th>tm;%v^DLzEUwy5`c)xN2YvCZ>sq;FGCHRA(yJ<`Q%qZuw2PH3#nRqjhgEGlEo*n5H-c4 z*MqEspP3c(typC7So8um}pVD*c9fGAa%^vF>8VQS65Go@9fuzb6O#y@dR) z0?FQXGgslV&^?m}fyRrlSt`cthD`Mf_L#UDMdj%Tic|ufNPYUdkuPS@?D=ix{OPHq zWW4gV4Z1eyY6|*{QlG$%)JWg`Az&%weAdQG5ei2HvOfnLZ@9dn0)7IO&*hGt5(>{LpvEv#;0P8h3)_5d&s0wZ4^Oh}?)MxJf zuB;jx<}4bPVJ#~9Xx26@;m=V$a~WvTT-SNRobk!hpK#&7<%`GW{8DY?@zN$sbvX?? z6{9GPzw}owY8Wn2q{!!hkAG?1)%8tD_#9rzb8Nb~##t(lJ=2?9FuUCkPkvFEM@DH3 zk4rUzmlDra5A(&3@5M|Y`VRj1t>;(wIof_p2;&s~DcnUoBhY5%_&w8c@x;L2)|kxp z6+#T3Zj}ETk@j|k@af=bc#6<4JvjYWruD5XN4vV%DAqHno*~N5=UBAU)ypFXi0f-T z%m+5Xykmn6zUh+lF-a7q7*r+5%7d;fSFYrYWZyDqELv>)gK%lx4=9D)&Z5fY9G}^z z$18NQx36d(eVnU6hus_!X*{<#kEfw^Phg@bR&!zLAbh04hG#2dFB;E{xBM98fR5W# zAM$j%|EY+!9eye)!G<$`(EN}0SH1d>V}>iSoyTu)b5W#iZ$484bsfdY2~{#P$$!(*7G|ZL8tO-KYFF% z#Q92$!Y*o@YY+||CRc)cz9bV6WWm#lb6T>KjI5C>AkCo0bx&T)htKZ*?0)w@1>s76OP_*%xg^|SaV{xWwI zzb~sN@7T^uxjFE@y~mt$oNUnMe?eaDecp1L9V+W7XYRi6PTcW@7l+kH0m4xt&8rI+ zewO{$AJ6qDea_Ec%}V_YZ;R_o8Jrb(ioM{V@}nia>^U;`msjo}|GFWDaE1}Imek`t zkt9({=}9=#vRm7@IfjyMm@&@t=CD!Nd?Xp}P!5^z_ChjU*6ZzxIk4leU)TP!)C)JZEyfl@e`qI*x=M7$OMW>& z5M%-!G4_jb=g|dfeMYi2(|3-mJibzPp2yWAbL__1p6R}XomYx({kF1DU<}-4!PtSE zojJ4!er_GT#qE6YBICDgZ^GjF7Uo&AqV$)*R`S5SwqC;dXSpWVzrDsj9Pzkx{)si; zi^wS&q+{sztzcs$8h6bNYei(?lDLH8PS;~kFA~?L7Znvk*rcWFJ6DK&d^XJ#dzNSQJN|#^9w?e#CAzPCro8DgeL`MD<57U}rXFp8n&zBe4 z?&7Q6&zyU%_O!$XUCSEATyu7MnHf8ChRf2<(e);J`# z>g6>Caest8zU&IwPaf+4tL6$vt*L$O$_%^mACD1`_&s8U7hH60cW#^RVlgkmq@wKb zM#H9tR5xOYv zFUd(8)CrU-Ty5((C5v8dsJ2+iPDC@>11xCrY;p29UBJ* z>|X^#l^zSw^DqQA3z@ZgSqsS(AmfNe1;PyJS>OAR_%d(?s$>2=mn%8d$Wtqlc+vM5 zV%A9Bl*&JHK?3F*go*17Nkz7-NKvVrXW|DzU?ZsrtHpQkdn$OmgT$W?uu}tqoeAFi|UR_qm)>&IqyJ;RjGJbFKuX2$Bg_&o?3lZZwv{K9*f=k>C54} z;!sDu7yf?YO!aVX^{9bLAhFPh3^NhjEBi#K{c&VF^+>HjZ!^Kceu`^i_nXHNp`jMl z%p?j9+gqD2I@%Ve!tD*xir=cX_o8wNsfz}7CI5{-tT$m_IuEnT?u^i5+Sd5PhWmD* zlg=M3`Ga6_O{#RaKy34d&W2K!Ii_de`Pb1@qh2c}_lL@sXb`>I7EW40EnkB=dm*~4 zc0*AOLchH{j%;Pml`O(Ef3&-;a_(}muzP@lGXFngIimmGDpMz?yPe96Q+DjUE5KZl zX(4LlZF(cr9#z}SV%vziS=X^E8uU&0J&}KNafX}yz{;=kTK@wwrS$cJ73QI&p2lZ3 zZncN9y5D}3${G*)w#w*5&dV)A&;&%JB%r4<;w|pWpM>!Po+`y<6I$=oOfQXeyQR z3RW$f&yoUO+fA`OaMZ?oq{M9b<_C5RaSVD|69icaeWBpcS}A_Fa8kwdR9C>VWB`lz|E|W6 z{P)6{ySutM+TX9;Pz6rsQ_`@Ng?y};IZe#?vFhmOqMB!Mi?t729s87{{e78&_hTdI zUaE}0xRx#^njyAr;Nf6H;ld|i<#N3K@?5^7f7ygKG<)MAXOqX20TV`K|AS~wdZ=(d zsqL5Pp=JCOVRLS#SB~nRoYnbbhdR^tRv#pYX#RXN6Gn2u=qG$}v?Fk>NMNyaaK7ls z;A{Umz-sQkKCm*0@-77!^%3yg)L78>^ z$Ii_T%5euw@z_R$w;)y-SE(QR^!$x)&QHs<8dtqFSi5fXz@+C)|Vb&2sk0-VM|f0s7w-V%p*pVw=V(dxpvJrlui=)N;+%d-wiA${IKy9wvN z7!Nr~2)-x<^%(vwHPQ5@r?*fdA8sN(c-Y9G%wY1V(;d>mkfyOq_YDt!U4VtbYgx=t zA^oGDb(7z?5A3R}MOv96%%oia(vQ+Hq?>WuUC;LMKkId012ViZ(+EWK7P0? zSEck&uwqSo^)t=c&Ep%J-=(?a=T&tp{)8`s{P$ndJrJ*(tv}?`eZGM3+>caIrbpd< zb-U#m6?C~bL9`@-8Biz)5iZ-9Ip!KvJ$fVi(b(q_`%ZkTqIHB8fbb?T{?{e}iR=HB z0$r^wE!|vs?jN4r?NoP*VHIS`+rfLOP3lWDwO9&c8h|4mg{++-7xLdJ*{N&&h#No6iyO^3f_X{}wrQ zJNGNl|9W$2G2m*oyGfM*zuD)iJAbLw_pED4-23>n$kEvE_Ahe(4-`#QX-`Ae1m)8LS$JZw*WiMMCR}Pk#?VE2l(^HIFye=<`!~<_v ze>PpoE;gU?cE(Kg2N7NCPTwhJS@ilJqzM1OMr0Y59Aj(?2&7_;#m90Lz9w=LE z4!F8Z_iQRN3cL-l&e%A$5KaGeW(-EVy17UXygDJwqIq<)^0Xn)|6*al^Va#%T7KKj z--&bawu|-jl%*Emqs_qPo6ExnzmvaBbvy)t2NAyleU5r54sL!C=C|GM8ynr8tPs-P zoF*6t-mG7X|J@yK3-H$MT_7c39(eW_Dg8NLyxI5UcvrmH@6YOC{=wqki)*?YT!vIWY3OUJ*Z24GcJ2$Vm{t={>u> zylkSQKELc18U_}O4%z3n`F%89^Ch3H-z~>%Ea}-PdXWjX2+mmQp z#x&!%*CSnG0hj%OtpV59bZtI23#Ju~*Eb=zH-VoXJ-Pi|UmWOlLsxd|r=NNjcy=xx z1!&-MDK^l}&NJ|Dxys3N?i0e{54UJO;<2jY-T~+1ZO!#`!v~iESBI+mw=1fPH-Y&d zHqSk8Z)TnyuVH%at#sY~J!HGy4;@*l3T%54fpKBX(-v@sq{u35@}AjrPYW<8@9I6- zh+bQzlU+K94O|l^%o^yTYq@1MTH?8&Gy1#H?HLic%wJ4+yEoEtEtZw>=XQ6PF#78B z_d&1a&He?U;|IEpE7`WolR3|_wm|XnE5hBm6yw0_)g%w!os+9yw*i!!E4OWa?w7ZY zOV_yVX!OO`x_9^<9PH>ZXK2ThOdlCKsXOtyKatX*-x&e{;W zMK)zDdJ4;@%sE_P(QW)~?VVw1czpBgsP4eUduhXrZlfL|E|s!-#jTUIQF()GnqTy6 zkWVqMqi$^TPg%HGQ7=zXNs-Q{%NeHQ5%;(jHjrxCW^%i9da&~wr+Nwh%roq20C}A- zaN;=}czuyR6?nZqxUKHJ^yfP1qIdCS{SL)i{RiWE{EUb1sAyRN_73P`p{@##Z&vCe z#DUXrmL+~M;2e5D(q@_~s`@t>b|ZF_2wM?5`k)l^3%2y^Stjd#YU(hFF>gf%>y0SM zuJe;%u0KLXL4sKwWG2mx760vnO5e!GxF8Zv?07l( zNErnw;2mD(P&w-ve5W+^AYKj|iwQ+W zpY1^!NP<$Nxs9CSMwCjmKO!c7U0R>5GDPzg@cU76ky>`b5DzDWC3;fA z68(N))8XNdm;P1T&#OBoV2TG3$zGcM0B!*h#ZtcO`@!*!v*dwZDHX9PQJ7I&rH0~BM z;d6Il70W_|jo2!`m~a3&YewUOVDX0Q`xq-qg;b0EciS(=1E*CkTrB(_unc8B?Z2Eb zvE{ZAjgNV^-T2j?JuRnM)IB~dX`(fcUadTtElZgb4U_JPcDgQ-#DQC{sl8JFVG1rW zyx!m`-w!ZGyiL+XK%M*CQ|@s=?vr|la|GHqTQqdCAnl};_$Y&7kHJA(iUO^HcTp0h z3U754*%@2dza0mjdrr=2=eih{y{y7}inaG`usB@OHE3Yh4D!+#K%wBvM}&PdU9`7!9uh(43KC1g!>OMn zu*UxTjZ5Nv^5(-DT+%{IiRfurFeT*2Q*hS(JY}EF;hvZep>UGJUnmtH&d`99J`Qk0S zgN3i(BqhzFd{C*G!8Cqi8rkDQ@yp^MZQ zct_rU|3i|W7xvA0?g9BWVL7^)CU3!ozUVtJ(PzQiN1RB{vWI39yzjs>?H~6{1iTe= zQ$N-&sJA|bL}Y_!5a01|+JT|VpH^(bYaF@tt|WlHtVW0boPEH>q9-3s^?gBK`_N8p z!#o-vr&>;Q`s8t+4waxy{|0o)p!GD!uLjRL9emiS4kO9J~@R zWxw%dU*%yayj+=Mfpz6gttd8OS3&=K>6Cuj}ciEEm2D&GFcS z&a+05De)@X798SYLibHyKIgG@OVWl!Iu$oTP)N-Y zO2~Z2=^%|A-E-Xm6tw>3i$p3jB4J&5Vzh01N&}(tVNNtW)FxZLB7afWrN6srXS@ep zg@?MFmyQpKBhG_a_{=Z59iW)TqofT_mPSdHXB?Yc(uXtuM3&hoJX{)2RJzcHQu%3U z^t>;#{f;x?WK*hxd9m}t3Hx_p4VnRJi-^pXI+wt~=2)3Nuy=<=@Rcbav^MrG7On1P!cUTHL@6^Bk@30)ZWsfrfXQ;+QLeVLv-Q+m2`l&!^({ZD- z6-{umM6AL?OH(LjHM+|LdA6*gtFVX~0X*3xzqkfXKRB~81Y2{gbE10h5XrtvRE>!asJ7P)tHnv<#^_|N_c2xxiX!Yyr`w# zG_NIt>Q~iIF7HM8r|QwbU~e4$(wdN>4|ehxs-s8fazXhoFTR%JVOg4{i&-}g8*t)6 zjI-IwJ8C6rK2M(x4x4@MLRW@M>gn=6!OgNP%#$np`?Vauz%RE#>7v? z+C4O#dL@<>!ha#_N{BRUcxpqrTzjVj^oOph=IOeMVFR zXCMnINWzN>GH130YsGF2`EW!B3G$f`QR-3?0$)7sP0zQ-1_dSIJ&W`B9-+}s6w=qO z5Jf5H*uLBt=>Ha=V!c+n9)8FvYvp25bF{$9GvNdQr=m%MPo%jeMev$z-cd0e1W7VYNS-f=9bDL#~OKvaG z2V^X zEb2r+u*uTLWS9d{wOn|c6g@JrT37U(2Guzx@0I$=_k_)oE;#wXaxYe@r2O=3$1t(e z^xqe#_w)ttlFDfVLkCz13|%C&UHw=Ym}Hv)ai0z}-!G^ZkUqV!yDgdi$AKxfxH32c z*BC)5SLIAK=ZZ3mvAkkhr(RovpN3beBGQ9ZT1tNUE8(ZS%t~gvw8}`r?W*q<11>4=6(v*lOcE5x1!!}4)@Zou zh+>p#^X4%+)xaf%ouUj%^2$3FeK-aH;Tb$e#fGjuc-Rn{`B8D2Ev_8S@NkUalj;WL z0}~?o|6`)gKPI*SOf(%aC{sBTJSb)tOQuBk(c;}0K6qKl$51e^n?HY{su%Q#dk|xn(~PtpJs1!fcaTZuXTxInM-SY9Gl9dRd)rQY*tJQh zi`r&;Qr0mxUpBP*>H+YvC7H)67D$w2YuBQ@@Bp1wwk5rY^R(smPYU7Uq@1`Y`l!DD zPR5JOZXW<#pY9a%Jj^8av|YhA)njA#XXf2RMA@k(?k8gM8kk5mf8FP*={F-FyQDjc zmTP$khA8N-QwF1PZG0lR<01s$Vq-ZMiZwQW(S6ME(Ve^s=w}d^a0PgpT{QhImXzbHM&xRHM-ZoFbob)}K6jJ6@LeMJdU>+2)m@ z*KW_Xc7T>{cxdB)*k}l_5q!_a528Y6^;PFOhooKxP)r@VnM9mVxgj`l?A{;GfIFv^ zufvNH3KlE5?GiAR&(fmZO?PqmF+`@x3uHB1X~d!t=*m;>hZ_Ca++wc_b<`u$4xA0K zmC7s+5g=UyYS7D#`PHF8uKmZl2K|R08Ia2#8J5a-tKu0T;A?`j(<4I za;IsuTr4{g`#qpP8Dk$%&)N6)5IErmX>>vTul6e)@qaL0R-nuBqV&wN1;yh#zXznCZ1JC#imIKezh6>Kv+>K)K`e)7J1H38M*t-U}?mS~y%3oYl@ zDZB4iH;+cl27SjJCRnCW*p+gfCtAQy4bqMG`0i7oOjnG)`tz%?`IiPSL)0U7s!C8K zu#LqsR}e6Gi7EL8OL5t-By-Ge`Y)hQL;D*6-H*Og;KNcl180zDjR%TiH4->LjU0hd z8$%)p`zPgvaLJZwa+GRx?VtCKT-1oJt;L)73ZQ)lF@|EbsJ6N}>lFDmAiGH*wxqbz zQTs;#pw>1H$|>z1@4O-18VGeknQ!R7*-R_f*P_4u$(#LZ=t=votBJAYbRM{_OwskK z5&abC7hDdkgEegENqM5*2VIeMS76E|G|ewCceKKl^wjpWsJZs7q0100f`jUq z)UGlK&pS%xnFNm5`vMBb4O#;#g2HY=_j0$a23@Y&)^>IJV0&*{P63JzXgQ`1ZvnaD z!=I}H@MieV<^m1~wHKOp?A=YC-HbL9cgXhZ#>0N!ajJbuAzTN~22%&`;@Dr0%ZMp3 zdLrajJ()ra8TTT$-oGQoZ<{H)jxU z>b=D9tk*lqQmd&=9}oQB#TJo4)gi1p!T~6hGCtb>NpLpy_|mDKVj+s|)1afqMc>vc z+aql=qDY;7r7KW~M04qAxQ@L0c;|t;-Ulx@){i1fr;|9cEd>MA6I%{70G!^2uP6a< zHYV0Htr1LDi9jpde8+VY8;pg{d@Q+?1#dr37 zVvB5d=mW%OVq||qrd#U|)fL>4XlJAXe&%7tnV{q-6EU^GRbVfPP6ya zqJX)0?MBQriblugiyT&^B^8&oz|#7`UAVQ@j>UQ5#7*zQwnTKbMytfV!dvf2Syz@`|7rv@t`$ogIjD^M zE$Z04qGE*rJ(l!S#8^r^p_*Hl9QWTe>z}?vRSv?h#V8z|n1AS4=}XFQSl6Kn4uKz$ zry0q+M^LaB=%9{5sl+PKK~v$Os=_Jt5LZ|e1_qN=qd1Q#WZnam7k4u#}da!6Eu9CuHKZF!Zu2?LkO; z^Xw0HO1CS2D1nM$Yl}L60G1(hhm?dQgguL8Nc!hB8u{*|eO>ZL8BwmRC;Xa=ulO}v zuXdyo*SD4x-P{-o_xLF)^0~_lWjLAl(7ClCjH095I??z81PArAtfSa5#bIjllkW5) zL5V-z3v$N|20k@5$Ewi3Qv~RDQE#S3Fo+6xNO9waSxOhOq1r@DmKnvSrVAu-3DCQ>Ea-JPazi=UziSdz~q1%|l&Au8q4XJT#-XkhWw zGkOERG9-|;ihgW_>!tVx_5FVw>KykyRSk`Pu{>=ihbzYJd2!*we&yiKCstG@P9x6> zl*<<8hc{9%>~x=~?6Svk+kE3xg%%V)nPtZ^Y!KK#9jrO}Hn8i4u{tf~q6O!w%;ONz z4th5B)A-i53LiVn*6;z`ovu;0aB^QxdpXBF&DO&GYSY5K`YW@d)Dv9@7TNBJ8qK5V zKcag^BS9-{eNtZS@kEZAyqp2cf~Px}i;J|LuouZhJYdl37a6GnqpS#SwT|f;#+o7Y z6!dg#gRC$)IYyX$qn6aH;wpDM0tAu*$#XJHunkL7U=jb+*JiKjs?_{;vi6E;v`vtO z(K+M>IlH^WJ=z8WG0XU^Zfi>g%X|$4v&hLs$gDPA`+q%Q0>P$hF0|sUc|4kYz0XZC zn#A;xLWDUSa*-pPZMUUdN860EQP2tk@si>f$1{whjpUu_l_gRahTb&79SxGZ9>^L8 zR&w|o3%+~3CRy7l zL2iM2HV9hbJwMot4~q)Rs0t#cv4N>pR}xT<05_CKlVzT&*OB1LyMewzxrj4mc05Lt z4WpHt!i0)sc4zD5Vyn?#m;t&0l|b)w(=v&a>49g+?CL8v>tVcpni0Vr*EKzYe7jf{ zeBvk|<0hl<+0TAg!VP2v-Bo*)-%^D{RD&`RGx~}$tj}Xt?v&FLuI2Gk7tmRJCCKbr zU+RQ*i&=egGACT6%`sMmhZnRZ7rCXYDAB8rDq@u*A_Ah$UofEcE%HaD!F@o3T@k>= zkjrGwDpE_Ja8@$31vBZ1THCyIe289=ln-aR7L_?V zM;$CSK7vvSBD5dS1Q)eL?02Wbi+5=+zlG_x@AGwYR=kLmL$3-uck5ESK>YEghWkwm z)vvX-i0+ekaxyf;$SF3*^uaKm7@ehw$`;qZx;6{cEjLDb?j8@YUh@pMM!Z)@9E?lB z4*!lunPn5X&U`wZoTH%P>pRbSsw*X>V)g-yzRCuX0=Vkq1eu8@V1? zTSnN}AlN>#%CH%Vw~f~cDeFZeV)XIb}k$Qea)za2fg zm*|Io678h{ec)h_e67zY(l1OTT}!NMw$>9uU#tjE@Y2Vw_-cPAf7O5T&!+*YaxgHk z&hXfA#b@l%W5JZ?9D-KsUcyu=&2^=UZRSLXG7*=v_apX?KwRF9xcGj=A@rOqZS3~` z-#@G5`j>#4Q|_9|TB?#h7n&r8>1Mi|(!-n&@Vh%D&TCQ`J|7b)!!Q;&jJr z$>{aWQi0ovY-cM`r6%zo`B<0bL|9B!gzAnb6G3OC-==~es#=GvGO0N|E)UanjbrGK z@DCB8oh@2pc+(4l4@6cY1|l=;-hDic`(}>F`?^2_o#n8d-JKk~uKYb7Af6%<@NIlU zK$`hkmK(E73@E`4s@`QiFVt&IdVn1RyiyD{VP??g8IWqrodajSxW|sS6^#MYvzC{PT@qDMl{MCI{gP30W^yw4BmdLfISStII+arj9fr zj6yTCMzHO=+Ape&qSTb5@yTk-wPYJD?4zys41zAbIsFO(_VRACs}HPabw*5owAOGL z;t0e3)Z8`30N*{cEP#(MUdFDn$*Y(FyDe0-UJ&_gZja;H^`R8co3j=9eY*y9ry&a}fX!?)!aQeouS?FH%JSgP5EQ-V^e*gdaBFVbH*4?&jw` zDc@XHgP=G;Tz#L$$fRyQsCJAUViqL1W3pVN4uD@AZ}P&=A(ZU%=Ej=!P3ANpG6yPB zj``Y$CIi|eWDdIoWDa_0m6o_#mPIWRpJbxpB{KAikttwoY{-l$C^Cs`-&qM*9BH$# zIqi2A{rb6`_6(Z!mKdSM)MCFU7Nu2PL{R%1_j9uJBgyvJG=6|Wo>WV&5Ccx$SRv5P zr4Y_ccZ$F7WqS~tkDyVM<7Qfo^`?qXAXi)Y#OoPD8Nll+$^#|5^4=$;fCubOUZZk@ zg6tC3lcc1Y)tOOev~zJ(eS^fnsCrVUs*G`91mk8RwgoI{ATXaMH`3;0?T^f6@2)&! zxP5>Y^KA4A8*$g2v*Vq_>!<|LgVHFIQ|TFKK(Jl?^R%H4a?CydV0o0eU$VN zTOHb2%f;rX4MWz16;zHd0(T&j;>r`I0TAz5hz5WKk=k~!xI0#!0<5%~3kDqgbe4Cb zFYRowKkb!j@MG-w$Jj>>mRvy@Rce`!qwSlHyH8cF5cmU960fB=?dGCTX{ba;E3mak zZ4O+1AvOS|6Q?M;!Pgi!?fA+O;m-GAW1s9OcKVBAPlIYy?lJB0E^;j_c zxl;af0L7#79{7rp?)G;YPBp&Q@Zdp4DzJJYu#1}HNEHu*(C$XVw5F<;7X{{MOd?|- zqaXIKU@EKr_Q8Ph`z{F|wSquyi0I=&CWzx3-;94&?vAvPHS{&OIOYy9Gn@my{_MBS zEwx|BDdmFF+bz(?{W?YURza@}4K1;-ssOHg64;3Eji=Sg;$L6<`MY941p?L|m058T z^phPoM<2{VZ?UkP^Xrt>N5zBoZot3{Usy%ynLQDi&OXOVd`xc#ZHH*C#@hS*By4IC z{q)bnBSkkYWmF&%hQ34d&&;~HY}?ZFS8?Z30B^qKs0ey~V`ko2_ggQOA9vRMtjljJsfs>Q z=56@@MVb@=UpZbegEpWiMGO^t=}Z;#z<+(>nA_-gZS%%5l$Da&ILptnRrK0>j{8$c zRIZr1BlJ%sCL!+1sTo7F1c1Nk+IY0bkTCY=$gl&(kIBo-o%hk^p<(4<6L}X$jJuoz zXn})4yB3Uaw7XZQ+rgO888@R%zjCf`3HULyIahqT-EAqNxsoeWefFO+zt@I(RaJH* zWK#Pbj4hsVo7wcMtOBho6V4aGbK4xxitH3qq*U%Y(5wYBuLHryeJr!k6qyG=bH66p zt4?7Erdw&>N?!FHz$CS{nJX9pbc>#e*qlW#+N!Q=h<>h{n=owvgn!JxWH{ftV$k#y zSK1rGGZ2#skxBO0*ut=qfApQ?uAE9)XKo5F0mBpa9vLZZ;|Nzmr`hKw0YRPug1l=j z0=ufYOYRo0xy{%B!3C6nUv4vBg;Th;1;-+aE4l7Gd=>EU)>PJCGJXFzIktGkZ3exQ zX9?KI-Qs|&@I$n>v1EQsPG!s9h3K5`;)o3X=W=^RiR$~ug`9FOMSAOnNI3$uqjfP=%S!t8N#bno?;oipX{TB&WT0S7aX z1N+f=s#iep9GVQ#W5Ixf*Mts4hU!im@wvz7 zUW6gPoOhnC7%vFMF7Uc(Tu?tT-eGqBQZDcCE+WUB&$$_S z^yK2?{K^K)qGWuRnifU72P}~SM=bzUK}$_<=X}AFN4<(AuU~pF*G@@!`6d&!mD@A1 zJ{Ou^tZ6|SlFV^1JYcP8nFMw8pYH49`L>n-5oJ9PQ5JJC1eih|a?j5%`%ImddMX=~ zg@#hwzyM0_8df2jKqr;8ZVKjBOiZFPs?StX;Hu#80h^Q@fmg>%DRh-?fs9#lj;rbKVOp7 zxk0c4a9_jykHAaV0Ha3bRbaYRE$yJH%361MfP)+i$u)PnE}cxyksYdaR2h<0m3Lv5 zaVZAJng55kFdMzOOLP%(R1uJw9z;s!b&rah9guie3$;Pa0`44r6Bwz;3>z^y(CzR3 z*EIK0$e|fG5EvY_-VdSWAld5DHTG(L=n4b`$#L_!AWysTqJU}S!clU) zId;FLjQ*;n41pd%!U2GU1yI#r?nv*&v+;VmWcSB!Dd zu@d)z%!pkF&?^zTh-!jBijYIUsn(s4e#Gbio;O^YVtgN{Q4*@X<>+GyAlZ zUrjO@qb3ZemaI_frxAuDe+sHrZg2@$Dyd+ZYi=@{GW!vMnmu7}Hkat-M+68GsRjef zO3rIXs)3WIwF^+S+Lr3VcP2Ij3OLaVs=oxM67G0wZVy{WPk#?o zJ^D<4;H=)&zG|rs2`rTKjo=zrv{fy^ovK&1IY5|$N;lby%x%4l8OY1GxSG~z$ERB|^ zN3f^-#6p%9N6s-~88rCppAG&z0g6IS7(059Rd;!hKcLdBzt}wr;OZqzGG}TK`)VU# z*z0b3#8YZ|#C3p7T|yQP(y8}=QYboR72w(_zuD?Hk>XDhB{W1`GQZMZDAL|BWg4gehyvkda-T}Iqr#?4M*fPOO*jF_$JNWy%ZcKA!#q2szZ&iB)ExTWaHK)<>hx-J>vv+B%xfu`Uj0rj zAi90=DQstpUVF0Us`Ry?@BD}Q&;8lDleGdU5P-&WjnaA$Ac~xk(web7_;7`wQdz9#)gv0?7WwGw;D@OM1nxj8I*hv6X=xGn3`UV0N6)}@ zM8Jgknh5p-x9tOd%0KOK+-r}~?>_CpUAi%1|CCfSkYyW)KA92;DVLwm);RX&m;J6zhw3Oa6g?W`1T-oX9p|JPwHyDdhqa?E=Chj6V1^(m zDX-4>IEi=~;-i-y7*WfZ>zvGL%rAAqOV#F0+#*h8Jt>2ykU>%E*>OZUavo@eX`}vh zO{b0ahO6##Qq2Q>ct?%)49yM$cuASmq5C67TLihL{RGmTv7ufm@*e1fX(RXTxeSlp z=XzdwScH2mB*z(e{DMS2e< z^eRQ^HS`Wb1Ox=>9YpC(dhy$E&%Nh-=llQd^Td$-&g?R4)?V|@n*B!j21dxgY}7J6 z@eBCIxSAB})CG_uc*G49>yq+c`(H#u*!yPj_t$E zcGkk2V-QmUi?H0N06;HpIz8bpm0^Ef3tHJ9k_403$Q*e8F$a{wjD4 z>fvR>2*jMi?H`Dh%c5zGNa)0ZAWX_sWMUfagG1{}goj|=XY zh-V$S4NxXoPf(f+2+@^_k{N4l4>b!SO#23E`yJ*H-{_Tqa*ir&+42;6I1dYsrz^dX=nGOj`*T^KZDRTNIAZhIHGyBSqsCbVGABcmsT({iHh^~x~ zm!T|qLvm%PwFB)FxRxs6=ni#kHY$p{V`(=_^;n!h5}!e5QM-$#E5Zur0%?jW{$U z*JZSZV}dv}gi(ubGYolS1?=fj;Eb{y6s`=ME=u-2qinQnf#yens!l8yftOQw|GUIi z%^xPei6WKDNS}Hnh$kIG9|b96b5PHtz%#W!t9aZ|siMoecA~ zO%^T)F`iR4`C2ZpO9|n~2^8{9Ey`vlxMI`keRn7I9`xk|DLgewE`+nlTXX6Snce#; zeZ$ze>TykLZF_!VSn3Eh2?^cU(M=&72i>~Ow)J_m3AA=JF^WBHQGQNjLYs>p#wwyQ zDyJ#{g_@Y;B1WP4CKU%AyD{~j`-1o|k!bYk{A4nTagej8Y8BIwO!BBv3d{5$_w(?x z15uZ@pG5lNRRF8)W;Fm#t(ql^Xj89`v=} z9N!~TCqjOVS;LnVdddW0G--Bk zj-4uBWPja19Ha9lsyxu#vA?zN`85fBZ|1nLE>C7vaK+a&Rk@2IIq5bjdG?i>{f=4b zFqpk8=}Wa8$<%eE+*;GVWa=-o6zEJR4AwWCV2ADaNL8_xbh9GxHcToCA~g&qxoA4T zRr^5A>~x1=)3w&WtFg#Hldh7`>q#cDq5BZGAepi(-|OmGs4a9%B-#dniH|}ji(7wS zrvrfm1jwwT3!(<5ukcFDbau!2&WL9fMH;T$d}5+S8qtn0dq>5|Y=K!XC}`AoiqtW-ZccYSKd2pjVhW~-Gne~VLO3Wb|2>nO;xeY2An z!+H zF|<-hHaV)HKZMSzC5V5+4@+@0j#={?CW#8^k(mJJ>r@C2gakgDgYXZGgPDDz?(t%* zg)7>9Ll%3;=*4PE0Gtx!5*OD+rrN;A0}A3|S%8dn)|-H|jCA{G_7^9~$hKXKi4u6% zuoQQTCq~KB=&$e8+J*O7s(=sWgAZS+S5F~H4}l55LwTj?p6n-$2@@r6BPxA`9d(I* zG11iy7?VBA&TTN&>rIMEZ5OaouRcTu|2DyB8NJY};(5JSdSja(9Zut@JlCN^RD3!) zn>n)2<1YA4$qPhNsJy+xYW{4t!&8uk`&7qqVD)?@q$V_gcS%UF)f7XgDwo(AQghk* zA$k*azXTlyqCnLU8g6)FeDP8yVNo~Fanp{G?d2`3kGCSF92YR{SSBKCz*hBJnPk9V z546~pMx-(`*FIiB| zJ3%3K&E|optqQc%?{K&X-sox?HH!K4<%Nerec~ZhI|z!+QDjQB47N6nqUA3UJgCWo?+9 z7lHFPBg3uMXCI2D)x1hFxs`r#J6|il1<}|j<4hGO(q~saU2=$wP$~Lf^?ue_jKoo{ zy9z0iRsiaCdFg_{2P;_~ z0l1BNfy02FqMcb3P8O0~2^S|)P^|6}l1C_2M^fNAoL5hK*sF&myZ0$j^igqJ+^?HK zWqkr;5%s1NNTVN=PiHIwP^pzSHg90FX^Y2duip*t?%z|if4?&|&N z8fdbxje+Y2jh$3D;SMb5X^zmCEy+RzDdK}Mji)VNo3_Wj`h;~L_@NulL2WCjG>!_~ za;W5zVW=&4{!PYb+x> zXPsZl0pKKtZ2^g%pL7VI5a!W#trWy=9kxTQV4^^xhnB&_)T@}A8{gR%_DoS(EahR+ z&;3CD<MN@{wM`-bV^mQ0Q7@BnyXV3607f5E__$FB_|LhpOP0;gCipqeIAV@F zsx=D4QvjDF4Dx}|j1idzkr(R+}(+D^4g6Q zZ32UJP#;mBPzH?F2Z~r!un4eM%cs_0G>HniUHusBBb{Jz5dHU*8zucNS z3Fn{$5EBBQi7Ym$^u8<#;%ZfD$WhEO{Gs{gn%F)arjH{PBHmKGu`H@FXTgI~)g{_O zl5Qbi;fuGB&;sMXEk2?3FRHsLbzC#uf->$hP6uy0hu>`xG}Yu@9^sj!GhMSWyxEv# z8hhmfK$qcB8ncdmqF8yY6CidQfse&ECGKc#u8oR60z(!YMzsBrZ~fO2$o)Gb9mcL z#=S!lG{pkv+>u#>m2jprFoYXWt*uB<>NZP5m$)LRTlRGsX-Xq8hbD&IkGOpFy9b>= z8V%?)0X3JDfJ=zK-jM{b^Iz!N13J%ko}?a}&3WlET`_py+9$sHo0#J9VS>4h1y_~G zD1`VyO&XA0akloU8;=1o=O-u4s{hJIxemCUDBbCblMq(@PJJq7FK5cJ8OA>*fAT-P zKl;(86^`_JcdSmMPLsH%V% zTe#g`P>ku}@l%U6*M+j&TNr#Q?j-vDvi`ujq@J*$(JLCCEH*vrx(+N!hmgcHa0L>< zgiYBs^Jh0t`BJ}z4avVsexwX>x53XFs-S7mg}Mt8T5`!)`Y_jvQR=2I?QDZO$tljZ zg?+2`e%m#jZXa1pFM+=EI-f$@*n*_rWq)=c!}O{h*0k)otn1p*)aWU{Vhy-5nBExMcioYOro9`RcY?qhnYy*qV!!2iKyd4Y`P~3zbRRSN7PciimA=4!WSZ0! zeQOx}tMta^{T4I@(3HOebs4|ta=8v?_eaMYra)%Axn$izg4UPM$=e$c!2)Dz8J-)~h_=zqp@c=|}oH#q$KsL>SUO_%cu|+lekv zcHROQY9T8QD&8zw2oiEdO<^18kS)>#OB8;L%g;*W7xOE9!_;a?vmmdFf%zDY@wyR7 zhvLL5w{UtB(*=1?S*|!v6pq?*z9FT-xoBGjMNkjeYSW9?RJSzludiD%k7+8u3z>DD z23oATdPmGI;OCijZp`&yv21I1f&dm<-BL`ox+1kybB$F0{yL!zGs#P3{N&jzzl&7M zqEr6~bg~1bM%C%cFHNRkuYkRAxznxiuqY1->qcl03kxobM@R~nN30+$Kh@YUwEjV& z9>ekH=ef3OtbQ;y1}{!axBUy}^M~FgX{OU*2sfjRl&~lLiZR7s(}as;mc~!>hbrP~ z-as9>VMFn`+!4ri8-@#tu2 zX^Zsa=$-c<4qN-0#~yKFGCZ2<>8;ZBMFgE|K>q5}miVVs4CVR8?6=rF6=X9VE-gHN zl0^-u@D{Z+PD@Q%mdz8!rXe4YHD9~=CWj>h^6X;H?AH484SPFqpOBPtR;y6td~c`P zO*@vLZN{=U6(D-o(Le(UBUT^3!&5`!pSuCsThm;|apj*mN^d_}PuVo+gxt8Jo#ZMJ^{Ei40j>I2WLWzCj%x`kSUwW21Tul& z65HQ-LKo*3@>Q#zV*_wJUH?C_X>+L71O zzLu?IEcgY;25AwRi7J!7Zl(RyGx3V)7~PG)*kHSONwKoS)Dnvcmu~6SsHx`7$0Nk$ zI2!|YQST~He(9hdC1s8iP9;4c&0RYkB6daE2un3sySS@5?@|e~ju?RNY}`s|(GL1P z`il46wFx9bNXarP%p`ilz)N$q+TE*-?|db&zx3_cnUl|foM+UVdTNNIgCyamB9=Id zUGx)hkp6ocNrU%-^PmzKh{X5{g+8s1DwIZXzm}OTr>?mlM={ag0{q7>^bO&OUy!#< zT7(}ujRoC-#MOcQnJA{4X<6(d7{mMJoWFG>F>^9~Cyc@mzZ33HVGYuJLxaU^t$nhd zNKf9)__XuH$(jz#9QJ+7Vl(K;#7Bf@Pb7$W%m?9Fwo7+op>5;HtI%yk^~d|Q6!IXL zO%mf+DXTXwJi9CWlZoLIV?mekiNyhz-6+Q0kEoPyV7+k|%-59t!JQW%p?&7Hcv=@- zeXmJZA*L42G2MdQpAwwMb5)83L@FM0;)x8f2Wb0Y>=qLb9H0H>*T6Fd`$e5=KGDBk z>B6il(VyTCssfiv8(uN74p_tSJJssvyIl0G<7n>T?BTxl z+SceaMFg4=8{@e)OkGSpiRu212~9 zwc<`oaAj4Kv57Y~3@kh01M65hh#%7riggVIQprYuH#K;rS;%*FO%`=pnpC*f885nU z!%Sqfy}eX6=G2dTT2)a*;$JHq!aOd z_EoV%uKbUein9P8uF7UX7~XwN_H_Pm?KGeDG4n>kva7n5O7-9~sx+B>#Xt`;Cn|YW zGhc}pA95S0QX#C?@C^1b67hu9Tkb`v)Z6$Hl&&euTTkEXQVMZ=i~eXp^13gS=gKlp zsif2LcZG0^x`_`r>^JnuL!~8@Uuw6Qr|NI}KBb5DGw(x#JWFY$`>gbBF% zG;OEtAw3#ZG!HgL9Hbp=w}Dfjie5H)w>GXorLMVAkT6UrCT%KTU@);JA5UTmGJ}IK z7UmJ(iLHuLa^=Oe6^YBiGi%XlVM$72WQK87jLcNx6L$vevgZI6fLIUbZ=CXQ(>ft` zA4!-DFk{JM*EyO?!7T&WEi4b*$B{bk{rk~AyeFR@+gn@WJ<%ljaXlgN-9qW@2kSP! z8OB~ANFHEXZ#_|)G~zcGdTE3$|4j5bVha0be(}a-CjjqE>ap~prT^Ora1qtL3DRE7 zbtUCFqsa1yCuAt-$y;s>CbhF3^?DbR;8A12z;Vub5w&&oS23Uod@cpS*i4{J{bt7ObZkKiayi}-FIYb` zoTsp!S;1M_##_aJkSSCNgiz{|_sZ`5tRm0@jSf{>cfY8rQf#KXtvpO{msB9Lw-J-* zCagfPm29&gORJJwxBD7DOlHH9I2NWn2ezQE!*>dqN|~6L8qxT)+z7=R%y?CUYZCK}_@npS5)X4A^DSYG0*P8>MAAD!f z*WMs|+E&8Z`#FVNk+zOfcWgg>cfsbX+NdULcY5ShChF&Yuq(E=%$G~89`n+kqcNLU z3tLWG`faGU+x!WbSz}6I<4eew6mogI2}rZGEl@66-N_bR-`yx88WO0GX$;5kauePK zc(1!qfBnsGrEzIBe)bFBFk6csl;=LfScUn-UtImr(5|bb3kvdUE?ASL0_jA z?~=b>dMl z0-RpAOlha3ZzWAfNR29pI>-pIZK|UtjdWSOY6LUvK5Pm1Ux=fuj#K^2in^Fwh$U88 zLQA~3n%nS1ucs80+{LOL%sUzdvKNR59qq$sKYAyUa=W?oxir3XPR{J){AKP`&}nHl z0mE(%;O}j9*Mg7&-l51(e3zoQUJ(kMY>_)Oo~OT6F0bBSE97$Z7jIUHS>a4O{xjSmJ zvx#M0uK2c>c&K-V_lZ-LkAu=YGuN9090(Vv-vGEOt1LTiAaR`DL-S_&6@P}=kj?AA zW~JoHiZ!Jt2|jRBh4vh{7ZAw-S!HsKBWhRV$_!lvqd5%%$6}QEL_O2dquL~|Z-!!J z?hCj9z5Mq2kM-L)Z3GF>dZhUlT2c!ul+}e2LM=UrBiTGLda!WI=qYgo_bu$*SLz?{ zcXQm8s3M-WnMqFVO@{p{1*aJa`f0)x(4|0zEdQm=lbB69Gd7_ikBv&l%&xUMiAco@ z5w@C;hw@!`c;4VDc`)GN?~MT~;M062l)!+8_a@y4oW15jcRb}aUu@TnA}BU-Ehz$W z+r-N{EoUnZy0j~{flCQLQm;2aC^qB71&khEOJ1azb+W|kd_h7;oRH|_81is>{A7W9 zrxOFR?@8JTW<7B#6*1}tQuC~y-2Ux=v|z$CB;3%?9x<9kfu>Z88$?3)jRjY|;goh{ zgbwW)zVzPOb+XuDHEI7!zc7j@fTz#p?$V@nLKR@q3R9BW-u^rpjX%E(nD-{c_b3WcCwm;vfA-~qDY3~07NoJFdP+Mhk zGW|S)u_$Qyu6Jm=#7?4Fp{=RzsiB~vKUy|b8<^5onW|zx%{2P*AU}D7Wx;StD~`lT z;Z=5VIe7U?Xi1^EU(xF(JLQp2-T6)yq)rx=+{@oI6h_=WD$*GLm`*s~3@4WK-1}8+ zlXLp5FzlL>gfGvg<<_UzDmnd}41XEN_Z}+(k0AWji7%hrp<?rW9S*wUcviHY2KnJDCOuGkDvbUhg0R|ybSFFr% z;tMPNXH%xF7q;)Eb-PAL17QI|D0LYwftFh2^Y+A$S@k%4qafnp81X+u=0dCp_62IcBbCRD((LQNcSEl!}=0=N|WgQ|3y^C8h9tK&ksSkbmr8HkyE*8bXhwqZHyX zWsUp1&{%UHAO}m(^2W+ILbeC$?9j5jT&msuzIaX9^ zCZ<4bm0k^9e0z;P#)n0{z-K`3%*CPc{af@}_xG5$XySRE@i<`do#t?H<&y^njGjk# zjWS|Sk$I;}6=AwZH7)qA>x}j^A_fSOhq!HuM99N|eVvfP!>>_$UG8Wef3usgnJ7(4?03a#6ic&WE|4dPpUF$7lILEUm{3$B#TLflxHmesM zWGr0ZcmA^R2Re7+*u^^?e88JQ$kx;B^mxpG!vO2QRq-h=#EsDD7eAk-(CHuXs0 z`^uoM2hD^m&#)TT{g=VaE)~pi{8QS(r@t%j4AI!!_q?w_kne{~9R}NRC-_%B&zpWZ zZZ*pDtpo$IT)c6$`iN&dzZJofvt+xV9cOxE%Re|{zrd z6;KVX!({np^w1!BzI+o^C^2LyGu%k9HsKjH(=z?gK(@gOWD*#*G2AWYEt8;;&5?9$ z0U4u#H6M~A&$sT8lh7tCR>EJjyyA5`k>7c#*c=Eg2JB2}2e7k93KBVcwfFu6q1N6- z%B7@o9wQS^ih#$2eIFtm z_$}3XW91O`8f_5GM)_1#VC?3Dh4Z#eo#H8qhcBISuln4^-bmBn@`b$3+3JO9;diVO z2~JjNwlxGP&EHxFSUfxV7W~Fb5}CRSS5;&qUcf(=t`JuU>q!-otrc*#Ue(CXZxG$E zspDP_9xBboQaBM_lLI<`zq1zO%t%E9`vd*M;mXh_ziKIUKN+kHq3kMP#kVR?fTTfT zDFhTUX7wqICV4jg!mOc1xM{DWHR7)wcDmhfeS^4-T9-c4ClRKKs$mpsSF92G{0G2TekW~Ur4hyb-iQjf^rT&B2gGj`9B9fhN}V5!^tdG+ z-v~28lVZWl?_jV%(`)i~UO`*Vk<@*%q6N6jsr1x<{S~(o?lRxIYJHd}?YQK!M}Y!+ zp-7T}YhqC3A$A)?M@E&fxMh$O3;F9XEZ=Y#kO>qvk}|tC3p9p_Px<@G$MZLn84FnO zS?{%6dPC){8wo%^p+%Em06&*t5JW=zjisf!QT8z5!b*3GFRheWTt;#fu+k%gAz>KI zz(f*hbVbg==Y3d;0k9ajD;*q4FLV%ovSbi?u(GW<=K-Ej-~$FOT!hY^)OnkMk)uNE zZ~dJ~M66lFLy&>`UBlqUJ?MMkx7P4Hyvn#XV`#u-l-mcnh;rHVgPc!xOiuv{kQ?_I z2y?d%<*+;)_+QpaxMhJUOczw>8W05CQP@uC0BFOBxsdqh#hn`&sLHg%J#D)1W?)&l z+Q*@U?HvA{;`(s7XoRsz+oWx-O(9dy8GT3beuoEw z?UhYJ-T`Lc$0d}YFq7jIDBr+QtKocJLilIwYUu=-1jP4Q6_zB5$+74zho$<* z>o|eC62kFgr40#;toN+oHI!Px2N{d<(*r#Pd@j!F_L}GQd!rF#c!==D$}uXwdli81 zgcu}rR%Yj28J=DUM|W1n;F&SSMKt1SKp)(6@Yi;*v#jsTAF55dN)(1&m)}y{CtL+w zXV309NTbDK)2*`$7%(;S_jPlsJ0RO%rD`_UxFBT+R2(#Xd&6c&1*8seli*}}aezy^ z8iBrsjd^=>oeTpG3H#t?fd6x+akhR6xgrYq#k`q9(R)br87eoqUPfY!F;&nCuk?WDjSBdxZ6nNI1d{d(7{fBe_7y+Vj))dr*n#!8+{QvftYn{SkxXqx1o#ZzcADBp-uc(_|tfvB3f@|kS z2SQ7*f>(nUtpni`Jt0W9heAN+Hs?J->D%aX`rDm-{b}O5fc^6EP>a- zr|gfXxz^Wsjqak-x6O|`5wE{)vl{L`Uj#g^UaNS(4He10-2ejCz290#ot76>}W^Jm9?b5n(Alwkdy z7$}e!jV0U+oI87y<~j4iANm$XAMBhFsKORv1H_LNaUJC(dYLzIMmA&-U!p)xW$&Rk zP7;1WJLN~$0>in%1sOdm12t0Yee2FU)}-;jWJI+lAfiUD&&rdP*~vuX4#3PG>B48e zr*@{PurgyQ{{U<+{KoCph05$-siv8V1LPZSwwtNuyB%3~9s0(pH+3EOuEM`e-ZK(@ z-e^-V^I2MkP1FHtmfbZu8~t-%(k~D#J~nD_e$T`hJH|CTlHf>g<}&z9Fd%l z_3y(nY_@ND59P$mA>x<&y(BMXG@|Yx(06ReD7i6Lq<}6e6{vOQKJ8VY54=G@e>o*A zzzG=Ue|o+$WdE*AqtdIP;-Chx2+V8ABehX2rC@Xyb{|3nueul#Wq3*O*3r$(#^ICP z)NS|eB?r=7pRbM}Jf79bWCCI5b9yZG6-F#)HnPj4_B#?yEDYbEA5^cigW0tRdAu^>-jxZhf3h-d(9K zv*e?4hA6Z<{rBV@^SFHnm!QRh>_s_%=$=wkr0rITdK4<0S>_^9Xm#}7*j0!P6JYHQ z?cw4kDbJBdE;-l~=J{5-0$1d~4fEB~_B>XmNI~}eAT^9TAOZ;6;)k}zaMKOzM?RWm zBFH%4-3LV@m~>JVkC8f=izqF;vcr6F5gOE?Q~cI(9U4TOyvRV3MBh?s>a!DF1Aib~ zJ)7M?rgxEPiqAgIzy+sfpmA)u^7Th=%QdrF<1u$FZw_tOi2(0+5sP<-$uo#7;K9ZT zAJv@RKhPTwS%8hJ03>(U`1~7$iuoPcga>kKIc1e$ab3v3E}3gY-38zTdX4RGdbfDd z9Dw^Yw%KltW}vM%$wL}(NoxhPvy1SJN?(yPdutOc$Tz%CgbKS}l1=Q7^|K1fBK{04 zEc9wC+g_pfbWL}ST{hTji{Oy*_+IMh4TDH6%fZQIS;r1isg~MVoD*9i@!#u4=H?G7ZHBT|C7rUd zpVSu$2fnfw0YC49P=c?4@RNk=lUKyekOFQ9+UA#RL48VLoB0!a9xwd~e`U6uK%lwo zUb#fd6izo_59;zov;?RQr*aeLb5qv8$zD%$`6JcfF}?Sr6P4RGSB{vs;cmCHvQn?F zGjSQgd~$cSuyfVCSJuu}Qm4u-JJ)39fuefcaMIrE*5J`(JEiC;!~S8`<{ng%&HBjR zNI4@9x|)7CneIHY|I$_P7Qz!!2s}KF*>drUbDRmwtjrY(9`Bpl0E_MsLJuKkK5>Cs zz@UAw`O<${&3+#O{OA3WthFOy5oaSoa;`vKN$2@4gPkyKx+px1_1$4Vh-kuHtn9~( z^7W(-ET(4P5NXa^>YU^e`d>&%Aj_pnj1rD?u{R@NJ~sUH#e>}^i@FB?-$W}edWm4 zq)$fDU<-2vTp>d3%Cnpls=80VY|0@5)DVGzgf;!|X`m{u|1r?Rsd4(b^=WZExVzmz_{I1>NO-!8v5A@< zSRkn#XWvFWUmjRvc*O+nNptByXZ@@GOQ+pINNs2ZOL3Jpqb5cn@g+4G zD4S0&x827#weP)N+2OdED1A#!{YUN_raZ54YR-pB>&2c|2A;Z|Y+=6G8C#K7QPS5; zN;)xeR7F_KOtu0UM%BbzYw8H8ULbkN{`FY#`TQBCXLrS^iutui$+L_Hg*TxRY%jXM zWC%aUcw5uOr0O)OoGcyh0r^p?nfemXC7WI<(uPn38-%*vK1c0;+dT#|4CfEB8ZH?s z#0$!{LbUU(p2G@i3IW3F24?gnVtf0AI+ROP-KW&2q-}-fp^tda53=gN$L(E9D;L41 zts}tn%tD1m)I5oY!7V|+5!TG#-Ao2$a6YoPPEh=0?x=3>Fd?>{G%*bjP7i>^X)*6u zcPhEy7q8WFWKPQC9Wp*xEGT;5a$%FRG1n+#W#yDxu1|>H%ACBeda`5&PAOe|JOHEWT8G<(nuc#FzyVolI<9u4dvuBfg$gcfo@R1d(B5bX|RJz5_C9B1u#T zhADzn?I9(=aHnf)1#pP>h3f$}ix1Rh1+T+&nQ8k_(dmW!H7u$-xEL0_nkiBN2Jeo2 z0AGm5x?Mm0Ld&ZHuwu6hT+24OsEZGpVaDLS8sCm?&6Jl;G1JwC^Yu}KpCc+a&Z|@O zpCvL^?Q+VkEx35eVmv3m7T4Q*Uwl@)0Y1goF20Kkd0l)a0(+TvNnO`{lOraMjP>S< zQhsm07W3}moUC-bB5C_G!p*O4|NGCscD^~=S#UXz*Q~bEUq7x+dAM|IV?0jrFBq2a z{I8wbZV&%c68mlo_$g4cI^QGn0)_IctF>GB>nGDWpjKAkkeIB$_Hp$8r`#&jF6oHG z(ybzo9!{MD;BXuK#r9Lc+0}N|w>kr-^gjS_qB?&7z&QXo0|3VWVDAC|T+|3~dPV;Q z%mIKl0N@V*$N>O7a0p@XrCYWr;8M4M8vYCT3;@C|06-1Gk^sOH02~5q)poaef zk}hfhPSVyL0Q?33%K%^y0OSBQC<8V858wp=P65CX0N4cpO8}tv0&sB%;3RD?0LEUq zhVDI^_mv`!Qv8?sn+EwLmRxV=be^iT{f?iph)?v+ox@Go>DQwUejnBS1hhl~gn9KF zPI8&28$8ce*4bwoQRjQzn%?dw#!24p7kVEIw__h3ErdKCxsd#L@O8va@BHVg=4Pt* z!30h5bOUNvJt7TIwn%d2ZJM7!Is7_0O4B=y_-S|kd#8WfmABE&_4aPk37oOXeeXD6 z@Xw!-kxdFmiL=gyExme?vrap`CNI}N%rjL^v|rP_4;KS|KCDOWcEhzxdQRnS;)}-fkwlTpQ&hDOizS?$$>HMTL$lKk~@@#d)`^_FNaQ1tu0j10@ z_IkV9`qP+4euk)eqt2G5l78~eFv{&s?G~S}GwZ!MYifLRw9ye!esb*fp2LduOlP zu2H05A>Xyh<7jC;g1I@u`&boF>xl3^B8dUyR*qMTo5as{o6cv_y#KWQ*`63|`g5K% z*rf93h*{EmM}3L5X;Xgwk0&xyRmFR&FV}nN&DO46IIG*MS=^Yn*jZe_Wc2Qz{kaN? zKYPW+Gp7?I-THt2TqyK#u`4#|nB(DHO(6hel<=>B@%~md|EG}mg{t}gz5PSu{NDxt zsoi{`^Zob64u}E$OZEHTh5xB%dm-=q_hth~K?8;V7JL48(SHiQUI^a)ylmS7pL%VvDkmt@K3q23;npiw*laW{6A`P|1SPd(XI3KmEc0 literal 0 HcmV?d00001 diff --git a/latex_tables/bib_transition.bib b/latex_tables/bib_transition.bib index e9adb69..40cefb4 100644 --- a/latex_tables/bib_transition.bib +++ b/latex_tables/bib_transition.bib @@ -1,3 +1,26 @@ +@techreport{Viswanathan_2022, + title = {2022 Grid Energy Storage Technology Cost and Performance Assessment}, + url = {https://www.pnnl.gov/sites/default/files/media/file/ESGC%20Cost%20Performance%20Report%202022%20PNNL-33283.pdf}, + urldate = {2022-12-27}, + author = {Viswanathan, Vilayanur and Mongird, Kendall and Franks, Ryan and Li, Xiaolin and Sprenkle, Vincent and Baxter, Richard}, + year = {2022}, + institution = {PNNL}, +} + +@article{Georgiou_2018, + title = {A thermo-economic analysis and comparison of pumped-thermal and liquid-air electricity storage systems}, + journal = {Applied Energy}, + volume = {226}, + pages = {1119-1133}, + year = {2018}, + issn = {0306-2619}, + doi = {https://doi.org/10.1016/j.apenergy.2018.04.128}, + url = {https://www.sciencedirect.com/science/article/pii/S0306261918306627}, + author = {Solomos Georgiou and Nilay Shah and Christos N. Markides}, + keywords = {Electricity storage, Liquid-air energy storage, Pumped-thermal electricity storage, Thermo-economic analysis}, + abstract = {Efficient and affordable electricity storage systems have a significant potential to support the growth and increasing penetration of intermittent renewable-energy generation into the grid from an energy system planning and management perspective, while differences in the demand and price of peak and off-peak electricity can make its storage of economic interest. Technical (e.g., roundtrip efficiency, energy and power capacity) as well as economic (e.g., capital, operating and maintenance costs) indicators are anticipated to have a significant combined impact on the competitiveness of any electricity storage technology or system under consideration and, ultimately, will crucially determine their uptake and implementation. In this paper, we present thermo-economic models of two recently proposed medium- to large-scale electricity storage systems, namely ‘Pumped-Thermal Electricity Storage’ (PTES) and ‘Liquid-Air Energy Storage’ (LAES), focusing on system efficiency and costs. The LAES thermodynamic model is validated against data from an operational pilot plant in the UK; no such equivalent PTES plant exists, although one is currently under construction. As common with most newly proposed technologies, the absence of cost data results to the economic analysis and comparison being a significant challenge. Therefore, a costing effort for the two electricity storage systems that includes multiple costing approaches based on the module costing technique is presented, with the overriding aim of conducting a preliminary economic feasibility assessment and comparison of the two systems. Based on the results, it appears that PTES has the potential to achieve higher roundtrip efficiencies, although this remains to be demonstrated. LAES performance is found to be significantly enhanced through the integration and utilisation of waste heat (and cold) streams. In terms of economics on the other hand, and at the system size intended for commercial application, LAES (12 MW, 50MWh) is estimated in this work to have a lower capital cost and a lower levelised cost of storage than PTES (2 MW, 11.5 MWh), although it is noted that the prediction of the economic proposition of PTES technology is particularly uncertain if customised components are employed. However, when considering the required sell-to-buy price ratios, PTES appears (by a small margin) economically more competitive above an electricity buy price of ∼0.15 $/kWh, primarily due to its higher roundtrip efficiency. When considering the two systems at the same capacity, the costs are similar with a slight edge to PTES. Finally, it is of interest that the most expensive components in both systems are the compression and expansion devices, which suggests that there is a need to develop affordable high-performance devices for such systems.} +} + @techreport{govUK, title = {Hydrogen supply chain: evidence base, {Department} for {Business}, {Energy} \& {Industrial} {Strategy}, {GovUK}}, url = {https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/760479/H2_supply_chain_evidence_-_publication_version.pdf}, diff --git a/scripts/compile_cost_assumptions.py b/scripts/compile_cost_assumptions.py index 3ec285d..8257974 100644 --- a/scripts/compile_cost_assumptions.py +++ b/scripts/compile_cost_assumptions.py @@ -550,7 +550,7 @@ def add_co2_intensity(costs): costs.loc[('coal', 'CO2 intensity'), 'value'] = 93369 / 1e3 / TJ_to_MWh # Steinkohle costs.loc[('lignite', 'CO2 intensity'), 'value'] = 113031 / 1e3 / TJ_to_MWh # Rohbraunkohle Rheinland costs.loc[('oil', 'CO2 intensity'), 'value'] = 74020 / 1e3 / TJ_to_MWh # Heizöl, leicht - costs.at[('solid biomass', 'CO2 intensity'), 'value'] = 0.3 + costs.loc[('solid biomass', 'CO2 intensity'), 'value'] = 0.3 oil_specific_energy = 44 #GJ/t CO2_CH2_mass_ratio = 44/14 #kg/kg (1 mol per mol) @@ -678,7 +678,7 @@ def adjust_for_inflation(costs, techs, ref_year): return costs -def clean_up_units(tech_data): +def clean_up_units(tech_data, value_column="", source=""): """ converts units of a pd.Dataframe tech_data to match: power: Mega Watt (MW) @@ -686,8 +686,26 @@ def clean_up_units(tech_data): currency: Euro (EUR) clarifies if MW_th or MW_e - """ + from currency_converter import CurrencyConverter + from datetime import date + from currency_converter import ECB_URL + + # Currency conversion + REPLACEMENTS = [ + ('€', 'EUR'), + ('$', 'USD'), + ('₤', 'GBP'), + ] + # Download the full history, this will be up to date. Current value is: + # https://www.ecb.europa.eu/stats/eurofxref/eurofxref-hist.zip + c = CurrencyConverter(ECB_URL) + c = CurrencyConverter(fallback_on_missing_rate=True) + + for old, new in REPLACEMENTS: + tech_data.unit = tech_data.unit.str.replace(old, new, regex=False) + tech_data.loc[tech_data.unit.str.contains(new), value_column] *= c.convert(1, new, "EUR", date=date(2020, 1, 1)) + tech_data.unit = tech_data.unit.str.replace(new, "EUR") tech_data.unit = tech_data.unit.str.replace(" per ", "/") tech_data.unit = tech_data.unit.str.replace(" / ", "/") @@ -695,27 +713,27 @@ def clean_up_units(tech_data): tech_data.unit = tech_data.unit.str.replace("J/s", "W") # units - tech_data.loc[tech_data.unit.str.contains("MEUR"), years] *= 1e6 + tech_data.loc[tech_data.unit.str.contains("MEUR"), value_column] *= 1e6 tech_data.unit = tech_data.unit.str.replace("MEUR", "EUR") - tech_data.loc[tech_data.unit.str.contains("mio EUR"), years] *= 1e6 + tech_data.loc[tech_data.unit.str.contains("mio EUR"), value_column] *= 1e6 tech_data.unit = tech_data.unit.str.replace("mio EUR", "EUR") - tech_data.loc[tech_data.unit.str.contains("1000EUR"), years] *= 1e3 + tech_data.loc[tech_data.unit.str.contains("1000EUR"), value_column] *= 1e3 tech_data.unit = tech_data.unit.str.replace("1000EUR", "EUR") - tech_data.loc[tech_data.unit.str.contains("kEUR"), years] *= 1e3 + tech_data.loc[tech_data.unit.str.contains("kEUR"), value_column] *= 1e3 tech_data.unit = tech_data.unit.str.replace("kEUR", "EUR") - tech_data.loc[tech_data.unit.str.contains("/kW"), years] *= 1e3 + tech_data.loc[tech_data.unit.str.contains("/kW"), value_column] *= 1e3 - tech_data.loc[tech_data.unit.str.contains("kW") & ~tech_data.unit.str.contains("/kW"), years] /= 1e3 + tech_data.loc[tech_data.unit.str.contains("kW") & ~tech_data.unit.str.contains("/kW"), value_column] /= 1e3 tech_data.unit = tech_data.unit.str.replace("kW", "MW") - tech_data.loc[tech_data.unit.str.contains("/GWh"), years] /= 1e3 + tech_data.loc[tech_data.unit.str.contains("/GWh"), value_column] /= 1e3 tech_data.unit = tech_data.unit.str.replace("/GWh", "/MWh") - tech_data.loc[tech_data.unit.str.contains("/GJ"), years] *= 3.6 + tech_data.loc[tech_data.unit.str.contains("/GJ"), value_column] *= 3.6 tech_data.unit = tech_data.unit.str.replace("/GJ", "/MWh") # Harmonise individual units so that they can be handled later @@ -753,36 +771,37 @@ def clean_up_units(tech_data): # convert per unit costs to MW cost_per_unit = tech_data.unit.str.contains("/unit") - tech_data.loc[cost_per_unit, years] = tech_data.loc[cost_per_unit, years].apply( + tech_data.loc[cost_per_unit, value_column] = tech_data.loc[cost_per_unit, value_column].apply( lambda x: (x / tech_data.loc[(x.name[0], - "Heat production capacity for one unit")][years]).iloc[0,:], + "Heat production capacity for one unit")][value_column]).iloc[0,:], axis=1) tech_data.loc[cost_per_unit, "unit"] = tech_data.loc[cost_per_unit, "unit"].str.replace("/unit", "/MW_th") - # clarify MW -> MW_th - # see on p.278 of docu: "However, the primary purpose of the heat pumps in the - # technology catalogue is heating. In this chapter the unit MW is referring to - # the heat output (also MJ/s) unless otherwise noted" - techs_mwth = ['central air-sourced heat pump', 'central gas boiler', - 'central resistive heater', 'decentral air-sourced heat pump', - 'decentral gas boiler', 'decentral ground-sourced heat pump' ] - tech_data.loc[techs_mwth, "unit"] = (tech_data.loc[techs_mwth, "unit"] - .replace({"EUR/MW": "EUR/MW_th", - "EUR/MW/year": "EUR/MW_th/year", - 'EUR/MWh':'EUR/MWh_th', - "MW": "MW_th"})) - - # clarify MW -> MW_e - techs_e = ['fuel cell'] - tech_data.loc[techs_e, "unit"] = (tech_data.loc[techs_e, "unit"] - .replace({"EUR/MW": "EUR/MW_e", - "EUR/MW/year": "EUR/MW_e/year", - 'EUR/MWh':'EUR/MWh_e', - "MW": "MW_e"})) - - if "methanolisation" in tech_data.index: - tech_data.loc[('methanolisation', 'Variable O&M'), "unit"] = "EUR/MWh_MeOH" + if source == "dea": + # clarify MW -> MW_th + # see on p.278 of docu: "However, the primary purpose of the heat pumps in the + # technology catalogue is heating. In this chapter the unit MW is referring to + # the heat output (also MJ/s) unless otherwise noted" + techs_mwth = ['central air-sourced heat pump', 'central gas boiler', + 'central resistive heater', 'decentral air-sourced heat pump', + 'decentral gas boiler', 'decentral ground-sourced heat pump' ] + tech_data.loc[techs_mwth, "unit"] = (tech_data.loc[techs_mwth, "unit"] + .replace({"EUR/MW": "EUR/MW_th", + "EUR/MW/year": "EUR/MW_th/year", + 'EUR/MWh':'EUR/MWh_th', + "MW": "MW_th"})) + + # clarify MW -> MW_e + techs_e = ['fuel cell'] + tech_data.loc[techs_e, "unit"] = (tech_data.loc[techs_e, "unit"] + .replace({"EUR/MW": "EUR/MW_e", + "EUR/MW/year": "EUR/MW_e/year", + 'EUR/MWh':'EUR/MWh_e', + "MW": "MW_e"})) + + if "methanolisation" in tech_data.index: + tech_data.loc[('methanolisation', 'Variable O&M'), "unit"] = "EUR/MWh_MeOH" return tech_data @@ -1575,6 +1594,164 @@ def add_mean_solar_rooftop(data): solar = pd.concat([solar], keys=["solar"]) return pd.concat([data, solar]) + +def add_energy_storage_database(costs, data_year): + """Add energy storage database compiled by Parzen + + Learning rate drop. For example, the nominal DC SB learning rate for RFBs is set at + 4.5%, 1.5% for lead-acid batteries, compared to 10% for Li-ion batteries, corresponding to cost drops of + 17%, 6%, and 35%, respectively. For the rest of the categories for battery-based systems, the learning + rates were kept the same for all batteries as described in the ESGC 2020 report. + + Fix cost drop. Due to the uncertainties in both anticipated deployments and the correct learning rate to use during the + initial phase, this work assumes a fixed-cost drop for zinc batteries, gravity, and thermal storage + systems. For example, a 20% cost drop in DC SB and 10% drop in DCBOS was assumed for zinc batteries, + while keeping the cost drops for power equipment in line with Li-ion BESS, while system integration, + EPC, and project development costs are maintained at 90% of Li-ion BESS 2030 values. + """ + from scipy import interpolate + + print(f"Add energy storage database compiled by Parzen for year {data_year}") + # a) Import csv file + df = pd.read_excel( + snakemake.input["parzen_energy_storage"], + sheet_name="energy-storage-database", + dtype={ + "technology": str, + "type": str, + "carrier": str, + "parameter": str, + "year": int, + "value": float, + "unit": str, + "source": str, + "note": str, + "reference": str, + "ref_size_MW": float, + "EP_ratio_h": float, + }, + ) + df = df.drop(columns=["ref_size_MW", "EP_ratio_h"]) + df = df.fillna(df.dtypes.replace({"float64": 0.0, "O": "NULL"})) + df.loc[:,"unit"] = df.unit.str.replace("NULL", "per unit") + + # b) Change data to PyPSA format (aggregation of components, units, currency, etc.) + df = clean_up_units(df, "value") # base clean up + + # rewrite technology to be charger, store, discharger, bidirectional-charger + df.loc[:,"carrier"] = df.carrier.str.replace("NULL", "") + df.loc[:,"carrier"] = df["carrier"].apply(lambda x: x.split('-')) + carrier_list_len = df["carrier"].apply(lambda x: len(x)) + carrier_str_len = df["carrier"].apply(lambda x: len(x[0])) + carrier_first_item = df["carrier"].apply(lambda x: x[0]) + carrier_last_item = df["carrier"].apply(lambda x: x[-1]) + bicharger_filter = (carrier_list_len == 3) + charger_filter = (carrier_list_len == 2) & (carrier_first_item == "elec") + discharger_filter = (carrier_list_len == 2) & (carrier_last_item == "elec") + store_filter = (carrier_list_len == 1) & (carrier_str_len > 0) + reference_filter = (carrier_list_len == 1) & (carrier_first_item == "reference_value") + df = df[~reference_filter] # remove reference values + df.loc[bicharger_filter,"technology_type"] = "bicharger" + df.loc[charger_filter,"technology_type"] = "charger" + df.loc[discharger_filter,"technology_type"] = "discharger" + df.loc[store_filter,"technology_type"] = "store" + df.loc[df.unit=="EUR/MWh-year", "technology_type"] = "store" + # Some investment inputs need to be distributed between charger and discharger + for tech in df.technology.unique(): + nan_filter = (df.technology==tech) & (carrier_str_len==0) & (df.parameter=="investment") + store_filter = nan_filter & (df.unit=="EUR/MWh") + if not df.loc[store_filter].empty: + df.loc[store_filter, "technology_type"] = "store" # value will be aggregated later in the groupby + # charger and discharger with 50% distribution e.g. in case of Hydrogen + power_filter = nan_filter & (df.unit=="EUR/MW") + if not df.loc[power_filter].empty: + agg = df.loc[power_filter].groupby(["technology", "year"]).sum(numeric_only=True) + charger_investment_filter = charger_filter & (df.technology==tech) & (df.parameter=="investment") + discharger_investment_filter = discharger_filter & (df.technology==tech) & (df.parameter=="investment") + df.loc[charger_investment_filter & df.year==2021, "value"] += agg.loc[(tech, 2021)]/2 + df.loc[charger_investment_filter & df.year==2030, "value"] += agg.loc[(tech, 2030)]/2 + df.loc[discharger_investment_filter & df.year==2021, "value"] += agg.loc[(tech, 2021)]/2 + df.loc[discharger_investment_filter & df.year==2030, "value"] += agg.loc[(tech, 2030)]/2 + df.loc[:,"technology"] = df["technology"] + "-" + df["technology_type"] + + # aggregate technology_type and unit + df = df.groupby(["technology", "unit", "year"]).agg({ + 'technology': 'first', + 'year': 'first', + 'parameter': 'first', + 'value': 'sum', + 'unit': 'first', + 'type': 'first', + 'carrier': 'first', + 'technology_type': 'first', + 'source': 'first', + 'note': 'first', + 'reference': 'first', + }).reset_index(drop=True) + + # calculate %/year FOM on aggregated values + for tech in df.technology.unique(): + for year in df.year.unique(): + df_tech = df.loc[(df.technology == tech) & (df.year == year)].copy() + a = df_tech.loc[df_tech.unit=="EUR/MW-year", "value"].values + b = df_tech.loc[df_tech.unit=="EUR/MW", "value"].values + df_tech.loc[df_tech.unit=="EUR/MW-year", "value"] = a / b # EUR/MW-year / EUR/MW = %/year + c = df_tech.loc[df_tech.unit=="EUR/MWh-year", "value"].values + d = df_tech.loc[df_tech.unit=="EUR/MWh", "value"].values + df_tech.loc[df_tech.unit=="EUR/MWh-year", "value"] = c / d # EUR/MWh-year / EUR/MWh = %/year + + df.loc[:,"unit"] = df.unit.str.replace("EUR/MW-year", "%/year") + df.loc[:,"unit"] = df.unit.str.replace("EUR/MWh-year", "%/year") + + # c) Linear Inter/Extrapolation + # data available for 2021 and 2030, but value for given "year" passed by function needs to be calculated + for tech in df.technology.unique(): + for param in df.parameter.unique(): + filter = (df.technology == tech) & (df.parameter == param) + y = df.loc[filter, "value"] # add random value to avoid duplicate issue with interpolate + if y.empty: + continue # nothging to interpolate + if y.iloc[0]==y.iloc[1] or param=="efficiency" or param=="lifetime": + ynew = y.iloc[1] # assume new value is the same as 2030 + if y.iloc[0]!=y.iloc[1]: + x = df.loc[filter, "year"] # both values 2021+2030 + f = interpolate.interp1d(x, y, kind='linear', fill_value="extrapolate") + # copy previous row and change only "value" and "year" + ynew = f(data_year) + + df_new = pd.DataFrame([{ + "technology": tech, + "year": data_year, + "parameter": param, + "value": ynew, + "unit": df.loc[filter, "unit"].unique(), + "source": df.loc[filter, "source"].unique(), + 'carrier': df.loc[filter, "carrier"].iloc[1], + 'technology_type': df.loc[filter, "technology_type"].unique(), + 'type': df.loc[filter, "type"].unique(), + 'note': df.loc[filter, "note"].iloc[1], + 'reference': df.loc[filter, "reference"].iloc[1], + }]) + df = pd.concat([df, df_new], ignore_index=True) + + # d) Combine metadata and add to cost database + df.loc[:,"source"] = df["source"] + ", " + df["reference"] + for i in df.index: + df.loc[i,"further description"] = str( + { + "carrier": df.loc[i,"carrier"], + "technology_type": df.loc[i,"technology_type"], + "type": df.loc[i,"type"], + "note": df.loc[i,"note"] + } + ) + # keep only relevant columns + df = df.loc[df.year == data_year,["technology", "parameter", "value", "unit", "source", "further description"]] + df = df.set_index(['technology', 'parameter']) + + return pd.concat([costs, df]) + + # %% ************************************************************************* # ---------- MAIN ------------------------------------------------------------ if __name__ == "__main__": @@ -1596,7 +1773,7 @@ def add_mean_solar_rooftop(data): # concat into pd.Dataframe tech_data = pd.concat(d_by_tech).sort_index() # clean up units - tech_data = clean_up_units(tech_data) + tech_data = clean_up_units(tech_data, years, source="dea") # (b) ------ specific assumptions for some technologies ----------------------- @@ -1676,6 +1853,9 @@ def add_mean_solar_rooftop(data): costs = adjust_for_inflation(costs, new_format_without_solar, 2020) # add desalination and clean water tank storage costs = add_desalinsation_data(costs) + # add energy storage database + if snakemake.config['parzen_energy_storage']: + costs = add_energy_storage_database(costs, year) # add electrolyzer and fuel cell efficiency from other source than DEA if snakemake.config['h2_from_budischak']: @@ -1690,7 +1870,7 @@ def add_mean_solar_rooftop(data): costs = carbon_flow(costs,year) # include old pypsa costs - check = pd.concat([costs_pypsa, costs], sort=True, axis=1) + check = pd.concat([costs_pypsa, costs], sort=True) # missing technologies missing = costs_pypsa.index.levels[0].difference(costs.index.levels[0]) From 7cc7d2c1712b14c3710167369c4640d1f9ae679e Mon Sep 17 00:00:00 2001 From: Max Parzen Date: Tue, 10 Jan 2023 21:36:38 +0000 Subject: [PATCH 02/24] fix storage type typo --- inputs/parzen-energy-storage-database.xlsx | Bin 32618 -> 32634 bytes 1 file changed, 0 insertions(+), 0 deletions(-) diff --git a/inputs/parzen-energy-storage-database.xlsx b/inputs/parzen-energy-storage-database.xlsx index 487c8f8d12333626c3592b8feb2e20609c909efb..81a44ecf199609c629d3cb61c5beadc79816f141 100644 GIT binary patch delta 28183 zcmZ_!by!qi*aZyJ4Z?tgNY8-8fS`heG!i4BNDeuIf^>t#NP{TNpdhKz9YgofAOccD zH`1YWya#^I^L@`B?|WT1b3A9CefHk>+H0-*KC^y_dwPjWsRhF)pu-^{A;Ec9z*kBM z#>EG|%OBz@;N2X&!{^4oIrv7zaC0fHftW`g?l4&m@{?&on0>tqPOgM@qlCO;1wdlf zUk&n~Pm zw8;7s+03ST@85l7|Ek$zOv&r0-6s6hXcRPLZ80S&o895(`GF6bZB7R0( zsGx?B1kUSc#`{y``3Dh|$Y*M;!m02kY70JI{H3KtzQXb>k~6G{lGvM!_s`mecBo zJN8zCTrk6cJzmoAKfHhLcqbovaXTla#3Y5Cn+$Nt{NQNn{-Hr%w)Aq9LfK;M{6i(L zN2Aw(%fDP-ot)dHtJcS1S;#*;KOYAAy|+e-)z^Cw@lHtXD4vNK;-MD8pN5ezNxu5H zz~yN+9H7uddvx@Mg&>HuM@4LP+m7h$bzi+Bv}+nGcqV-=K8EPFEthe6X{_}bXvmxU+hPf@P<$}m5@Oi{mbrFy3o=Q7n95%yPq8PhDttf`3lW~ z{>d{9I|Rsl{W;Ch=CZnY=p{H#mkm#Xz*3=~!8<;De4^YGI?;}^wsK);)?-L-ShdAo zb8dj+f!0QD^j$Q!_8md{owGj+l$4R~hu zKU^{p1ShLQcF@aFCl(!qaLu_k4Zk9MrXOrd_PD<3abtBucF64g!`(j)d0(`> zTFmnbbReHUlt&Sbzce3>9LDb(>IhglA;Py}RLL}1TIC2CXyNmT#<&XD(@`;T{ozy= z5-9Ec5+;4z%13`_SdLhT_$uNQzq!&x6E5Dt2X{)TnH1)EgJi~e{3#c8*Ao^QImdd- zX~&t}UBSBP!6w)-BJ>-dbELn+Ci%`8(Gt77aHvV&o{QwrH>HPVS*dQ-ZE7rKp^f)H z5la?4jJN%EiC=yf9+zv#$^8;)T^Fh@TcGbqQ8*6UL7yK>sYOi-dP&Oc>^#7(9qMgd zaJm#7m6)*DHz1SjpUg6t33Jj2#r7Qq|6MG8TX7M@fH|z7?ex>WdnB*h4lk8|>t5=| z*|9c`w`cn`RDfq05hN{E~e|&}pm0XbH zLWNk=5ujQe%&ME}SCOpg(GD`bJ;d%}SmP3eTj=`0xPJblZhC3qAjD1O#|NKpWCed6 z2gt~^L+~pCYrW^yeXXMmrlUNao_*bu_P(uoFlAHp*C^*yI6Q3Y*Xr0aDX;=}aH%PY z!y-e;dLKhO^3K!2meq^fW*gO{+Wq7ogYTZU1#Y8;Dq*RLE_9u4Uy61FrgoBF7g#Ia z^2M0BRHjjy+9^a%Rs9Upj)VVxX$Vz{L@c_ZMn3uVc|zzpehfT9t6Qsu{jdf_D^E%A zI-iAbyR~}y%qiJYED9GIk(`8jMYnvNYkRsYtiJoc4Jqb~BrGkaG3VrQctXC8$QNhW zoq7`6o>Tg&D+_bLQ-)fP{e0QcP0q3AyqhGww(K;yEOZ1=j zS^48KIC3rQk~pSGtFke+D|vn286GotmsVLlE|EI9UJTLbX(g7THR&d=I7a90|MlTI z<)OU(<#(#%y%@u-Y?TaM|98>iXpAe=-FrxORWrWtANGJ9&RZcIoc}AgxO{Olx4=ka&DQ&LzDIfjzO%JdTDItz^cDuyXBaD= z{AtUVRYlh1fk=m{Qhzm{y4BQSm!>-dhnDkOvdquB31Zk4SyfCdi@_di;S zyi$U2$PwSSLYcH1JvXuT97@2mBV-(4QdOu?`_*BnBrNKK4|(9Pt)g7SZ!EHr{<9Q` zIFDF<|LuN#2Sgtw-0S#iEx(0^1^Pf*Kd(^GF!1B6d+7w$l-#&2JcWeDNfEaUSDqP= zd22a7$HoP|bHK0{Y)IrN7ykaIxjVVPSHm*GP-bwOIKHFv>AkUL0gKcJ>BcpwUM$no z#q{?+wcgt&-Rrhc%8H*F>hAach-`46K-N_cS+}LWk9ct3h}?3TQgUCpbv~fmXM;X9 z;4j-sp@qt$Y=O_EFps~L?`{1YSs9#tm6wH&u2i^WT)Bet?|q;D9Le*B>mQMwC8gxx zdBejyRXW5|6?SO0v}QZ8VH_jdU}!q*Xg=-M7eD;#a1=|0c-i9O;7sA&goEt=Z-3&# zX@rr=5n6XDtg)ollCD-&d@!S~-#$62&rgoX({bPUlwBA`Z6y}*O!E*k)|X{Hb@`e> z@Ui5@7voQjNk^{XAhzn5`YNKgt^`q|o8f*`qb<~Q$6(OM;z4PGDo#wq6RT~fc=eYO zl2)t;@y)O;3CLXkhv$K$;DNH(X1ZpT=-fIa-e7RGM38dE(1&4PzsbACOTyUq?oVzt z->doYiL%}yo(Qe4tMszyk*`ycUO=c7*M>#x`y%L&v#_p~f? z(=j29N=(0r@<{K)>?KxrP6r|T@)Nu_!awn^o~YS(l*wGL$Gb2Oj&mFwoD^V9v|!}_ z#}3A|f<|u4UlMKRf96l-whXOZ+J}D6jbG9!FD0`zbxd7vbG?X*xy^|@-*37&^O*HJ zOiXl`ZFqNZs+Zsy>e(e-$<^yI^0f96q-f4Th0BeGxfdfKRcSex`^Z1X*^w7_86Gmn(?{X|2Mzm zbFs1o{Fm)=V^Zb`((CAAGI7B4>t)7Hqwmnp(Lvl!YSX)m6JK)Vm8kV%|Cnjh>H6}p znCZnyU1IUhw$-d=Iw!$96nS8&0;{em(Bp>UI|$*lAQFI-EWLM!bsLX?pzd{KDM%>U4clZ|7?9 zVaEXSqE~zI>in?0*wpvza(VJ4?S<>d6FYR822a^`5@>hFG((CpQ~jwbTzqN)C5 zwT(^ce2b^)ayjnS)owBJWMRadG>Yx)jf1J*MgG85#@U&S>zPvu>g2Oz`{j?ympqZA)uJo~_#ve|xVx}CHgI*mb+$-NHQnHKw!4ZH|9FhlOKXxAT(1h{p7lX)E>sCMT^!z@ z@SBmo+RT4-+QjzmbLW7}*?^csrDH>7PIo!#YfQIf>d$+79d2DUTPw0%O=JX~@k)ztT#YqJ6>QWE zH?ip*Pp-~3N&0DA86 zRp*|zMA4D&gNq6{dJ*r!u5MGtbpn<+T~T-S>=JEE#a4UQ7Iil5KiuS%xELy^oVF}= zwN>|3+ErXNank;bfNl9aqjQ40=I-U{Ue%8C$**Mu+j2ErMlNw9R8TK%x$JVQ4ml<5 zTBDlys*1U`$v1KOa{fh0qDG=Zc3S!Xo1l#Qg}9M?-5*-lQ%BtOzho7&l-XB5q-vU` zW@IX)kXPqpO+IHU#c2&sjQMuz8k!)=3T012gW`1xS>G5GzS^o6_tOwgwu9Q@o!=Hnx?{rG^^pB(`DA`TExIX6^K{* zS2pl5h&+G1f0|lwp;fTF!?=DpX)o|6dRt8j{9>OY21FemA2c3KE^o2^4M{6f!EG@| z0Fwv50CC2|USFahdTGZ$95@4)<_xQg=A_NI-?J@0$oQ2#gm#$`2r2>V@O zoETLd9Py;Kj<>c*7MkApkNR2lA5^l0PzP+t0TG>N(Wj^7tENw`%+H3SFP0w?E*tt%b=7rqLbSby`F`GdtV;Aa z+#Xsij>6S24$}U@=X59PF{Nf?T03dBeHEq6i4oT#QwWIri=Fkjh!RY0;0p6`y*gikPMMWb?2%a!TnsmY&}^8S;%?%CUrR zM?}&&qw`~#Mq@vy6szT(vt6eALnq`IjUn>~1n?>Fyx%^^H~%%2=I$?BNpU}#f>r$s z2T_b-0-bR5%=;F%h|@liX7=dsqUCpp`X5<)IIIbdzO9puHzZ;t$g6muXK145$CGPs z;{F3uU(V`uK;n~YsrCET$J|fM)k{AsYy{Qonv)EPstIO(i!`_Q@j98m{p&-+ALq9R$s;IEhPoE9}zaCo)? z@53-7qP|#^bUzarx8!EBMLwW)P|*iJa<40$A~a(`d;_ixe`NaYRmigWXtAVb;u(GV zQ<#ermU!W}NV?L^Upt1^+WhU5`+KERd;x#P1d6wfqf}<3n4JD5BG}nY+1lqvJV7mnO899 zM$X?lT>Gs0G%N$k-zxfO7rYgJ+q^ekN$QKVR}a*Fc530!zrB*elT5VLkVxuFJ4Dlx zOsY^xwHi6=2KUOXi^I(T+r|;AAAN~{m~W6jBorB^&v~lt!Zbyk{2Ho_3W5a2Is+rxR#Mgy*l9*~#q*+$PQ`$0wQISgb1xEHAKG7KE=7V0Gz~&-s-`m-r zQ({-|RvP-ws`;eoBQBHWFdU8P-F^CgrIXkey@yJIJsuC0v=1kXrdC|uJXx?wifuW1 z2+>A1ju;Zn{*HHA%ug!Adt{WfF(TLa?v@c=!`m&KMA>4h!N!-c{<@mK`9S23m*d7rITx)PQ*zjc)A`ZlQS zC)6Pip%!^8YN-Innz#a-O=!_ccprkCJxsVHfjOJKuh1r=upur1zad(B=Vn!;M=T-J z3R(j&EtWaA^qvDd$(QTY)J9w27RLPidduWp;|R~|zdazuvi4U6*hz&fzd(1n?thj7 zcEP8OqI&x&gV1zH^tV_!gK;bXv%8gqIfFw+kyP=4-y!3?He1N|D6{NMGrWX~`;VZK zK6O131kjeJ2Hoibwp;H}&1G1;-&WT42E;TG>5!6wQ7Tq=z^Af61KlA`-jk3L*REAm zbEBc8r$5zZK1FiH(xID`y(w|6(hz7|&xUx6Ubw=N$>IK)nqd!JBhOSfLvZI0AJK+5 zjtl|YVPef84Fe=S`k6sj+@H8?qeZIzN87Ths;PLNY_{gsx!^Bav|XieU(DrdHu4JK z%NvYy-%8qkz|h+|%3wuiTLRVEx`*~XC?8+DFBfN_MUSHBX?^pBk2jXDiPsjNFU?9o zTe?u6h$q+Sv6Pzn4SkYN2~$_c&U<+eQQeCc8cTdMj}!(~$JQRIn3Vaw@MfkSEw` zBky}H(rzLF*m2ZHkxLf3-SG|;02y@87u3L6lIuo<9rI&3p#E@x8(~%!GLmcw~Y$C(mOVrdF?+IMcpkxaTC4bbHxZ}Xmb?q)6=_lon2x|c& z5b!sw1Ws0z>bzJi<9{@oasxpPfD&#X==2{1AG6>)@i7f?0zLp5``^7b zO1`&?91G*U)&im3cU=hXiXx+AZ-}^Cf-v@a@X-Jkt-`4|O5%OAfoTfq5$um(c}>%= zH$azOieWHnW#5f#Dc?dRq5@z`TTv*?Gp<{2=tY*}=ni<6j&`#44{u8RJIlC`Cd-Y zJbMM?P6jTp2=lK9T-6qTio>V~`d@aueZ!8j#Q-}pJ{-#*Zs?cHCyRm*`I{s>J2|KW zxI#)m5hXrD0$4HIT*38 zkjlwd7retc#1;SL6Pe5k?^e8y1$39>#tfd zJjyTkeBKN^*CxB3)H0wPbE@~2pADC zmGS5B_jjQETWbRDbQJ_}%WFK@CZzPI$I^?3%*n!PRx#HMsS7Zqpe;F$AzuG~=zpEk zE)al{EeE*JmK5FdGs{3V;`>s5>kvm89Pi@oR=mS6G)_9?SFva%(EYy+0W8q{=?E6t zQmN$r73Eex@t5D4SKE@s!SFf5Os!K>g6VA(M~2}4&?E!ElHJ!VIkot+|H-z%`fuCC8{<&>FGm|vw=T+1k6tCS36hJ*NL3JU>a8f7 zImgs(!tu+)`~>`CDBhR4tC@iV5%UIFWFNoxv_V~97A;4D@R>Ek{rd|- ze*yJWEMp>14qe7 zO4Q1X8)<#M1qp1c-Y6nZL8&|fEk z!a4?Een-U?&{kx^@A2+RB>;Q=j}j=>+pob?l7+^3WS9gW295xoXyFFDRfXakI+eF~ z+-ZxT{sxs4RxuCAc2Dn)>oJL1cW-SBO*IPo`vU!vZUQS|nE8MVDFB(}LQ$Pe0h6{N zb{Oz~mtY=;GHNI~8?7kdq=y-T@eK=7_OYByzmI;3=om)xZFs{5-t7%RJEkuei*%qRZnyF0@ji<@A-VU!J)(Z)ITdK|? zF#SeQH=I22Z^M>sQ*nv)PhBk=Gt8SLyi)T>QP(t12Lk}9W7IZ|08!_zE#Wof5IxnUxcD;>9 zxl+M+2XC3Cq$~()L5a=vShC-a*7hcPG$GB9`^B*wg8p8{-!2MJh91ibn<;K2K+1E# z#}pr7hbs#+GqHOML^F9zCkSwwefbty`*h^j0rfV7{FuFuV&xdNec23nO8yQsUNeAJ z^tD~hAJh5B;Yj*B-y#f_ZZc-InE#zSm5Luw^X7U($r5G}0D+$Y1QMd`X78XrNl=%l z5CMN4oHp4(%L3ZL$o3bL_Po}mRK1chmTEv|@u3tds~SPUTrvLpZNR;Qph*As2^6V@1pv*mn3(0->z$$`|4>Ik zMeqIM+=>^vA8n1-@6InjFu;sm9A@cxKcm2C6jpe<&G^s>%m!UpKSgFBUB)BbxS`O$yXb+$o~_ z#3s+6T0*V$3)PbyexT)c^}fBVW1%=mGqAoL3L?V^o}6f%GxB04pm+8xNJCH#=5bDX|P+mvE;2i94pHfEdE9t zW@^g;M!>`VHB>OYZM=Fm z=I)=^B|v87bEGyzqQ5pbuZz6ww%#_=G&bSk8IQB!;6U<>CwQ~g%2K^r?E8em@(hxS zt{9S7S{V~((pniChw@4Ew{Pe6Zmbc!9h2Wrr``PZoj6uQN>LoV6w4)P(ks8raY0qb;A-YcRz}V0 z2*xlcP(-j*e`+}Oud3=aMnpj{u<#&H-Wck;>LG*uZ>h!_W(c1#O!AHc>ukm5QR^-7MRDEk8XIWerFBU$w^Gg_GgI;K$*kl_(O8 zOgG8lTD(Y%RvntETb(_o&vw9ig2GZv}N^p z;GmF+;8?XaQ&cuwpe-zDBXR|9*g$G2WjFlZ!pMVC6xR)5iaas3#ub)hh++Hre!jt4 zQNdU)s9e-I03O8+>@|3b-6Ug5!90VtqaX*}78(iw$xHV|UF*Ia<Ha@Ca@AO2d#H(C4~zWd7RLrph42eSC0YogqE5oq}&?i8C3mVfDF=aLj9^ImI#lp zbj!&Y-bwy89PyDr0>mjX3i?%wdjHcPCo&S#VJ()}IrBD6wo_hKS-!v&7Pi(k9v)e! za69GjT@?dN)fLoW1D$`~X$b7Y=ahHiOl{H9Ck3zYxg>@_CVdd_8hB=mTOXL~(N_Cw zPzvVE5LUn5MFdCEF?k;}252xT#FR2GZ;TxOd(BKoK8_}`h{#|fwB4XWYmLf|*UGUU zZ4o*P8OGZ}@FolwEL9KZVhh(k6L(R)}!zzsOadp@mHj!0TXWy^%2Vt4pZD!>;n#%1;8p`-SHJYrObxg z+qC=w9CGqV!-a#QuZyx^5q<$-Ie7^%Xe?#-0XZose7o{QC&sGS`^@`?XHCvDPpzJO zfMTZinJq&xM#8Uj^xe_}WlnD>#^X)MYr0CiCE%6*#AH=sgDoLJR~a z8gv`taZ913Sks5ydpjwS-UxohBY~#Uam6Oja0oYmK(3%+8z@bREmtvSi6^rV#=%3= zFbevBMN@!*BQ%AMGd5y|g9d2n3>vh7#(cF6EXH)$>s?Zeq#TByB?N~>TD`4*Iw^q! zfV%h}P@O_Ci)t#rVo+fk&QzFaI|9^r^&UIPM(h$eRad^idJ@iMlQQCMtdt+oE^tY^f+t*Y407-q!PjdK-12 za?F2M0B;L!z6&LPS6EU86*8ai{hDFB6)uB{E=kzryZ&Uk?XPbz%zC)`Xv=TR?qQz@ zc(lTfPzA;K`ga91C<$HgKH4oXgcWOpT;rH<6W|!FfMAjiqnTcZx6oqKk4fn665Dc& z-nCHKH=j+93_V=;RQX*Rv?Rg_-4o&DVNTC_VzJIBoNMjTnRNIe>9E$#rAgqTVs-!$ zW4i9@)laS3$HPKO^9=)@O!|HQ&QZVcopx_LE>apU8&XEqu#vuUEf%iuJ(E`~$jl_` zgSG@EdBxTa0taiqTQqz%_!`$8HdO%Chrs zp_6cXpDue=DyWFPGlKlB7`lC^Ejof+U zR{PGqGgVRzPQPoIA{RXRM0eE+Hg`27!D8Wu3Do3MpoJ>5n&CDy~X*jITXNzER# z#h)?cCIxr`b#$m6;89+YK!xWOf5SYx@g;5piKEtZuPe zZQsPr2z@PH1y6&F| z5SGYb@4ImhcD>R1^XS{`24$!mM>xrCdjnjK4We65Dvy4}eT|eYEAn2;rbh&O_t2GN z*vag)JPFFEQ|)aj9V22nxfB~!6=i@Z*qpjhCSe6LKNE`29_S)JX-!WEL%H}kU> z+vb;g))xGIw$`obeS{+WB-ramG<7juxGWl(kkdMB!mb%Ei;8ZJBe5VY4HLJ-Ge9iw z&svAxLtxK6pTwN(y^9SqPd2?Beu(f?!<1YreVflxf;M}YB6kRcTSX;QaiNypFYAB{ z6ux&un+`tN-ua$2MNc3d*R+Z7$+k@^#)QP&$_(GBq;?PjwQiIL9k<&tA#2{d1n#6@ z&t`b{0Jd@j%>pFx)t0sxqmL-NmUnLmrWOt5S;vYv&aV(nNLD5`XkRnzRM_V7D^*VK zY+JTsOs)MyLMZ;ULH0{`QIRq(Xhw-0tS4Cq;cdr}w^>oupp5|T*aV{iPL`aAG!0j; zyA9|34zOkn5}-}8Npw1xCkCL+N6st0F3zt9GkpEu*ixa1{e7A%s5ZeWHZ1B%y?+j12&9hFB6dVQTT7xH~%TS zv3Jt*F;>0C`rdT?G4vyLcv(`84csHgruPmB5-vuvRMQ}vO6xDcVa`8caQ!K%g;!cu z^rUb(%3AXY^07e(5CTBeV=EOad*pL;yU9ol#5~t(8bVX!QaXVV!+|*td_kZXKTwI@ zlg5J(lT6;(rBA4Sm2C2_&3-3x^*>2pi1cEL8K&17OMT$+QQs*7yR(vuJZ?Q)o}EBj z?;COqFEQ5yc^0bBl@%)8PCF#?(x58~B1lu@fQ4E1iEDR(UNH?zC^8MNbn>eqLIQ;^ zng??B2)~Wewy^B@|AA*2lw+pAcGqH+2sv932yZ0c0X0?t+*7M=*^DXjz{EaCD1CEFnXW8%t)&3_Q_?jm!W z@Fj3v2!nR5eB|aGbPxI;fJ$Egl|b_VjRikDAn~j4Xo}ER%Z#fwwF%dh=x&^EpDIr0 z0=kA>Yq}?JR%iuy;D3w>%&swF-0&KsHsN|K6W$T)i-;M$U%an!Y=yipePCY`lePSg;*wX^Ag=o&uNfu_ZHI>U)8pP-fCSDu}{D zsNHbB-}u(ZUQ!P773rP`0y;0k$w7}Ed&a`0>u2uG+gRdztXK8vRTahb%S)o3Lz$}E3>!>kPW8MrNWabK0a8FXRl*Ly!x9b&Y4<OR00 z4#yl7O&pqpyPfa7*ocW@3E!%uo=JsZgls3fNPkkIJ?tF3$1sO#D$T04#g&SVWes)o zZK)0$fXyrdY^Dt?%yb;(Pc9}_JyY4RVN5&5&oTehaN(8e!n-lsvm#7=0W@W3e4?u> z5?K*ch7MYKozP_h2PyztmODvZCZwd2;hU8}{*NBiL+Fm81cSd~{u#pV*}wqHXH*PT zNcehKHi8jG;J6i|qJi%M^vb71?q8uCyc!DqxoSJ36D_(A@~+ z9z{@&(aI_y)1h#)W2R&Cj|~ijfU9yaER%op*xbE6>LJ_u^3F`i7?dYdi~>N4Ga?=z z8P~DHUdG<3M;8ybLoHd9>A%^=*1x!4vCj&=enc$Z!2cQ3oGL+CkUnNg#9u&|Ubs-f zIqohF2S-gR*yO(yhhYXJbj^!~3tYu_apb@vLjRlL6#kdt>;h7ajIk2(sq)S}b~3K3 z*lO}3F_sI+NVvrkzB^sk-w<|NGtbv!%D=|1x?O-aIQ3IV6gZp=O>J6e8BC&+8DJNj zr&X!f!rcEuHX+B%CR_``=h=(?$4QhEg8y=|P1ve8vXQ$KL(lmV5&oRI>Ne-ga0vQ# zp6tlZQDKIJn-?V?k{p-ME_ZG@7yVM+jWti+QWzQr&vx{cD2rvW%M}QNlX!@;_;g1K zDkh|?Bpm}aBzHXZ0%%N%ENxn-U`g9&I?Q$UQ-Z<1FrcoAj;7T|7>DqQ_e1x9qRkQk zN*~VWV2K5Fhr1KoJR@7czVT`sq8_B_G^WQ~mx@40eI6hyt|5?i^I}Pn#j^n_0FR9p zfN~Q{$9MK30Hw0~h9rbef4r%X>2=&x$nL$e1BkN4{kp9yn48dPLz~qN&%6Md;IM_H2e|@=v;~>N zMvQ6KH7xdzl@Jp*i(Y$!3Mrsiko_@(y|M6K*sTjKl-RcI%bc(cPHMr@9?M7ab^QDb zXc9cVqSP~Amw(rVBP0KJqbN_~SmTBuehFki=?l`WBRQq1kf0CMML69cabsP~qnElE zI{>RwW=Cf$L}y4~MaznqH?!&GmCk`_-|6W2P)+q=K(@udjXu`!F8UtW~ zF50O2%FvkJu&+P0bTI=83}Mx_sG~Zs$N6DGlO=zLODGjQjy0DxT{f=$rRsjA8XA6} zM#E@f9DYX%s8dO?xbe)#P|ug5aH4{=E~Rdb%$Fh=x9^Xd8(jWAnSaO0VWMgAOtF>7 z1WH`D+!mSK`6>!Ix zVXJ~N!xlMuTof-{@yL+GgMobh-voWed211+QFV>nk^7dLL*g1haAJU>0?AATa&-(b zO=J(6u;Fm#Dyu56+2D*$Ry@RVzO1np@~%?^IJPpXnIrdJD+-LSa@n&9X7 z??QJt62N62Ksh`P`r$nZ)EhucS5Sh@H6Bcs-GNil>0Ch8Jm(sI4IakwTC|(0Gf0OY zAQuRD37j{I%23nr)|rIl=>mHGA1Vj`far&7ucbQx+D?CM&jNsK??$>AnvAdWzBTZ| zwJiV|BJTiQ{^gC52tTYu9V1xp3YouRaJB!{c+n^>@x+pQFot@t6y-P)Lk)`piW3rH z32s}B8-SfW;@Y+nxreH>qijY2#Ejn78btxt60N0!#-1%o?{$Je=-5x~z-Q(G4`Z7c zu%8M5%{KTS%{KTS%|;rCS*ctM9;I8!6yH7ucE|&eY@mf88!PCtj{0uZ8M$gx@W*0~2X;0nd>+L_q zgJ&R*r^y)&!Q6SBMrsj(+@s=R$qcbRSo{axYZc*^TObmesyb@*T?hu$S_M|$*409z z$a&DphG?_A0pK**4FE|@ZxW)`s;0ybZ!EX=v$1UQY{eaDVi0Kky&|X2nXSi8=y<0} zUmexXz$he55)k?aOK~|t$Kbb(9-8j<_Zxk^7blSs*$_zzQc2LA77YY&)4_J=xZ@#i zd=!hvC}cX~Q^aN$#dH4XXd}12V=_sx$Fq$M2V3pGV_8CiSV;G3Y0uwH0R?7Bn-;1~ zm`q#a=2?wUmFCPu38o2bs4u@@YLVMxs#l_;)o4%M=Ibpy74Z{dNayV7UBeeV1i9nRSS9QjJQ*BnTellJKB4gNH}FFeh0kq#gifmma9Y=k`)ZKfmZruZP6uM95a@&EG-J$Kzk%`11!;J z8toLr@`b~s3IZNuIcRMCNx9--<={uWS7{N-VGd-1+g(|P^;DE!PFU0qBF47NNldFO z^?jyM(Yp{o#^OozOV4T4^(z1BQtFak1PAmqbO+ad9kg#iAT^C;a9!Tsu!+Ls<5K@(GT-Jf0G_k6nn)JuLYw2Mthx zxd+DZ+#M_k;+!Ovif`4+h^8V{T5y8^Yics~T0anByW@uJd}2~1CM(Qsq9<=$b64|G zut!$8mT~LHALGlNuGuULc9Zhe-D?DUD*3sMLCUYYKG6WxMOUok^z&x|gQ{PPf@+_L z_UeCFvv}b_mkak}IsEx}> z^iA!k97)C_v0Fdi(YePCbGn9TJxbz~>`pZW+@0hW<=#E{xJ__~zI=y9W|*=zrj_dU z-b1%KFI;Ko-}rl~;8G2c>5t!Zd#dgi*cUJNtcAjrY0@w}F&I!859@REec^8gh?eXM z%zfWQ)~sSvZj%%XoBL8}{ZXFboGS`3uA#+`x`F)HNKAjJv_Xkg$qH12;e>S+sfRyh zRp%l%nv$JTuOnTZP)VbEC+buG=FeU8zZS=>?UaWewhl<;=ZQ<4rA;6aLB(46wNDd* z3wvdk(>tRFY~ZPmQqx+yCYDP`v0=9~A_W|jn&mm5rV&~4BWGdQgg9zJEL<})5Mpsm zAR~+PV6APL0Cn?o1agY+nD+_n+(RWw3mqpsrrhIxMZ5GZ z{|8XgoeG31P^RQIkfmbw@mR=lSxCFpJ6<4Vf%=B>8_?}%X*^H%e_%rh-CaX=y^`=G zMU={3ZD?6$H;|`-7;HJpXlu-1F)5o;q2Yr1KB<52ZGr{$-;ktb^OnU`o85%WcsIV< zj65c#ixB={)1p)2nQP1T!FTNzp1~Fg)nh4jnlwe?$?H%R2WBf0!^4h0-2w$tvAqktG41r6M%)ozc4`)T z@pina7O>J2sXuYj10hjk0x4WRsT8Kw)h!1aTTgc4Jx$1CBDxOLK1e%=4DcHn%?SE@ z8z|p9$V9{i4Gh!m7=%-yf8-#qBccf$QtySkmVD2#&$1QU1&6B10`btgi3evl|0{-j z_R;m)-rbUr*fIH_*1PxEEI{3omdSqEiZ|hixe14g2~dXla2V@hIDb(4Bv(bCIH=b7 zN$T4V4$5Dal?tSIol>c8Rc*92WHFDmfdZ12%*@DRK=75!Q3V2P*1PF6}%Dd$Vpf`_|#5ZX5AmsjRDO|4US-U#oObxgeaRqq4O}GcL zq)Cxlh`2&tlLT;k)wcMg!AE^Boh0Hb-yIbBbk&vb?S7iddRlFJ>G^f&H(7O= z0*`GV)>9sn@6HB$QseSR29R|a%%)Ap79ORMvVkC`GKKw;$t~AW_)~0tEfb9FYooY z)k-CK`KRueLF#2{Prcz%$yZ>ea6xp|Qa6wI3(ud2^sr~$Dpa@8gK-q3q)ZckK%(7z zOk2KtQjp?37tW6m3kz`5W3e}_`UsZU;X-9;8XmO%o3JBSSi-BThREsNnihrupgGbO z6n_kE9Z!mdYdDkbeIHIU!)pc4<}=#5{r4`fl`5%GOaLmrKI)Am zisr1iA&RHgfT#P&NwvG&Z6(=G_$>kSY=r=t`BXLfyGryUr2rs$Mdey4?BNseM7QuN zLFOk#PENKnwnKDL3e@Kl+Xa-WMdUu}laB3G&28teFaO*5Nz|I?$qdbn zMeTwdprv_&w0b%Aj>uk^cUApoDCA{0d^F3mT}?yGM5M}AI6n_4Ch$QzU+9N9>?O6r z>pz;{*2>8V0Skm^jK_hH87432@QNoRgbATI3BptRAq&vP^O7A~DW8a{TpB^z-#)2j zbTbQN%c5$DtTKI?mCu!PN%Q#(cgn2zou<@^h#VT?5aGvyneHI zAa?32R?v$r+>o+cw#JyQTZF~+GtRCJ(KQ-zXzPBpzds7|e$^0WeETctRiQdfwuR7N zM2Ddx;-hy)p+X}X;+^3Zu*CUbP_&(oVN3llC*ozb%Cid5_R#dDz6i)9B~*BxQ~aQ{ zLqpIOXormJx@id6Z`Bt17@-I#P_@dTu+SGpl>XR3@DuT)R{8qr&vGl|b%ppn8=~%Q zt3-kI+sTXNNwkF0v7FLaI(sn`o;2Xir9p9GE`MSiRzwBnfcJ_0Mv1t!$|3fD$K_xC zv3B^PcaZg+r?d}CCn$~LeDcK-^*Ldz5Qa4J6;Skf_IPys1dz8F|>VNJd8UrFQ26)l@WR~K(Cj2m_!sa~3foUIwzJVZ zuOk&_R^q0Aj)G=a?8+akZ;H75SSM<)N9*W>^QTAJee~rLb^p41 zUzBA`$nQ%y@HYN@BZ%cTAk4X5(669$j1pYi*&r7G-myelO0GYn$tp6jeC)&?`)^s{ zEaj7m$r`Pm9fwzD+5c13cL%}|b$ufwK_rM8(O2{mQKCohB?zmx)mQHpD|!o7jb5Te z^tPhc1W}{2I*ACYTSUn>@;vYNy`Mj3cITeCcXpg}?zz8HE}7Y{7y3?|Z+ab3!u^gf z>IvFF@@*CD>n!XY<9Xq~eHk%Lu!5#RELIcowsA*-N5A;3dk6JOVsv1B?HO**G@{#( zCAg)K*b|$hTh`=to?$dygzkPG{$+@WRZ~Hcl^ZvtPh@34;O+<|dnbYf=_FE~I-&{E z$2>){?ruw>Qpfl_jbnA~ca|eISprm_)`acWt6`X3GVY{-FYZkFEHLKUa`%aaIkA6r zMDpB;+2HqVCtb`BXu^E+dGSu!pY(^L`XDXSyl?;KEn=pdyww&7Gv4 ziC=Sgc{IZZGw|gHE;eG(nwAlb?4|)p$-Kzn2dcxLHfC6Or3ObW2@kytb$oNuZuydG zv$9=!S?w|@ua5zEjTeXw<^$383~7p>swbPz0V0w^uZ3rdZEBB>{l01g-&wTUoD&C( zV9{;zqz2j{`XB@gOZDXZJXO>+ky+_uzlzxYS@^bHXx%@Sq;o-|4=LuY0N3b5%4!N! zYk8QCP-F0}^-f~7I&d=KbVn##WLc)hVzhl@i)xC(2pwZIr3=jm<&n|`mObH~N<39! zE4Gr-?udEgEX(j%i%yr3FJ(hV(`{EQIV<8tqr7-{lyn@X9Jvmk0z@Sry%CK40#^`k z2PgP8O<1Hh(d1cNxc?}t1KV5myWIID3V_Ue&YC8cC1L&A!TmBnY`D}(atD?Sq3^$y z$DFbq;9kZDM*OIcDZQ_GP!4N(_{KMra9JlETRaU%oWc-G(-r3{ur?HrQ*S+*Y@6g6 zI&&vN(2*=jtk!xlh24CR9Y-tI|-?C#aQtvhU#pvQn zm6Z-@6&E(MNqSLhS+Hx7u&n~{1qYSU(4S;4HeFmCudCQ!d$o~wvO(qN9CICgdR$dmRHSYWmq=$VTPk1OOw)Gh62_q&H{ zZk<<%tw8u^xLJB6)?EIkDU*{XLa28|hU+Zle1BdnhK+5Y}d4edTOmu^3t=(+Joe1C$Z?vu-<&%5^F*01D- ze%@{15?J4R=D{q8#CqcZI7fMo+B0zkDSG5pv}M$P!bmQar*Ng>N&y1WC#+h@QKm-0 z9D-^Jz0>mYr6?-7A0S$ud~`O)25Hdssu#Q9eDh}jqWA4?WB_05OoQ>;5aQF z4aS`pcwO3%LY#7LY81yIjSh67ya0w}AUq@>d-}u;h^9*fTcog8%9;j-$TABEq-D`V zwPd~!bu>Bd!&(Q<90+v5QM0M515vm50|&&4uk3z&+<0v=L48jV(_uT{z9RphP6-GL zxVYI1nCg2-A9EDRYP&7rOHC$fA$|e2c4`c!rKxo`ULUFKHS4wSBGD(N#1!6YmtOVd zp+r)w90BU{`IUvv=CL9q-07fb>n`VFV^fa_BwP^BpQ}$y-L{B!csrdopLD0 zi~R&-11=pnqgO@b$`PS%r_Jh!RwW`wf)j9*PthuL4Pat_s`_`@Gb}le*wW;-9YeG?__K?NIa8c?K`ovF(8J(v@A{v+%UnyDwsn%m0^3uKI0SAvQZyO|CfDAqODP3~GEd<}tB7zJ9wiQdmp9Xl4%=%S&F#*Uch@%QAt@(rk&yP7=CHPwNz%LPTu8=Y0A^PDE&E$~!bjiT24q)_ZEp}_E2blnzFM*0;j zdnrls#IDZ74S_IelwydU4i@W6`!xVp&gSe~^9GeJ-kIj^eEBCevT((s9Z4e92DkdK znR_RTSJ_fYiN7pXU8{~mW`an&$%WVJ((X}p$$>Lh!BOVHly;BNGcOWOUft`f@7`&C z!aP6THv0(CF>*fd5QQ%{k)}HySIbN;|G*%IrpfYamnwfyZgaDYLwG1_^Kjllv7ZS< z|C+wAB1}Di6dvEfe$zxND&HGo=dzX*?=gWD6Pyvu{kfnMX(kO|ie zaE0g5aP8H&jE3iUDJ`h-3W%OIlPtg@Ic>1d5C)=%K&uV+jNA0bcEQVe2JGAP5>Cy}oV zym4?Xi`QvNc;mT(7@!NtrMko#2=77UxL^;|on|gtV+D8sAh4r1)Txa{EbTYI!qGl_ zhn%{6HYmPIRmr~~XMLldpHw+a`=;OV+fu>r-eE|6Yn&P(z1k4w`9iVxE962|xyyWU z@XnV^o?K?$Qn@SbBzX|Z>hP$9Y>n>LByODT=+W)UK8};P%bzE4g&fKWC9e`nRQ!R3 zwLfvIoaSGxZOQS;^pm-duM)yvC4_yRR-nW_8Q`Fjpez4AY5F%Fd6{+sjyVBE^2gbD zhvyDO@@N0Ls9E{h-_q5AqS#GJeC^ix4z8Yfq7;P!3B0)pi{}nq|4{ox5-o9Phw_Y0 zD2_^icCkp#Z$F4Sv^WcBnrYi9J(9+ZM)V~iN8)$q-gZLzwIThwbv3|UVrZu$JDA^K zeDQ&(HG4;cs>=PLQI}U0An2~t!t>|5Ege^%fz?rneq9rIYYe7$Qty%qCd!6mdi(@L zR9us-x^JUsSi6!W;Kwe>!ig??IC zYlgdzb@%Rly4mGDKtS&!$Ki3j<#sWY3Bx!36$-CmmtqPSeVrn<1#&KSz0UsO8F2rgHWq5~u6bltcuzc{DzCw@dl2M&c(ZbVAmlA0wzdxQpTsw_?!AZk>si+Gd>6M9`uYlqwy3R4v({6$&TAzCN!NF zc##oaT1jFv{BqvBk7fq+t z*eYxdWa*cW-gV?>Bt2ROKG(92ueEx9$f>JR;a{0yNeo0-nYbo0Y zCdugCRN}MYUrdR)!}nno3Ysuxad`zWVE@hIi)ZYR`&Z?XACe@y8#BWN<^7YA>7RMD z$&CG=?O^r)Y+FMAd0$%Li^K~d=?N<)s!KY7@W4lP4`Rl+TYMd=V@s7N9b*#uN@6d5 z=4O*U&)}gLsLCOG?)76d)83?pSvR7O0ATE}46SDtX-pOw-Wc$^8q9)UOhbK%()*m^ zF5$~f#f@i^qcU?poca~vxMM;}Cr0-FW$QJ7t;LLNiY4^0ZI^}b*$RacxC-F8a(!v? zQYOg;0xqBS1>wBprwg&tx${yKp7H|Xa5ui+VYQ*@y9eY0z}LeH8!^o6&b9Af&~QIT z8Cc!f=yyiJ-Q1&2KGI)u6Zkn-CvGV*I>ykqvO`RHlkzxSvtEQ>F?w6rs@K-qz%i5u zN*HXTkK%=YGD>~X17x-R4#bW6eI7+og7V32CLlOi2gJPai<6y^`M8htF@MsEZGCO> zgXBIC^JFJoIpVwN-%-TPG}&Mc*>V93fYKy^EoBsrXq<$+lPsQPKp+mYR)YKsE1}?dv&C z^<0dxWYxtK+0oTb*mY3b=a$7~Kw+eKIGg0h7VE`S%2Y9$L@cCy@cd#;wZgN~UyDqB z>46@e6eP)V{n}h+4xhr-xpX6CEYHzAw6Kc|qx-@QQ7G#MmJo!!X~J}uU9}(OBm$RN^oO(#7PA=qhqR?h zf8N`vwL9-*d@RO)l>MqOc$?hKoHkCppN^>;q=^S3$CV+aPywHU)1xC-A5zouN^Yqg`&VE@ znr7Qni~P7*^6KqPO&K6#Tv9+oP}DT0<0%|wfAM8)&S3y9{M41ky5NMb1AH z=)n)ydz{M9s}1VaZW~pKfdD2HL@5pej%1MSH%%&t#p8!)DMa);KpM^(9XB1hSs-Ae zx!(+cwA8o!lNRS&X~|+390;qtrJ_XcveQWoTv%eUZ*_#Vw<`G0YF8LJ5NJVIUnxCk753UaAAbD2ocnN)b>W7S zS)b4Ody^w9uvOvDj5dx!U9FGcb58RC?2hx%;D>Y&(4{|1pE}JnyTdw$p;giiI4eMUQA zHjRv0jBuJ-_Lljx%)gq<9@4P$gDA3`ycyKeABWlNFu>Jjy6zv}s`NtNSh?EbFuvqU z5Z49!=MlMDV(*L6)%g2C4e13dXx5uQ$T-CV6>q>tlw}TaAQl?5o9Ep;@7m=_e^Q9~I!k;95m4o_GuXls8v$1ar|e=R4y?YIRe=H zLXX0|TPtM}uu>3LY+3JeAaYXQo`q`jJAZF9f|;}~iS^cV^9|wf7owZfIN)|yWlebe zb?D|O@@gI{A2OevlU|b5t0fPbhhf#D4-#r97G9+n%}D(E7FW$Z2@WlXw;wDGYm!#k zHB}YM&9jv9Lg$@L`bO6bHCbP}Jc3qUzR@^KJgnKP7{YAJ zD%qL(@uo!puSK9S&C|~a&t$8B!z3;hX8Wg8jOqMf`ojh?<4Cnhh;ICpxTUSUyHs!a zNnl3A6VeePAbk!ix^LA1?m+ui&Na9fKu}2aiS{sGNU|dzZ}j^C2d7s(a+J?4JUCtK zIy7|NMgMfiOj&oyxpRb;9@s0E^7BP#Uiv;bJLvU!lwQzKC7OLS|79y7!BEDrY^ANN z&d}*Ny)~9c=X7tvcqF&wL5;Eow1y0N4U8nDuL*tWrgP&z_!%yl!?+^U?}{G=Dl5NN)llq5x9Aa(3}QhAIrP@lf+PpTeVo2)B%TZK#LV}dlyE2G@0!~m2kkW z(9j62TI4)Cj%Z!-nDwTKo>T?2Z?#Zw@|*KG3rCi zmlW8XNyT&-%qv&VD~%D%=b zvfPcrNq%H&2DdX}U|MJ!qCy%GnLTaxW7DdJHJjnFJ_pi77)i4G4u;dq^z!x=TIYD& zYtt+XUhACKe7OD$Sivo8{ndB{9d;kqJ}5JRx%-Y9N_-s$1u81FPiH1fd%Y16jVW5p zkyKqHKHp7EzJ5D8kr1->^WRZUurt#w^`d^2kntwvA)GtB(gXQGWsK;i(Q)6bb)eHw z#aT8f>7J1Y(c3tAMG?NQC@q7W+|o+%-`x>?e-f(5uwF>0c2%&GQCSm_)zE;PXHD0= z5q*s*ST>~T!Fcy%04NH}`-ji$!*aNux$z~DZRUJ1ZngPNbp$vgt(pC$u+nnS%G2!S z&1YS;Wbp1AWZwfF<_@W}uoOVxyh?c1t1jZAi7WgxSg!Hgu;bu%XO+cB zi7ur!*F1EGd__P%^%*^U%OCB1{=HC)mUyZr{JhALkqlcP+=XY5fX!6+<61}ilRb3^ zX|-KsRWaLH1NUkwdR%@N<6?sH1zXigC-WGozL#(UG{SE{BdF-ZycSX3Mib;^R;o^H zns!F{oWT6}e!3xn^`+T)@}4~p_Ifg{0|Q*}P0)gE!JpE1RFde6jZc`vCeSyRz{Tz0 zgA+@}MKjNgRf7ihMKcKA?u{kko7T<;Xo)@Zz0_4)y0fz4kC;ek7LO$xG;ctJ7y4)e zDIC=I^h1M_4oJ$z_AsDOy&xDwSa7wt>Kci8=)hvp&azvSxXv;%b0Qu32&3E$3X%CQ1b8a9fayO0OT42~Sw zy~(PMyx5A#Fvm=ILnUcky;h)NSRc~0Fea0)%8 zV-|t3V-ExsJQ!oTHOqxAR4P#Eyc+=G;;1adg98ce7q0Vqjjv@B>BRmCtFfuq3KGf9 zf~6cY#&t{Yea>Vvy;BQgGexroUF$_KyDmjmk#WGiY}&-E+^p|8kPKRFK*ALWtMhi?|vp??;~)^ zF=q_dtCqU#8u9z#zl)JcxNk94=@e4bpUoK)vp~inTX(A&Y`mc^HvI#`hAMlq-gMmi zvV(}W4;cm)yT40TtAHBewe*x&X-@|o>zU1M?C{?U%6IW6II6zEt7z}1WlnHp#~v2v z;k6uWCjH=NjJc1%qc4CFq!u72*-PMT>$hKR;>%gnjt< z=v&HDiszYIF^Q_Ub@jZ1p^j6e0A!HVuvp%Lf0v?5j+r81tOFLE&>jG1aKI83S}OmNjh zBn!KYCy;y)Hm6SRNW+`>oj9?U41qA9<`=r);74;Gk{MX4;`1l1dnsyHNU3MAq*1vj z%`hG+kKREh1|#Op{>eVZCuSFr{kVY}6_u`m-ReGEz<@9}UO5Ax5F7>MhuIP^-iLPF zTqb;gje0?R1j$K&a=`~u5wMv>7Q4S{@D=vbLbM3J5?y+gVmN$T^y6*GcaA{K06tjt z*5cC3?RO*+kFV~!B`S4a^4K49Ja?I+Bt=7>BG@*{+WB*#^gM?# zm=nX82~8A^>3ptfUr>*JqqR7f(|N zV;$r?<#SGN&B-s-4nw|SRhQ$b6D1n&&J^m;8y(K3OmQ@yIY-NZ-ZoZJD}iif)#hzX z`@UVy3k161Zmk2uyz1#A1+0V(qLDsW@`u~+`>=Y{;j$jIYI4i}kg^u@C6VpElpFQy zZrv{lA_?ka`>=VdVV*f%1X!vU)cn&h`QBTB9ziyfwX6NwZPW%anw?2Z)&RC|9d&4v z68Hv4`CCsKc@$+36=kpUN=*;mOSR%9z$}?Hw~pROjo=8*BTxO^!9`%K`;mDhtam$US8S%;WFM@rasv5?V3U zJ2P4~z*;#!c?%=zCxoZw$&^#!L_%BJ`q5ytBpEMf2p02b>Oud$!`KEqp%n25)enE0 zut|2GXzg%8+jETnb@8veXW~shWAzu7+GNePPO)b^BJbalS?^KTW^t?tnKD^1GCigh z;i}h$I3Emp!1BZuCFiw6;u^mYYPxS8WM4p{2PfU#H*4O}R*lNwC;*!DpTV*!qTQWF z%EtsicG%21-K3BC;6<__Zh`v;FK(x?D)WD=EaMv=R`YKf!_&B(#)#A22P3lg%&l0d zzHdL|zn#WRIz3>V;w!EFoT>XF3#WjPGrRSBAb0dFCtG9#2U@~tk;HlO&=}l-r~Dlc zSwi)LoojkM0I*Tf8!+G#uW_EBP2D*TveEFH)H%^OG2P@MO}%8OIcPv3f!EPU<^H#; zno9Y1`PM7h`SNls_;qCX6Uc+{LZ?*Robcbcj5en`ewPJ768ql*ivi!l#3`d^v0j-@ zFWxup=|86v|6S}dSU9cWDWY&l=Vwg&7=9pm<5$I}s<*6#H)yW-87vB8-`BvK3xb@= z9IpNCc^%S~rVL}OmDJZJM=?80C9V5GAI<0`9RuhmB0{$w6RzzQa-$Dlqwd--nm}&6 zeQK>gEt@Q;F0dpuq>)0Cj{VZ1!n~FrP4hmpf0~^fPo_ikd^ADfDks?MlTkFX>qbJT zQ*voGcPC6oc@Wu+DL`5znNf1EyEc4IhRb+pku00Wcz%9hV( zIaiIvl$mf?MHG8}D!A^l5wS`AQjrW9iiAO_}2apvGitlqB=`MBixAX;}L)N2V8V2|1q=l~Xo zXbk^dRD>Hhd`DFc-lY`pTT}Zu?pM@3>XZ<--m0a>_6Mf>#T$O}{&-a1t4vf=&#p?B zDY^!{(M)6?y!60L;W6f6tA{hx~Z$tIfo9T?>*&d zVBGRMrA}|FpjNz=QfrqB{B(MG(D9<7(Z%4y$r2^~pD9i`@K2tNKHthktS87ttd&oH zgovLaU+E*)D4&=6RQG<_cSLlW@A&?i>J%rP!5Oq(yQxyJgSMuQZvopx3u|T<7mZ}gLFj2c?

^@vMpmqzR#=e;n1p*&?*ml)D{1$e(}&!iinn) z^n0x!mMDegw2_VNuQ?{5vPN~1@MNbPtM*_Lzh~cWp=oo53WX<+3;Xi^*R?@L`1D_2 zl?&HfR5t$YI5Axnw>+BbSU1XfeAEbrZp+|!CWr7&OId6Iu@GA?04gwMS%~wW3e5SB z3UnPbf~B{~^W3UHutD=4$o8R2hH4rWeOjgLdUCc1lo6YGvI_{_q5^&-g*{*~P$BLD zxCFu;a7Iu~z!|$gcetEqMBv6j6@mC9fJ>>{9tJaT1B8g*?``g!ivZ|4eTz)=5i(LgWS_{%JsBKm&3skQZQrd}FTw zZOr(*^Jpq5o3hp#6+}|MetIY#Ngrg8Wj2F+oqRhx%M@$8(`OS?FVt&WUbtN3K59-Q z1r2W<5wVJ3TizymMYMy5C>32L|JXYP8K5H6pCP00vuI*w(>}q;t4pst1Rnz#Q2Yh# zx{MNU0v5IkewRAc9`#P$d}AdhN^N@NQg$VTEOEW8K@6c~XA9gf-(yC&ff_`?v0Xiq zjbu|-zzUu+9Vl2X2^|!#*6_I`X}U*49y2KlxECxNE1vr6SYPy~NpBCH?libmnE^2& zC!jxXbbNyvQ{a3Qv}D~>`vO;oyTx0l>@O?yOBH*Ddz1JaW5VQ-db6KYz#c|GbO!@h zZDZQ{MrDZ-*s}!J3eO^Pnl}j7@BI*^D^21mIrMs(m}62%7>~87d9tHW&gaC(HV7!5ebSUT5YZk2w`~C%uE@ z(*hPotJ_@Rx5tJ+;3&R(`&nEl==PWiw9+3F_@KkGHBlECx`Z8@L?cq!2?Iq zX)D1mycILO_20(8>!V5UoA>&k9nH{x8git5lJ6~~tNfP?iFX4uzPfES@{{_{t;n|r zz_lp-&*iYfTQcA9))tqI|6a0Q1G;4f#!M^vZyU$BlvDk-A1yY#)y1?U;P1)B8id;K~G>i2g_y}LkP zr^K59n=xE(|NXlI&pL~2&b`@i^W|LuPO~n{ZJmD;=nX|5Y>lnJG1tepoo4Y(*D zOITSG^}IUzJkSqcoxX(o9sjq6emtvx?#)gw4&BXVZ8Y2;=5YNbtFz-K9r$H8rM+{H z%Ku=dEq;w9>>QVmb;6G^*Ql-PWqO5E^l|kK98GW9d2Y7S=KuF7a=ruDX<>(6DzVx$ z=n@U=OK`TdmM2xQvLjqQmiBx5tUBoQ!u9Dw@006uR$$MCn`yU^){Wgg+w0cJFe%vK z@15#LJLi9{_f6Xa&wB42^yb}6#!~)0Pp6l@IOSbw^F92ro%i?j@6A=~{@(=P=U$(g zndjYj{TcgvFvKcl6MuLa54stPWcjmua_?`zA6rRWprpMU=n;{)$fZl^-=jpB`^}1E z?#x;zui2PXk5& zoectC{yV1x%Hspq_5N)Ile``%LVx@1fA2&>0_?!?|Nh33MS~dr(fse-If(xs0r1H` z*)NFxU+-B#G&l{U$=^xIlShIc{JXRmM1vidd>+Kaa68cdeq^fuuaoEG$r|KOl6B$4 KcQ*rWTmBDw)Q0f@ delta 28178 zcmZ^|cQ_p18~-i(>e;9f(RPWlgeVCTJ;6pvL~qd&z1Juc-6{!-MGz$tqFcQSt3~ug z??D8sCTj2upYQK_et$gAb*Beup!F#O?UAo+8FJ4=lNceoRH$lC!@%GBeb zNZvD_y&xsP_aHx&Va-*ZtA){va}9f{+q3`o2OBDaNv6WEu9ksCKt-mbh-(N^x73L- z9{#ttwb?~0rVKE==zvvF^014jLZKst5T5d3hkkRz{0(kIy|gMjO`!(hLjS6#1Al*l z$WhF8Du9DEO35cr*SLL|9jMChHch#O+R>ta{g;NPKv1MblqnRA3v7|VBy;30yQ{x! zXiOUv8(ssL%eJG0eX~~$n?|{48Q0eK!*A9)y4glco!-3h`rVgP5^?fJLgXWnjG-Dg z>+d$L5~PTD_PFzEFI)0xTZc7i7!ujoHih3M^v>aAOLboo4s)euNCR#ms9)TPhX{VG zH1&F5o2faU3P~X;Ocg8nl|vXtNf#;gA@JS5o1RY%&9B{YQdSjM@oTH`%`>vy9Jljpr1a77xK+BEi3+;6cJ}NsU zN9lMWs`(oPTkJyShDNu?du~hVI#8$3(=5A+1xp!EOBAW82!=rjXtS$TSDfd-q))bMIGODJs&cyg<0X4kUgE59k}59*}CW z)Al`5vT6Px`(CWnlfeJu;@)e%!xA9@s?V`xQ_iDxx?=YkD}4`}&a*-vdaGD^&b*d& zzV9RO@|`&C5Z$wrBR4Ug%}4JJ4VYgY9x6{N{0MJ}>rU>Q6u%9banktKlva8dpYzKn zr%!CjgydejseLs-?-ffYPnTS>7tTHJ(K2F5@>oC2jN)!%%iZSMro2ycxAzxD<~;7? z?FP3$GbmKM&G3?)y6kgX0b3rK{>NC7zCCrSEOQRjtN6?a<_Bbj+w#y6OV? z_gXZ;&(PKB zpPZW}G&rYQc<=BGVy7LKXUhE|JFx)^0dud@m2RyJM&Anz=e}?FklTLEAVRw6JEz|& z>xfTTyIM5baTIut;TB6RfOm!#z#R|DR3jNE`?DGRe$QaoGavmfpMpF8`gI!ckagzF zuF1@*|L@JwLZH1^Z>0E_>lF!Z=nhwpj8HB+pz{IG+sM&2qH*Iy-F2GMfWf(g;`c!daZGYcbZbW1k_OWwz_?7c<(T%w0gaOUCOv-C+p_Jpbkn!28)oDff z?lcxZbsT7Z4w0H{>gHw`F7vgOa=CIO4#KY{IJJu9RXu#fOwf>~x<7(Y>w*)XkbhDrYYcwg63cCkamwew^{N2brcv~Jivd#ww`)s{U_ntB*Vl}g_k z$l2Iu)>;DGF{8I@BQfG~ ze+FMt1s9$=9NMM1SxrlEYp6Rt(YCFkzZVrdVxTK|Eb=o+KeX}znM2xWBAw9)EbC3J z=hLNqYW3ftJBO{&-0_LGELAr89-GV>K@4`rckgH5ZSaSf5T{TfPTv& z>isFZ7Ltry>vqh~IWhtQJ7EHX|JUJO_|=4IS{Tr)(SDn*agQN>>+{bXTDLUm_3(Z z!u1qrQ9ga{DgmQuNIb7S_tQ@Wo5KI$ZnuFs1 z4S*6Nu8II%5n9(PZ6_hN(jGQ7{7B>O@BX(`pBx=fW?gydk3BVfi%%|jH1m>dTi!tX z1D}u<=|la`-%1{u_4zd`8AML2%o-7iODV|N?<>hRdCq?bj)Mn7#3#E}bwi2E$@+*i zu&Qb=n^r`U0v|by@m+D&rMmtYX8q(FB<5-iacYAAKxYzJsOV46Uwn6lsk(0ne)9vh z&Db7!4BBXNy!+&#?Q?5!WLs6PaQ|Pm?Gzbv*1ta&el~^*x`Z*+raL6Ebng4zbN)3j zF(a4u{*dIVs?K9mvLC&Txl1>_xSWMwRQ#r5;_D|mzpv)hjFr7u4uzs=mJ4_8L4hs?TSA@Il5i={!vxGYBu|ZGYdSJIR4G+Ja-@X`*&~4wB^+f zczI_LpLdQQJD>Um1e~tS%?6$ByUF_B&{wll9%*FLXBZKmUi{{7Wlr z%68T-Svm*)JG0Qzd^C~()W|ma?)+OHk^OV(t$BPJ7`S`7mt6Xw$$4RG4(8Z+wvv`? z*5q@1Tqp~iFaBsac{tm6xOvpjzC9OsvKvuDTYP#l_QcPu#rJHi{TX}b-WR&e+4Btc zsr84I2dBNIvyFi#$7$XTrKZ4npiTPnzLj*^uLCnU(aG6S8gQ})&}On-KU=t62Lv3= z^m?DWUjLcba`x~0p=`_1Qd;s{li$t?(0F#dUFW~|uc1bm2H1-D1-#nnV%j?UMVr@h zzG-H9zPCVo^K3uC3^-dlmHoFq&=TmY-}bZXtS60W&VT2(tOsx&;Urr!BFgTbH-3J) z+hH~rxSc8MdxBpFTFy3af0YFe{^1orWxGMC*7~g zNg23iCR(1(dnSEt-FK1Y+LZ6&0oI};=S-eUws{8V$;!el=l9E z@PmOlwcJCwOz@y|zSG`a=!e}`EXTB1=1(~{l;K%{#c$<=5tK<@g#y2zf-?9Bj9Li0~A^Mqu z!_r=^bNzpJYWHN4bk*cKiRr>uTqT(-n-i`u#0y)?!8wN2MD|_|t3k*gQOQ}YFvxux zef@asO1uh$oSQ(&knc(=6p&+D%YJSTGsXYkbEzJE?eM?3_z=f~^RFhRgLpOs9AN~A_%r3L zE~gLvQ=ItP1xKL7qjP1+hK9AU{M1uPP+Qa@b(fzjwOJqN2V{DmiO8>|X}$;k{_Cnc zUG#1jK6h%F+Ujb*-E!}!*<`GEVw)j3vjkFi()eO0vUPJ>t`g2mfd4xUNWntSZ%)k{a^$b z*En*s3b?`p^k>}eIsX3KPRLd|KIZlB`cDD;so9Ovp7CKx-WbC(e z)AaGzoP-P-TCs+t$&^>owZ^yae1nt3+a`Svtnr+>Ei@t_v{&nNh$H%JM?}mJq?@!5 zA7xzR)z@dol&{nKI!dlY?S(#)pR0-g^Dc1cJvybE1Gt%#KB%C&O}_EDuP9vJ9hf8` z{2|&ZC+Z_+9nP!-)p?4OdqqS#hFH7POAsQ5p8RIVEH;)q)0EwyUx+7sV#o5FE`PY+ z*w)wNC?mJtcOnV8*Z&IF$G!a#BmYG9_9qFad9?IMNu3y;(B6(^9_pjrOTcs|4;S{? zeAdz073h~DMg++uQBl;6(%3-$eMZQ|Vpd42DCrBV<)X(Q%GePzR^5qJGfXigwG(B1 z_PfVHD@%Ejudwc-xmCesbEzsyf3P|7`LklSK?{wf%G*^p81q8maRm}Qtz7t4Q({w{ zhwA!n6_ZGBk#XJf8n{)^E^2fuqx|&+{kGj|9u?a>BjWhGcp#ur*Y?n)~_nB zvay)>^gOY@i%Q5vBfjd{3Ao@*KoQI66e8cb;eM4+d*sDGMbvAQbl@v??$&Ci-c{@vi+QK^L~(j6_rgqRSAO2 zrkBFhc{iyt@iR7f3{ga`xh}e}#vNW=L_YPsHK9^lHx!}GxMOv^#8*=r;2u3i#yBQA z&o@qP&$4aBm@JdTw_V8yz!w6?9G5?CYLJGa%hYd*&Ab%Cgcb`A(sw^M%DS%JXYIo7 z@UH5y0Te@}))oMJg{VrqqLAf_2qDABEqskUV85&1OF+~!f0W2#L3dAI^(xVCYGz}} zvH?LND#8Z4JB0z#?sNavQx8P9+6%Vz1&^IcuSOgO^W3pK>Tt3rGaI6>yEQjNuRh`2 z;FdO!@i(&6R*iIS1W0^*q-)ROudUq~TWa@};=7A&i5}U}+I<(upMokPW5OmWrIV)! z@vW8NQbW*w+lA*e@ybtDHX8|LLD`d5(B>INrj43 z$Okdn<`q#GNnboxO(1SKnMp5)P%%VT5azNCqSG1U*qDIUME@zhV{XBopew@~e7B3( zTG8n&aqB;_>rB~J|B)lJ^orT0BZCu&!fl)jb30FIG|NUgos=%NOhMbl9$5Ns%j|k& zjc|iIsmeaE1oCXS?R(|MHlBZ-u9BG58Xkfz18))b+EHqK_*iGnrX(1Q0m&on;{cKP zO7j8~YVHzi+c0OQ5#fm)ex5|CtW?xt7(F$XT^GQ%%BYHbZdS}@Y=j%cST}yz5U}Ob zK78-OYes)Fd3WNEMtCT;Or2du6_B)HE2#=8eCwb} zqB*oftP+&>;OJ8s6}h!}nv6~TfUzK@ky#dB*_Ud$st@D)eFGLB+KJWC@&@{%w`|s?u3<&BkWHXlR$pyxQ8N zWSArLu8AfoIX~eOfp%_&x_q{@=t&W}Dl{iUP<|3sRFEai4zBZNwf~hsbdbcI=XA{a zthBegsW--_Ti*l)B~gjQd3}x0?x73mZdHq7R&j2fuLlBNfPAdgNi(1h+2_U17B)tU zFNoYr5O*mYrFl=EQ(Oq3*Q%}cz#XSJEsahvfNM7ofiQqYRIE68I&A88wHB*|R}wp2 zuwkh4nJV>&(-%)}mqN@H#G-C5`qDx*|5?b0ji`p7Wta;;uL?G>th}f5bYI#0cU;5+ zGVt*)EbtiGi%JXIz4fi)?z~d6zAj@e!ioevOkaX39IbziMwr+R|JC$ ztB%H=+m`5d$$=v%BenxaAUM>is~X!|@?GEiQi6ArKqOp95ci)17d@zOpRH7)D?vrw zA@8&~FUmA?5`GU1em?gOgL0w+DpkT;6gcpSmHN_$ zY=o{cxyn!Xz9y^`x1$+*=ex*Ld>8r%RJW}bEohVOdE_~J^@oQPqX5(IXlQgA_?$4nKO+Gfy_;IHkI zg2a3A0*VT%#{wP;SwFAofR;__D033FRV(*3pd z|NkhtP47^7u^ec5Ri7xO(vOGg=B(Fl+68l4AVQ3^=3N}WSJBp;YC4e6=!rI3sYnyZ zH=CL1hUEd>3;z?}VP^B=9FM9|ntYW&T>LXbf zw4kpg4hEGb6!bjfgGmwkofl=`f%taer5jHqZC|0)Cv36XEB!J&UE05>ddRHXS?zF$t|`6F;Dm0~p?D#o7-LLHJWfLf;GB@v=#xWpVxgjjxm?Sha- zAR+6^5Ck?5vBJwBkQ(i2 zzD_AdA~nvK|4`eVO(q>Ul(st=*F)B=e{M(0dw@y5(vDd0c9}jf3hNvqB#%PcQcO zAvSO58~1F#J@WP-)03^r?Ln2C~sn&slRa@mlHn}CFq>w3yPqGaq(A7-~yR0>?;mOx*yaNZ|aER z;4Y=3G%hHw5;ePYuUaSKHQRfI$$$1`VtS>Q9qZ?^$=DLFd7>mr z)e72^PjjX7#aN;G@m^nFm8-KC5ikDuWM=uX&c}psho1!tjRY-Oq;z5ghtF|i&d8DT zCdC=U4&(nok(xN3iR-`f8-s6`pg9GDysNwjkd=6F8`TQ{K-6--6wdKhSpizUX`GRu zl34f0rH3x8C)U*w%~b};|K%zPvQk?2sU`0i<8M%VqhP?vbRnkJcOXk`Y@O7TTi;#y zi8LE90ET8f;rMJju3lSB{NjgbmU92C)^+#iX4d1m@S0Mj`$;|VKG-k33|t8t6wrUG zEYbh1zSNRCIO$@x#`|PzI^pVuZhz}HjYhCh`hvFcR5s;aU+trhS8>Jy4M6PyPQlI6GJ83Mp$#I333DQpetY345-HxsWU8G*m;}d9z zTw}>lxSp!#NZXdD!CN0R`L{xAm%TWKRW)P6Jv#v{5TU*%%FG}_8`Z*ViB~*h_bUwT zW|C;jK{pE6K)w}PX$e)65Fmnlt3Lk#t!b)vH9QM`yA+-JRa@{Pro`JOB?h+ZzY2X^ z@#G2<7*jG&Q4l19YP}3sP4z^=Tj5%uqZ0~xW%41m6#dRes_4R-@7dv7ow`8Q1Fg;9Sxo>(h&l{fXcrC* zPZv5ZD#|10b>NDI!R?gQHqJ%4;a3}`i)34&ksw5#JM57O2Hm}k7KAh;cfw!8$K?fB z+MpX*GmlH4jQ1L!|IFSW<+OoF462cmSQ-%wLdo@wE>bFz4W3~Dlry2OsE=Jah*=Mx zppW$?zl}C?6=kZ&v*e;HwVUNGb>4gl&6?7*TIE6LxL(ipB$v^XUc$K-`U74n`iR)EDcz^aDdC+dwP zC`zEXhbhKd?iS0`lKe=(ibc=(F`;@8bu~%B(D!LlXRIH+m`TkSO?U`;hcVSu)iZ*L z$5@YW$eu-}oESP59;$gSxz@-X)j$FT{rZc@cAU6kbFvvGrbcCvO9vD4>vyA7W9CVq zA;uM7{BcUexIXGwgL$VUjmW$u_H0&J>>1E}vZj!@ zv^tOU@Zc=i5MwIO6Dl=P5`=9K3+WnhNe>C>MN{|EY}HQk4nbmy!n9OJJvpR;5`TE+ z=ZqNlzOQe5qrve45lVK|5w)tsYKG`6Q<5)m|wxjGONqXyu9r7c^kPgS)pn@Md`N1Q`qhQ}O8d>%T zm}KF6cgWr#i3>C9rGQ1y)K}St`mD9A4d9}DxR!51*%P8srg$LZafJ;P&pKhy z`zu`zZ-?~fqg^VYHm>dY>r~^s>8)vE`itjwBO@C5X2S%IF3X{l1p?Dk=ssL3L^*N!T7AO>^g3nG@KsK{ zjOclo;g})UUDPQ4@jAs_s3Lw+3MPsAotD0NVSMpWe@ADKY_~LpMM%N`l zWkzT+$iCcny04KM6&03V5p_z|6&W)2pVnNXRP}&H-t$RDy>h}s=TQrzHb4F2U=`@A)cmDyizARU1{AA*=RuW=yrO9P+a@?ApXT{ zY4D!2xRQsG+6RBfbvX~{OZ#;#<-Dc}JgyR&ftxTyD)HWZvv8rF&Tt*C2l}AafOss_ z;?z)K@8&A(>F8*7xJHZf8x3Jm=&DNOsy}5$ zF-v<6&ULniDGi+KmOWypfE!?Scw)8DcS0d$O{LuFlvt|wb1cnKOYr&B^*BWM3;MER z>2U=EBJ*|9py?W>?k1Zj*d%f*dsH%fA_Q5TV|kNV`sMne7hu}F=`~f>&w-@BLor@W z2#d~s3YQrfB)~#x9eba_3!5S~JJQfa>o<=-hv~O&-suo5zaObWTmgg~dbDdD;r{xu zqW#AuYkxL3NpD{B7UZmpQ9(AwbfZXanI5D{KP;+MKD7Y!%gpfJ>$|EmNwwi{Y-!$*OzJh{=#alRz;zj0!B`RrP+MP)c*$nQ86WAC;BL6{1xer!cgIj3n8zm>GO zoa2?bY6^isQJeS*lSb(JVTa**{J;&=Mit#$2FtrA->c)VrL$T&&zbJ;qc)P_UMF;$ z+N0*JSUupnrY@V6if#!hrjYV{L^jrC$B(tv#XaOV+kPKV$Fd6Vi4E*=e zeBQYZTnhE=e?skIgT58ulz(K%CDn6}POE;fQvS*DViRcow+Zst zpqc`loV*jl4v6^l4GwaY`jk`9V$B1T2G&wvp~!YhiY^0pJb5|ffC$|2#gL0GhaAEo z$kW2_81VIjMh*~A3~x-nXsdLxMr^-YIo7P0699*SqHSF3t~UD4MmEwMtihtF-e7iA zwc*NXloS4Bq*|Qgzwb@05sWxpwbOQ&q8}gwJJVNa)5R8E9KD_qTUe|6jc1Nko|x1O z-R_OkAE{>GFtA7gAE&dM#1bluQeS@s*py~RSdEp3>W^UP>?ajpq`*lvZ9*2gwOnqL zh3UJ;arQ(6gh<_-Ed0s&qzj7fjjY7=My5Nwezza@*%FugX@<>yQowFnS(+HNx~*=0k&1&IN#6v3avICbv~D0s%eI{koH&q%vZ zeYARvkgE{ZYjI^4m~@Wp!qFjB;^Hvd+n_zT?%<%;V7ZE1t~0c<6`+Fi%`O$Z=G{0J z&CXcctDPRWM^_(AtVr41?TlF1vHZ4wXh_v!k#m3X3QnQ6NuRui39@4}CF*wN7wL|4 zHB-xn4PN+N)L~K_@H!!KPGqW8pd8ySjgOm#P3kEKx*#LxCNV*jl9D!ahRwsHDmKFgj2|Pa1ZV0BaJT7)zPgsRbMSxtm?Ds}lF>pbD8XtNjNJKJ0PT%jU z)wFL{UX!q)CN5^^JF41PT7_fU!<~E`C&^%K+^Teb(+`ulc7bP=NIj6m6uyiFA3~V< zr!CE%)izkNK^dG_=mn;$NuT%XUSn`tr(tk1Ai`Qx>R1;x$-P&KMi(n_AS09E5Qx!) zITVOYV%T(j46cu&Mc9rEbx4XGl;z4*qLB|d>sYvH}9cMNl&sGqd3 zJ?)9_CM^>>aDDWYPzW02kg$}bpwRdf1`tl@=1^$*1W`z~)W{HUI?B!v~Q(&0`9UO)BK21JFe#pvHQMu%Eiw+iuG* z4|kxZ(yHnYLc#^B-Uzis^<233jU>AD$?Eic``*^DG*+vv@22}27ld`;#wNdoqc*^f zK_1sz>)oXBc$x8ZVxqhIO=W0XHGr@nK_+ilNe99u@VXAD zIH52gU1=Z0ro&V)=+XBlMZb5a9`yC3Dr*McfW+T`>^NB?g3>FrGHygWHtcrnYn;GNDq}mbcbxW+8w2+i8YEJ#f*x1>8o?PyEvV z^X#5@+lMB8#z(tCAr>Z6;EU59yPOiond}k-V9((&!x8supU_u>7#kW|Z1u7nJZ{KA za9`{9D>1U4?*IL_V8sFjO+W}kjzWL%Q)U~&1vso`=Cgn8-+ZOvb@O7x;2iJ2j54se zB{iOPNS=6u!@<7Q=-J{M$5%gS8=9ow|L4*prB|$#G>qg-{Q9RwEIJT&EkIh{BIQ&v z@N()?kA2wV1m`8_Vinhu?rKII|4D(Rdr!KdP=9EcASXuT*JDm(jP>JnI_t-2?4`F* zEHs^e$TBWm`3oP7Z)Ksx5RrEO)ualJNTnCy|0n!p3j8FX41+G)?-g>EZ=`XTPuq9U z3QR5cxVQL{n>xv+1+*(e8saJ)L6=!Q`k z|6P387S}t>Jgn_91l=~l_BAlJ3&eP;I6-FwICZPxIA@1TiF#}en;r;p+4iXC_!Yx% zz$_8*X%6QlxJE1@QjOJk^p3|`fm--9tc_3_Gm1E&9MoGv+$|k0wRSD z$YceLiyod;!(mHcG;$f;%rr#ig8ba9!uZsv^`rE$j?Ih}UqN89>RPzNabUm18Mu{6 z;=X#$ZSY`=uoK!kvVzvk2>Gf=llB`?7m z!i(YPgpKQ_kAG9#!`hGYPmO}A+y_;8(Oe33QgxB|&7KNb@PVoeEQUY$4Lb>Ea&HNK zgDb)!E`0hT=+c{0cz-E%|3}Q>*%KiP`wNX0!%aP{wh#qxqkYZf^J22GO&h?G^pxN1 zpc3_mGDoCb<>mKGb{PW6VKX!THhKTd=juAL5(+qg!741x9i{8_2K4LZe!mmis;N+6 zjz(9|@NkweN6KvdOHpQJj|I46b?vm#a85?hByIZ!`82V(`D8~eA3`kMO(z&mI*|&+ zUaekwY+j?+1=#1jfrB2sDzrB;RDay`j%SSiQ5gQ?VcY(K*^I=S8Bq`IBi37HYcSW3 zWvWiEBeFedeZb)eJPFHdk~O^s2yzDT?sP#dsNMVimE(NYDnUJ>W`sec73 zm1Ax8Ibm>^3K)hjCV}4D)*JeQ-1K#oi1eYqX%BF>M;c$KMY+b7&G|WR%~qwN{b+MbhKio^NmD4SJjFKJU-ClC2z{F;+aLed(qNrvlQ21d=;w+X- zsFM?13|C0XpGQoMMl)w!r_pkx?aD$(AHTyvjUu&B@Q3o#x{+FN%(!kop-#(OP59dP zWk5V%kT}2cV{mfb=(fr z(gZ}TyjsbNP~HD#eJhRSQ@R>3`)P&RBdz79!MyJ|%9EvFNvsA37Htx)>03B{ZcMU8 z!gwdyibVJ#?K79Dk%~%>Zg?Be)x>21*HoTofLZYh^zi$#rw1XV2&@3iyP&{wlLvD` zaIKfB8)1(E4$YmX4?;;F4ArOjbiblLRQUcL{8#L z36TmC9lflOv1DFU$g*OpKu{7-U9=sHPoc*ZYx;hNgqBx>^|vY`l|k@SqYSKJnfqVX zux^iHe160u8mxzQ!D2y%Xn62pbq>daKZ*vkwG~gYxk{qtYH|F@KgjVVMUhinTc zHV^uK?16w`&;582FcIxNX*8(oBFpzA)obls-^ye{&-tb|Cj zi%JoYhqM8^9L|$jgH4VZE=K#hG=|2S4A#k??4PWx{z*(#dZeJ#W!RG`uVrdO(TIpZfX16E2eswy+5pZ_nXM*Zo0ojk_@ zp2RJa+zJAbLCJyXeo6oj5QpfLj`4`R{;BWnSOSi+H-#9*+UPPjOL>4|!o+cKB6euF z$sW<6zEQTkrB41&fC85S6nWimE zb}o@EsYY3&WdF?zM<1t|16@qWKbpNiQTOF=9}mPj3%|!~+=gwa*bqyjcJLK_4O^D& z6J%NsyrvD3J%lBMu-tc)iscmCeu(@O*qEO8KiTiEVbVr=F+;szxOI)~byu*!yir6V zT_$`=b%Ndc)ja*c_hmcu9BpF`K>_g}`2mwJy7EW$@>B=-4i{mmWPcHuziQ;zr+MBb z02I~Xq|j~^ew3_e^V~A%*>fP$e?({?qtMPW3vqmomDO06NWTieicod!l zE0TyUOL0S*t?|>NXs?H|Ju41Jg|`zHQ6$CGC)wH!#XMTL{D1M}-no>{SwWP=E5Wake89sR|9|3{p_= zX^W4Oi)XvK^T3NFYMyLK5T*rtpch`EHT~QpV*jBxbMP2GDC%ie99_1G7ZGjhPyl%qf;+cQU+`2=Ah{+O^$gFjbhuIP@iN~FJju%LE!QMgvqYw zRHw3+Rk+U#CeGOV+X;oVWXfE2(-9kP49ylE$_Ck~=T5WRkrK07@xIk3Y+4h+=|6)p z-|;k3XiGjcZ*-b^y5MPaxyszMc=271hJYTuoOlGzUfWFt7l&uPsTS)$vR)k%S~>+q z=Yh*>T4SxD)(cQC`q&7+iBP(MRIyRTm4_~QN>B02BrYDd9M)&lTBgCwYQWqn;hDda z3s~dwmVs^RD+Ip{jeM(O*lb{Z5*9Jcww{*c(G8YQ2*@E2`qb?z7Ts(cVgCrFLp2p} zVKQBmDxgsgyxUq7W?>3aFnZKj61b+mCTZr>QRP6>7~6r*%q&4iijN7zbJ}sUfpNy+&L=Unk{IH4IfcXVFvVno9B<=&bIyQmX0>UDV;<~ARl~Vc{Zsa?D zh2*gN2`!E{9w(*hpY&84$2;-Y9{HpruL*Wj*&mvz1Vwhg_feW?!^ONnkz@`-+yBJ+ zr8Ebo`go#?zij(U$S%U8QfQTj*_uaTVE*ee^E|$5pV5~-TeTJ%Ey&p*0l)4m7AxrD zO5`eu=ShFb9q@E@VteQPNB7X7gat|_$#JkMcFLw~f{whyA<(ELEpo6}AGMG6rWZ%vg7ye-`o*aVZl&PqZeHuPXM;xJ zcGrj@%5Kvk>SYwlem&Aor~xFbG?Xf8sWC#NqVa>i>2c${-l7;TEk-@=Z3zY}>AKQZ zQ;By8^5SB0 z;KL@ct=}FZX&6Y*AjwoBTZb*|iGk)}bGS4W&3o{SbI}r@q1Ti_=eVUlCZl}tk>=CD z6jvs1NX|gT(N*E2;=3~R2HxAgSW?0z-6U(h-Aso0s;gd6-f5BFXL0AwUoU*ARyw$aF*~S7Q-hs#^D#bVMe5er263vU>bP@drCf+(yVlb7~Vd2R;l+;F+Y)lJDG&f{7yDEHr&K_LEN! zmOe|0@<%py9Q%`Lxk%GENsu_uR1Xbzf_qt;20){Qm_8xql2cO ztN-QjQp93e$9D3KLY`mk@4kjz&aM8=c1gFi>kHVUpRQ`!0`p&KGRiy)+J4MR4DdXJ z=;fpp^93O_f?5kt(jD(Vq$=Iqn`k&06>gs{{wcwBM%xl<_mfv%qKBGTwcwvEc5X^A zDT_69Z`$ee~*lvGzO@O|#KU4GJ#WSC>95V`Bs`LikbF<)Z7i9{=r@If{ArJd`u9iJE%?})^tpyShJ0EZ8}EKsPZD5XO}5qfBrQ272_S8sCY zoJ?*>ocY?dM^*+DZ*j;ML01LXZ87+wqGmI1fil%V`+kL5PJ>A2^>=M27{S+Vo*^8j zlaz}ciM$JH#N`rUW{ef|3tx#vEa1jnbHNRz1<7MA(yZiWi;k7KYKCpd#wuJv{bS>7 zp#BR&7(cUXQJts-cQQy@WDvMFJyzzqE+ie z_Z{gc-;|;OH%4WRej?X%YwfTIHk{|T1UhP50?X$R>wgN{xqlp9zFC}GJ(wvIvac!G zt4zwf3VcrB)R3_B|A5p!bPIcI;9CDhUlO>=8-<{wzbQ@87aCVe4n;>kS>O^GnxtnBM&A*}I7n9FLZg?yQL;+cl|cY>^kc5e zhRNNOnoYNbpeRAkpIj4NjaE-8&Tj_n zH0Tdiq7H4eYiIN+4#5|PhboU}zkPhvoH|wZ`fXLHq`L{}>P?pVAxp|9AM={5P5aW& z?{T8`+O>!JQGcv31{S)eK#h>=-*UPgk@z=E?&=F2#-yeHrss3U_Jv-F2R#miG8L=u ztZ~15GT-4Z&V=}9>^`)9wiaC%6Cu1JA>L+SLnE9*TU&?5gSwNDQG7}tvh~`QZ`lB4BA@(*>Lz>18p4N#6sh{FvfJ| zpOh({kxaK)rG@WE$h*b&Sf^PeMen=$#x8;KrL>P4kmGXiQLb(=uxJbOP!U3Fzx51W z;@WGI=-_9~OS%uh|>0Mvr4Yf7SI(8&~{gza~O20R0DpLAMT~#M1rHaqA98DxS`dGy1+uFt`uQ0MF`~_vtdgI4K zsmwZ?G%JRziv@L6dktlBRPV7?rOBFK_xJilY619UnDv|fYOozkrp0?paQS9y8drra zp}s!#|9`6b&VVL@u3bU80urgxLk(RNkg6acML+>180n!`rG>hR^lB(Uq={0b384g# zE+~W|AiY;9La5SOtGZoUL;GR%TN?a# z&()JIf$9OJPH=FHH9mP$^hFb-tVeP*uFjeUZuy(`(X@RSDx>n+#x-0HbIIt}tAeqe zy}Md&Z?-4Lgr~c2^RH+omPqk=ha=~=Ffg--(c=ma{JuRa(;*tOsZ^{@rTxi@$=^i+ zXhHbhs!Jh&@es>UE^13tw_!x`mdMS*SVVH&39o#VXzQ@O&aCINbH6lyTeU~#bBmxI z2zleAga7>?Hm+&)uML^;L5;)Pwi(Z7>Y#Bd+m@ta*Ak01co62^)>mbyD}isDQ4^_2 zX^K|GB-ZKL+FEh#$@r)1E?~s~4zs*Z)EyTt=~q`-)rLUEfgY)85M)rM>~qUc{ z-8qs$EcCQNiYZU5(`aWq*&}f0tz08L{d3f3R6eR8e|zOX!Eg`|VPxIgqE3Ajk zn0c@Zip2ijmg&e7yX-4MDn@K{PQj5{{l31I?kQ+Uk~^|w#Idjl)2BPh&Jeqw6uJ2E zV8HrbNDi3b^9tm?KASs7KCXB#TcGLV)W;@@qIrV^ZGgqwgPUaEhKR<`yt>y0t%wv?fg| zyo(}njLmx{>`d6Vm;?tp25-xqpyi>ufJlB|8G8xKon}Dl|^l@;fiFY0rkJtMHiF1?kj+ zPZVV`RdF1}W7cLy#~J8JJ37t&5Baa~)0@NJEyjVh&JzZcq{k@FhSnJF=I*C1mt6P* zUyoCdRgKHE72kS5IdS{RTrT%Jc}=>ia^MlWOskueJjdOmNA_#p^JRGq7$Q2+RMy_I z-tgMgu9$%lV#9p<4ZqsWLv79W@%0mljGr+B8g^;-bfCV@L+%e0C{mVtRYwE`g=W zlngQlQ(x*g2+-+5*dq&WQ==dro^$@;^V^u_Z0H?Hl{Q_WE~#Rn$KEfw8vG*y_}}sl4eZ|DefmedF%64Xz0K^^YcB z8Rh?Kh(TaZ^K(04I_MrwGy|?VA%nHZZFq{x8_h68zl^=Mal07}(15S=Z@3A2hlz;y zP)={cJBxJaG$5kp3z2fVXf|)GL#2vfy3%=ddCkG1 zu!0Tw{Hq@@J=jBU4$@a^;MVtYUxr+f^~yTY%?2wIZ^6^0uo(UKP=<(JaEMO7&vbbY z-8)GCSz~WuFV`W2>P5Q$F`9!ksRI5; zDkO_EA?z!UOEne>D}!V7zfxsGUzC7DI6`B!!+_GulJ~?6c+>HzqJl@<#O~w8BQC-L zR7`j;gkwY;W1kCxRiUQ3xnYk$aO4~{(s>;<<2?nwwCd_@dDpO|Q>VPdtC8|KPQD~z z+%6_qOtpa)qjFP?a_=62)R~j=nGR9fOm@h*dh^Rk=r}sy2U-7$6G zWHUA<-jBwqfj5Gi8=oyEt&A_A(3H`bY^Wa~d{V5#2>n|+L+B-$MdA`KB^#Txb_hSY z3zTMBPsM2aSgxnXJm}R*Ecux!^F?)W?4)p@BDp4j*Ikrv;9Z_*9K1B~QNrl+)<7Dm zGRk)Yyah%^l&K$(4l3Q$kSbU47sndFoC8%aJe)%p_tWyacBba@)-&zY4^9_#1Nthb zIz-I|1_neg!UEg_$=qXS9vJZ5y`e&>slTu!Vz@+({Wr%im`X(P%l;#UJq*IT!>f#A zeiAfRJHh?3<~^};-=c};3#*p5EM^gp3C3a7MC&p*9A>lXW*&`W|Uzo$PPYZ|Az(^sl>eM{Kc|1yn#-y+^{$6)ky! zLJm$Wtd@4dayF+#tbpY5A41q0_Xz15=55exTm~s5?fN8wvf&mIQX-ck6xcg^{`~xk z{ND6KEy!u}w{cwtRJqT%E(sp}G#NFlc0l$JKv1F!ob zEYlb90V+?dVu_>c|GKcFH|JH!=M>im+g@i#Z$?B6j@XI6CLf1uOFwjok3lA^n+F<= zRQm?DNSyrv^{3cZqo*E0`|AGj0dHd$MHcWXVxWp+ zPc?gtKkL$3CNHmWI!u!L9>sI8GJrs`jJ_r_z6^cEVNCj|%}UA_l*9JzO~-Rw&&(E( z#aP@f7ykQP2{WtObIdMtcaU^%5@((n933g|;uHjAKTw$v%*x+>;NiqV&lxkgX}=Ni zVEnVTf7e?G=V*|&f7uSpwfUCy!@y#nVZGmP*3zjX_?%PON3lErJ~pR4HXmv6z)H$% zYkxWHoiM(w;|jnhZu}V;QG(-Q#QAS=j1^N%XTJwPL=3<*qy5IMQptt2Tz|9 zjHpe&Zm!+S%qf}qR-XuVzLQaDuaz5N_rpbZ1Pu*-IiOxo^dR&&!({Uf34xTT8v=Bk67 zSG>hpG7@PsY$YW*mO6P;vK9l8ED{A36rk0a(Ye*}g;o4JBywoTiUE+!4RDvt^%F-~ z_jmCM#UtU7NV@{wc@e{DZ9c4hm?-TK561(M;5IsTdFgIDD)DAXugmRLQm@9M#$k{u z4CIxF+N=0aH*%fkzqHbD3ZA5T;2p|iqDV$(u=eT(yn^mk9EEfPQ*YL=v}(aw z}gd!n_{TzLIY( zrB8NyF)9Cf+~AB|$;&*A-_NvWK$2XK-<~wKlU(g&?qKbtkmo+`wf4#qMJrD1?O}~kb^s{ja%5GDY*i*ElI_5yK&}Sk%wgya@^w46sLW>8IBc zGGkI7%3rZau43n;Qvk-f`do8n!R|hVDL&LH{qBZSO41&jGz}!e(nhZeHDT$S`*52$ zF<6j0W5Js@BR!WM{J8JtR%EiKO-ftTMszJlUCekE$i zp?}(CQ0Ik=9I=uL9}}LF)o;Z>5*kf-ff0Qb^@=_taJv}6$B*P~?6t8HVBwF@RL=zz zpYnXFKTGF1b%b%ZjD3>_qn+r75bcNU8i6_8KXfI#coU)@5`2r))%_~vr#oB9W2APd zBtLdHVBY)4Xp(HEIqxMg>*m$&yda8EU3Z{J;?tR>w`Z*-@`##DA0M9_ea;IIMeZFs zL?&Yv62oN2mxQs-JyjD6^yI9JL}gejvlwZ$SCWmZ=k37hx>EuAl3L)f{uLrEn&5Zk zgr@K(`-5y|i1jOvT1thxf231uG1t;!%ffxRRKTO}*uar{jk$o?g zkiPrPN;@QmYK;C*cNvvdk7$s$y*P@=9g{5pseAveFg`mNyT(i2dO+{jz+f}teEf2w z=^UzUQ`srYe*?T0AW7G$ifwZUu4MWiRig)CjIh++vVN|w0{2?DY{_TQdC(jiI-g8i zovinR2X#JdkVK)oh*o@hIj{bKX%`lf*3N^76d#F)xJkxEkMs};9KM!KztMz!qC%vS zn>#ZxcOjRGIKk$Sud(yqyg*9I42a7S{+dYcggpfsGc1jUHAfz0c zqY;{eN=MV=&S^}OuI>`@nqqfiGCaY&+qYIzur)RX&Cf= zmG-*4%vfBD8~*B;4S0(3T>_a*9t`x}XvXshXY0QGpT5Y`kx;c)PHU))!CZ<*HeTSf z{#-w5!c*=DBWe%kBhrdR!OM$l!=K1B7ty+Szppj%xm#1NOlh^BCG1D<5m?u4OqFU5 zB3v0_VSUVW{R?{H9Ky*G<9^^D(-q=PUa!5MFbV646$F&%X>l(EXf^OX9rd&(m%A22 zbtEKZ)s`6R!5ge~%=Q-j{xv6uLd}afxV6;Jpe?pXfv$WElIj1E&?xzmbe=H)w5xK= zb`=HXJ7vC#Oh@h-ckv| z=Ha72qK<@|{|EF4g7U@nXq@V8NguGb-yr-Z+`uEWDZw{LRcLRlJpYHbx>!-Vxl8*{ ztw5fYUZ#2Egd$Fq0Vil@@cDM9kf34}#gy}OT1Iyo-!hgy(^4wLh))xZ1qHGp zX2O%b5e>a>i5;~e|K=g9{7#zm8{jy zj}H$_)FI13PJDE%+WYEN>m6!~FvpN0Rma^$pPcm`80aYfaT(ov-Wq9?jFpe9^*q|5 za64PCp(g)kWE=Vbe#QBNw*D%IhxLzPjD1n_py`3jA|OC%RDm!u@Hf=dH5)0L{2HF# zQkkLaHpMaWY`-vVoqOJ5(m0vYL(?v&q?~@GBf7NMAmq!7MpvET{LVrTdnylm2ho*Z zhML1ZpS75*eov*GZNyS2`R^`QJLjJKDvlxdPz)B^aM;XGs!})0%?ed@f8+N@@*ebN z_4{WJxaa`3ne&Xi)+cXj1H4F$YsXZK-=wN+c(r;+>u_g^9btKSf z9UowUV}1Eoqi6e-I9e1>4klZy1&a%5z_jqK!}(8`-e-SgTnmbxj-UKq|JZ3*UwhlA z9HgY2;;*xckRkx^O5KCkS#>888%-s@yxo%)0TK%X*k9?rw0R@*WGL8)ou1S9i;z&v+*&6}~*4Ubd>^uK?l zNEou7f6f>jn@tkkb)@yMiGl{TiM<@X@QR!@F^JosD5%f$)azx#n^)+y&cVc2Xo@+p zv1Bl5&1k5k^1&T*cK<^`%dDgmc)`hHMU2T|O*4@&X)7Y(31Y~6yGnL;SCMzmEsLbV9q#{9Q@O7;>R?uCN`uma{E~%r&k4M z^36$v%*o$Mt^p?J+y1vTNeV;Y8AJ50qA8)3PYR}Zp?jSA51gK5;l{6#ZM)B9iDYC+T{x^7`@6J)&CWIWGdA3zH^T$ISU(P{Q4~ z&Y2{0qd;#$>5(nzkIHGc+!Sh!O)A{kktAK(!|gH1K-0>8ck_yl3o)BE=w#YkM8^6g zV9%VK9GiJL_Gcfx)n5VDdBAaRixxJ)67e!cCbe88_hyI{8cbqP8h)~Qi<*)-WuX%G zwAoJF=U8L=nO0LcZwcrS54S;wcuPa6?xz1HlqA{-_@aZQQuiAkfA9r_z0gWhG!Kl3 z$GskMT_Whs4ga-EJhGpg$#TpmN{?}_uKve<2PwHa=>EN) z#_ZF>6$z{Mw}{pfI32hE(Gb035yO8KbS-&`0DMsC45NBj94F6yEyGkK_&7@JxQ)EPfD(OUNrzv2(E4y2 za?>#~+*)Xau`m+u$Dr`8fzJ|6g`?+u&BqsRO|HT96e|4}UuA2pK@2Z*g)>DiBg;k@ z!Hi-*V}*A!d~#?J&^C#WZyDL9!nJp+Pm?C3bd-)AAqc;plK#>CjV{O7>O%7#7Lu+Z zfY9ottBsmlNVw}rOEjOL=O|7@o&Y$$2Si9c{TT~3!rzWa6JCXSQp!4UD@4J=&Dw|P z8+Li$$h>lb6Q|l zIx`-uUUdBKKAM_8QOxB5_2Cw`p6-vLQ^N?7r%mE3VEY@vt@155bgWX$r`Ssomt0}R zYcKj8lAUv4Ve98f*Prfvcj(J7dm{qbGTWm0(bN;orFHwepEkdpb4tNJW-rJqnxr^~ zBy}NsvTvZ!+}*hT3^}JLvy`-o9lxRo4SrmOqm1Wp{~{>lVDR}WUQ$p|=G`c^K82m< zmLsf&);MxMYe8eGud7JH%hSNk=&WvcB<{*3?bwCNQ96lR6(C+f%~RSca|(!ursiYO zZIy|aY&eqR8WI3!R$vtbhOV74h+(t+hEH2N7~wYE?CBIXcnNQ{%P?xH@q(+8=)N=z z?v9xmkyPHtPtd2aDu9f|J@%kLembl(? zuN)i5-C2!43Zk>1*PU`9$ zxu4v%F{bilLmcebB6Tq{B!T<+IiFARoXEv31yPypvf`-y$pP_iam?0|3^Et;uU z1f$1XAk4seo$JpYCppFwc%%%E&g_bje)gJ(Vcyl7Q_*E54xJz1&&v*pZeF3g=}Z-l z7h<*qaA1HiRyZ^ISClTwuoM^az+98kax~?7`0QywrvLQQP~KO3tdX8s;kx`$&U9c7 zL-O}>O4E^R{V>tcAyl(idfQ>Gstq3-k~?x1FfoEvw2I zk3;1wy&spS=?GkrOWvpF{LB(NJ($s!smsF&PN(+|WY%EUZhV`s%vsK`{;1VQz3$_( zkzu>@JzMZ)&lux|$xDgLu#SmamNHKooatxr5+D27k&mc;P}c@7 z?L9>`c*hwDO}kgDo_Aa3VwaqTOImY1!;ap1Qp!7VD@BdaQ@)i&`m<}1m0X%M4_gAU zFZKfawENci@`!sz*Uch|TdINkQkq9dDLk2akkj9TGF(pZhc4RjX9E<^_PQybsT#&} zX`{KEuh5EOh?T*bsvK^7>N^!!WCmt{o2{hBgn59Sv-~H22Hakk8CC|?SM1klFMxvy z8gK-v8B33D$L&GMU{&WKY*wJ6crDBHOfnJWb(7ZMZfa12_+%9r*7kc`tNIZPukJsK z%=7|l+s(;P2>6Fx6*71nQ#hkCTIJ&xG`ys`E}?{Rc(~0!S4Dm(_dof?8-#* zgtVSoWUUX~{oSKhoyYYVp&5U}>D38i{2IOwYd@BL*2$9N?fmd}g3C5}@1;(cYH2Zd>c%G|zSIKX$zb03mto8YDqX+fTGjI?BDV6o?ZN_Y#P{bVuiOc|5fo_) zY?P_2%~u}yb3T3T+F*vUc(idgsXc*zJ zOxVn=0B083LOp4_U)HuRO$YV{*~0D}INc|}*D?9ugK3g0k!fYwM=zB#91z*Ufz_{yCMWRr&^Rik|U3zhg z?E^QlK(p~s9sb;K@Qu0JdA(IFo~p;~*A~heOVS-o=DnZGODFtNyPE0sPr2T2Y8Uw3 zhRSQ1E!UoN7HxHPbTp`|MS2Zm@_oJSUA>KNm9_Gh*6N9>%{JQjq3G_{AGdb<)cZBM zOltY73VfPzzQwD=?{w&9sgqT}yZYf^;)Cb#-ZO7025o<6G1vqg@#kGC$@L^HbF|eg zy1!@b3?@5kOW%ds1SN+XgMFm_rvG4|nRo$11o0uA8#FoV<7|G*PS{OkfqjtLJv|V;ZlYwCaojnNi%qe7; zcdxkF0Z8=faVR)g(bVomasigf%?RE%|8Z02b2mkvyXk_*g_r7j|Hn%YCdXK32~!HD zFkjccSThhaBV?w^*c%yH!CW*%vRez|TzPnn1u+ul&vXHTGoe-gm&D-GR$e!byksp8 z@Ohn>0M3EN2svvQUR^!d>EIj$NwPo?v^1o1*a)j?r$uO8gX{?FiQ;|e5I6$UO<_~c z9`}Q-Mf3az|`0HFaCxp1=NK~ai z2!d}ihZd77okx(CQSVA?vQWeuD@4d&^P#<7r;>vIL0V^_aULg zpSbUl&+#Uv!_~@>s*0AiWU8pL~etO~?sL`mV5Lq+OR_+GnA8s#3OU~v_FJ0eSCRi|XGfOI6Aa+Ql9=(lQTKT9Xcv^2=zTO(e4^C&Op7@Rpouh( z_P%k3+WWP0M9(%<*w16JXrcK|O6?mIQRw)Duc)RNq#3SZMxJSJZ9O&M6_GOt!UmPL z{9(Eqq|o*IO7;KrG20jaoQIMw?x3ht>uHcI;d^dQDO&lq z?gnlz$K?sB<5LC+MyPq9I^FE?d(NsIVfD3nuRt}7|HRLdIyc~aTM+FtnwaeWmI?LVbtymeVJ8B{UCruH`+pB>m%udv!eqqF>W}j{r|SJr{}2SG8&GGv zokoD~u~jPIdp>PH+l{2Vhx1YQhtFs3zw>k0)%0v>)o3FF*dJ#qnW{(a7{q0Q)6=JV zi#N_qqh2l_9%h=J#4Wj={oU@}@)mFK@xHN>dJJQ4^xZuQ>;Ly}7#QB5aaTNTo8L68 zlRa&7HEj&^{>M38<-z)+$bPmj8HTmz5pHTZ5#dN&4~p6-VMXQhE9rj2rl z0&wYqlezxcI~8G4M=N>_zNamn^Y6XeMkjlYyz?l5?cGk-2HB$dLhnYu!$m?IXHy(- zqzBHq9|s&#CV~qm9Ici#DxB^#o=s;0|62ZSjrTYHJ2Ox1Z`A#F$f*Qu8!R$6ZfMN? z^M`-b(*-tr@_@yF%^lZR9v{0I{3sxQnjAKfu=8(kwu0v0Zb`}X$v9=F*}s41D`kiX zXf-~!y>#hvItjQ^1`#p+rT@2dTEdRM^u>ZMA^~z2pY{QFEPNJ1}!Az?D` q>cy_LKvtrd1PTDkb$+4$eap=M-$^7H5_A}DBp`unWCQ-^CI1IWAAy_z From 6be02c4d85ff57cbf6b334586b089e86468c6f88 Mon Sep 17 00:00:00 2001 From: Max Parzen Date: Tue, 10 Jan 2023 21:37:30 +0000 Subject: [PATCH 03/24] fix round and df input formats --- scripts/compile_cost_assumptions.py | 18 ++++++++++-------- 1 file changed, 10 insertions(+), 8 deletions(-) diff --git a/scripts/compile_cost_assumptions.py b/scripts/compile_cost_assumptions.py index 8257974..4221f84 100644 --- a/scripts/compile_cost_assumptions.py +++ b/scripts/compile_cost_assumptions.py @@ -1724,11 +1724,11 @@ def add_energy_storage_database(costs, data_year): "year": data_year, "parameter": param, "value": ynew, - "unit": df.loc[filter, "unit"].unique(), - "source": df.loc[filter, "source"].unique(), + "unit": df.loc[filter, "unit"].unique().item(), + "source": df.loc[filter, "source"].unique().item(), 'carrier': df.loc[filter, "carrier"].iloc[1], - 'technology_type': df.loc[filter, "technology_type"].unique(), - 'type': df.loc[filter, "type"].unique(), + 'technology_type': df.loc[filter, "technology_type"].unique().item(), + 'type': df.loc[filter, "type"].unique().item(), 'note': df.loc[filter, "note"].iloc[1], 'reference': df.loc[filter, "reference"].iloc[1], }]) @@ -1740,9 +1740,9 @@ def add_energy_storage_database(costs, data_year): df.loc[i,"further description"] = str( { "carrier": df.loc[i,"carrier"], - "technology_type": df.loc[i,"technology_type"], - "type": df.loc[i,"type"], - "note": df.loc[i,"note"] + "technology_type": [df.loc[i,"technology_type"]], + "type": [df.loc[i,"type"]], + "note": [df.loc[i,"note"]], } ) # keep only relevant columns @@ -1899,6 +1899,8 @@ def add_energy_storage_database(costs, data_year): # unify the cost from DIW2010 costs_tot = unify_diw(costs_tot) costs_tot.drop("fixed", level=1, inplace=True) + + # format and sort costs_tot.sort_index(inplace=True) - costs_tot = round(costs_tot, ndigits=snakemake.config.get("ndigits", 2)) + costs_tot.loc[:,'value'] = round(costs_tot.value.astype(float), snakemake.config.get("ndigits", 2)) costs_tot.to_csv([v for v in snakemake.output if str(year) in v][0]) From fa37186c5a38d681e551e4fb08666e465f458402 Mon Sep 17 00:00:00 2001 From: Max Parzen Date: Tue, 10 Jan 2023 21:45:47 +0000 Subject: [PATCH 04/24] add release notes --- docs/release_notes.rst | 1 + 1 file changed, 1 insertion(+) diff --git a/docs/release_notes.rst b/docs/release_notes.rst index d5bc397..8b985dc 100644 --- a/docs/release_notes.rst +++ b/docs/release_notes.rst @@ -10,6 +10,7 @@ Upcoming Release * New technologies - new biomass technologies (BioSNG, BtL, biogas, biogas plus hydrogen, digestible biomass,digestible biomass to hydrogen, electric boiler steam, gas boiler steam, industrial heat pump high temperature, solid biomass boiler steam, solid bioass to hydrogen, biomass boiler for decentral heating + - about 18 new energy storage technologies from PNNL "Energy Storage Grand Challenge Cost and Performance Assessment 2022" * Enable easy debugging of scripts by allowing python execution/ debugging in scripts From c6945afd1c5982f198c713109fe62ca8cf6b0310 Mon Sep 17 00:00:00 2001 From: Max Parzen Date: Fri, 13 Jan 2023 20:27:56 +0000 Subject: [PATCH 05/24] remove duplicates for 2021 and 2030 --- scripts/compile_cost_assumptions.py | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) diff --git a/scripts/compile_cost_assumptions.py b/scripts/compile_cost_assumptions.py index 4221f84..3d15840 100644 --- a/scripts/compile_cost_assumptions.py +++ b/scripts/compile_cost_assumptions.py @@ -1732,7 +1732,11 @@ def add_energy_storage_database(costs, data_year): 'note': df.loc[filter, "note"].iloc[1], 'reference': df.loc[filter, "reference"].iloc[1], }]) - df = pd.concat([df, df_new], ignore_index=True) + # not concat if df year is 2021 or 2030 (otherwhise duplicate) + if year == 2021 or year == 2030: + continue + else: + df = pd.concat([df, df_new], ignore_index=True) # d) Combine metadata and add to cost database df.loc[:,"source"] = df["source"] + ", " + df["reference"] From 60ac25f75a23db9e26388452f6b2b5f58fc01ca8 Mon Sep 17 00:00:00 2001 From: Max Parzen Date: Sun, 15 Jan 2023 21:06:22 +0000 Subject: [PATCH 06/24] add missing values --- inputs/parzen-energy-storage-database.xlsx | Bin 32634 -> 32632 bytes 1 file changed, 0 insertions(+), 0 deletions(-) diff --git a/inputs/parzen-energy-storage-database.xlsx b/inputs/parzen-energy-storage-database.xlsx index 81a44ecf199609c629d3cb61c5beadc79816f141..d5a2fb568a369b5fbeb64dbded803addd4d04c5b 100644 GIT binary patch delta 29056 zcmZ^K1yoc~|1BWW5`&b8)C@=r2nr~mlF}g!LzmRhT|`_h)8z~-Gj80bhnB_ zDk0&!;P<`v{%@_f7R+4kJ?GpL`|Q1czkB&}iFX|4=P32Z`BV%_{PDBogv}AI6p3%d223}ckeOg9h`-GajQSMqjpRvud3jn zmpipU^YD3-d5jUYDyMaNsogJ4zWOK+IO5UplaRN>82nG~S$%a+9!P4LPp3WG=bWU! z@orV-`=gNDR9hN;GRCso!yfq^^lZYebEDtcmA{vA)tp%xF_w`xDjL%g6caQC-a2ly zXP>yCb-RYFfj9>Pnu>Urq%`a*fn8NU^uzVKZ|{(i`qmraXGE#cG>ht1PQ@L;c><<$BiC zcs*&c%rD$C>itIBk3_Zd)3)-|jofq#tr?q{1lNKG$ps0gCMB#{9>y{Bl39|oK78^t zkAK6`UCV((uG`vQ*@5p;fFa+{zb^6=@#RUN?>B+Kq-M*-jl=Y>OS7qg$qs8zEzjIY zFWU;x!`6&iXH7-eli`a-n~96gmx{tni*|l}n_rouzSOFnRi<>r(xhyQG6xFPrPq9% zH&-ZN8;pIQ9AuxlRj|*j;ukcYfwQ-8F&bk1bi{$jh6~^N<&60k-;_T46yvhPd%`;o zj5`D|^5v4G4c{bx{$4RqeyX=*K=>S2U5SvWV~Njc9S;ZR4=oPP|3GQ=M*_NQm?pFk z4kH-Q*{IcbX=-V53W+seRNp)n+dn?HY@m z`!HAr;d5M&O7p`-lC6!_ll4c{g-+km?+FA`bR?a4wZW75*KcURndUn2-@*)CEtL3d zFHgOW*9g;c+DNL+kux_F-qC}JqrXq!hw9l1Z#{r&9mPlNsE$Q;6^%3B4L5dm@l!jJ zU{sm)WbTb%qgpJanQ}grgK}5VaVWCgdyV&CsY50S@>zFN;=aPqV|xo9Vkv`XQ|@TQ zKohYFd+B9lP`IvtAF1rrk6K!v3U%E&5%*8xjf+Qu?&?%}Ns{aSRN~S!3HXY~_~tl;3ieDzfgk+AepRZ+>o{B!Aj+rIaXG?e1AVi4C(f7;2#3tmH)P65no=J^s zt|Yww!H_iFvw{k}7h{9!s2Av|^YTL?Kd$dKOIHPcuNx`f$BIGv?zw#-af2?DE-zm) zT`2w@+Jl{L8jd(zfEnUJeiYB+$Ud@HoF{~Hky{jRHOnZiFfOfrG833PGe)#ReuN9= zE#V^`XEgCgY<=m$9vW6~sn$JGLW#p3C@h|8X*np<7qP6g&V*3HpYAE4s9gG1gEeoi zY<`&3WPReGlK04Pez9X?0pGELGt=#W!_3Q9PB}Ltm%1zIBrIbTi_p`*I3`eMUP^lx zReBnG={?pwiHqf_eNK@QvWxgpB_$6RpAM}4Qk(O=GJB|N_ks}es8RY(@pj(n;bdr? zYo7ig9)O1 zB!cga?a{YA-$FxJ_>8u0$+dqE%iwA^1Uty>jW&8!)UD1!^@}i$^Bqm-lRea3rjDogRu?xU zenyN1zM588rlpY6UcY-|2{BE#czml@GR&O3C1q{PGgmIg#!}_!wsT~Xs3k>!*&PZ` zJ=^;;FD?kJpP)H3Yh{!R48}Yu(u4FWm+1{ElNaHq`#y>Hnv4!S0~eQG)r?}xC(mRz z4R_62MCW~l7JOUz+s$RzjKQh9q~Ci?CTz}#`J=G5oUs>qk9WdLUL)$v!@vGCzmV~t zVRHZD_DYcrvCVPw2kiLRu|@b}>*!ylNI&1l-`~b^w(O5m?D!;4CS9HyoX20@d+yv5 z74mz0P2u_HwqD{XvDnIc5oN-Nu-m)cIZ$veP zH~4{LURw0T-Mpz^!Dd5^&@m&%ii}ZC!QU2-1^%IVzwssTRCAZ1Qd3x~^VPei2B-(| zms^7pPELl8ge)A9Ka+PVR(IVh390o*7wTF)gKvy}X6jsSLGa*i#$=?qrL2q*i5xoo zI6iviVp%srbwR;~_+S?Ri5HpJ*g&&&JmH8< z`<3x$c*VH_)7~0;?W|h7R4LwX7B`3J?*>1Qa)ZBQ-A}buJ@0d+mHJ6Tu{sSx-A`wQ0-)qd&+PfL(%fhR6BA8CuSDZU6TRlkCB>zwx>ImkhY0?f(e-is+AR+wx z@jKFn){h4%XNcT*W;DAj>)SHh$4?mxMQnKNr=vG_KaJLxiZ18Dt1nLQ9h*`Kmd$w_ zaE%%%{`&X+V!Y~X5YdDwjj>vSdPzgk~d6b;G-#ah1cs*1BW%Ta)t;BFp$8 zW4VceNBQgbJlUN19jkqUtLe9b|K5X$Sj;eA%?`t>iS4iFI5;>NzzqG*+35gHT)X>J z>YRW6=^2eAsi^Q;sq~q<2KK#b!fP5ve7QnQPC_9K-;Hv_Wx_0t0wT-*ViW5%yu^HY zgw4uqKD)#YZ1Jo99rIdx_Wk(mw9jkUq~-FwHM|XxUbDZsU2YQa``~+e`Q`b-z|`(8 zqtDsF+}18d7vgxRcz5Y(&CxD@&XI9*z~xkz7W3!BQOc~vzX{B<+b?R47mCXlTYZi< zw~w337yXaTY~F7iSt7*Jx4cXsH_moW=MZOy$0m30TwXqCKm`2879an0xwE#_cDYfw zkMKR4nJRA$_wmbq*WiC~KIg?x@%QK17Q*+mCwcep)NwxI@-l1be0+uC-sOIR z$=`#%NW|$>oB#fgim;w{7u9wAZI=^Ue_PJZp1Ys9WS~w{#JUq$>7L80+f$x`!a-5N8~+ye9SqH*5XnDdLnHAKL(H>-!knar2J`1yC`4(E2( z+S>l=KKDERoAC_Q_55r_Q%v}L9}#$B6X>MfBg(+ow5*rcTQFUYhFjZzmey7naSmm5jk_?T?f?J0`5q{9z8SS z=cd};OFrgC!=E4TdTn!lbG;bZ_)%>**%pvI7s)5`-SwxZ^l{y8)!cJKlB2QjuHSx9 z|2pm3=qY<1sbnJ(5TeS=Cy`+seAKk^YblZQIC<{uRnpdO*55zLPD|&%tLyTWHUg%O zbvK!P&%PCzyjgn|xFYO)2glkw<)pH0tp)LGfy?D2d5H;_;I>6z(M@96&*M&RQ7`zc z)+ztmiq2Oi+loe*nv1KQ$3}k_cj>|SXPzLVH^ld!r|1n+52s9jp>9j2;i3Ia0XlWj z&bn)Q5**bkM0H_nv(O{W^X$vgue$;JK9@Rd-GqO%*t$9YP%z6GFD2A6zpg!Jl13~9 z&b@^&jTuEp$|ybqYv8fPBPkhOC8LxB+@&HW!^qy7Dn!XBN`W;%z?C>wRvD=QNA72{ zV&6;gW!NArZ+>+>ufY{I9KeZP)Yk7U^?55k zvlNFgk14ts`E!&e`a8ETOLG{nSU3*#_-9Z=C;H3hHh0PAu3M;{nA)UxZbZ6rwj_Dc zM<)h77^AZY1gZo%V{l}wjd3k)Z}qw|Q36-wbFX`^gohxKwrJaqQTwav%Yz#)PfWya zB{!U#1fq2o}LY5*9hPX}!1Da(44n zB-KEoE>+*JZr95${k+%28YYON^Wv@NgVkXsgFdHGMW_(;x%Eh@y zO{H@YE~#jj)E;?|(&aH)R12|oj#sE&JM3U#G;=p$QE_h;Spe!-PYm(jZUNCS0<|tT zlIK%B5ksGB>GU)QaFW~84G8K}oNS6{MM6lBJMENXVJVaK2>P6tO*py`)G#^ zqIE0E4KLiNcnskU)~Xf2rL`qIV%tL$3EFic(_9Udi+d8P@3ik8=gwpia47D?~J`)Xs$r+Oyw-hiM+{`x27F$Ajo zc8oiep;^An={h{EOVBbc-#Ebi0n?EG4Tz@iQ|rbY3g zeH=R0>Nsei^HuMJl1l=B^&~`22xdd#N+!u|1o{*W2Gw^at3qCdax=pm)U#!0J2JN< zTKg*$l=w`}HVP`#+)v6$G|i4?vfc*C#JbD^HCD3Ic?6lc z8C7f!sZ~*&_T+6{lnnsCpQNp0tZ!0pk<`eGS!qwt;zENFCbc&UM#nC5aqJ|=knd?&fTHU) zK|kwp^48~C$C%9&$jRb76@$&NIH>i(Aj5LF+A=g(Fk<<)Ws>u6WZbg_c2eyPgAfaRf`oiv7q~1WO}!P{rmVq7xM~UB zCxwXtIQxjk5i&>{7!7uftHBquDrFi0{Y+$1&PLMaFP&jL#FQo%MpHcNlynB zbO$;F-DWYTs=-H1%yw8PRlM|kFra7vhAdH{$WP}%)4KMA{3F2uNoEPC`Bw5F?6yRm zyaC=B(DPZg2sH27Eo+2{f>LVdahTX?&R%`uaGsYSI58alXIWvEYoHUwMd~9MaFA#} z|DoYC(|xW!&1{!aCc^+rC2sH6v78bl;=lVu!mT9klg_P6jt6X->rel|QwhF>zFEZ7 zjdlv8Wn|*8L6Y@%A|>@tcr_ui8XF?vaET4-w^sf6Gy}_EA#y~dTw&iee+G*Y;OPpA zJE_g$-aOd&Q^g_v0#8?Cs+G$jq5ZqBpoBVAlmWxN!d_YIwBgs-;DRKwLL!+`OLell z>@Rr=U1hu`Vfth>skou-?X%uNl8&Z5n*^R@WF?kS!8MxC-YZ7X%Mj>jU?hBR5KLWc zKLq%(y>xaEVMkx{JpQ-whEWOeyS~(tU|6l^UM?lvC`qdh+EfL0U|L;_e?Q2bdhm7< zAcH6Gg}jO_-0DOL9JK{=AI_g}S1VMneZ4{pKj`bV z`{Dq)Q@axkWBNE$h^*o#QHm7*^#rJnAdd|opD!XyuUU8WaM;o5X)jfbsKIxf0Khp) zuA|UL7yjvaC#XQ%K0lFelH8Q|Ytc{}fs$LTD1n`}U>HOl=z(dpFj~>h(DT#h#_B5w zVgLw&t|6#;O~Z8g7A&d|X@gv#Q|~1oyf`y~2n{vSJb%W*6oNoWyip{8nAsE7;G2J? z%|4>WKbx#kb`Q;#6+EZGv(3-#p6%GBjIsbjk!iY_kDQoLHF^ZkU$m1cc21H9#s+n5 z?o#z$6S022MAcQ_k=K1^#YZ8XfMK3*yq0J+5ZfTF0X6{MX_02}$e3ZPYOsG2nQgqM zGXfqzlxIckBzUT5(0}{OpN#eN&Mrf{Ixz;2VyAGx9vGVlF&jvf6;FNU(+}PGI=`wK z+?_<`Lvl2#7$GjZb(`g8<|a_*|I3p3rXK;2fKWhxHNn2nZYPqtls$FoyHxfJ^C5VV z2>Xv^0lip+IgfKaas?tii%WEH@u!MgT$cR5;6wbj0(~k5WKH&<+MuC0Bduwc%efZG zN)ue1MAjdyxo!suzjXwlkGv*zWtCE1kCEa*FXZP}!%o%Uup}~pIL|$Q?j9nXQ2EaP zvSY|KJAMP$5pgSY)7PW1&gYf(N+pJ6q!`JC2s|#V4UG)9*(&-(KJaj5i~dHN9mBjh zIJC|{Kezz{keYDa9loK9A7JC#_4t9nbn^w9WaPXpMBX8obS#k`0i9^~W%D|a;uzqy z*^#QB5f2C08(7;(j<7LYzRs`F4;mX%|H)YeiA+4zSu-BHhaPfnRI|1e>EMboPH6-4C50XX$hWxFxAHy0ZnTH`vUrLF zp_W!vGiZ&m^-$im;W~b=cg2w0JPcpM;kXh?+4}!XNJ({y>SUtKocDyQ9Bs~xUwJIuE zQ{nm12@~0=J1FiH1OxZDX31@UC3&t{(r><@p(mreEhN8v4XFI5H&1KtHj`G6R^NCt z|Buct#~&hw88W|79%kv{HjTrEC8RKuYy{Ux2Uj&1bP^lvGu`ZvdY@wu**tvGcpn-vEF}9q|E1<9AIxsJNgdt0Ezox5}``` z#!{VEd_XHWUdxC6Amg_VEh*f3!=uYu$J}&{OQ0fk;(-mHO|rxYz@YMC8`Z^@QIcRA zh%8yIh^e#D@Uv=wawS@32kqz|>6Q<)d~ecwXpHxpo57s2UYPgdPyQ}~dP^$6K)?jM=$+;l;X(q1yb&cj^4E&ENgtA=t;ttPH z_cka>w=XV9qS-*q6f(QS&2@UO@)sc7y8tw;yEZAVjt&v!9b@xNe8FBxWM;(8#kDu| za^U62JCjDIn!H|0M@Uxa7`Y8`?0vnQg-YZdu?Dm} zfW3-5q-4wV6_zFeDt)2kX5WZEsRii7vvNF3%t<7_bXMue$7Ij*yJLo^Xw>IgQQ%Zt^U z_a^TS*zMmrh2>riWqKP?}+a^`S}K!>(eITscQS|R}g8kTqf~`{{0*6EMwLG34QopWz7r*NwOGU z2S_nfzZVZPv}5W(p%TrC*0ag<_^Tdog_{+N(rE+B2YfLJGN#7R(DcX>3EfptiY_b| zpwOXh1a~K8J^rS)AO`ZF+`cAjLSwtkKdPmgTvEx@7!vAQ3B|D?9xPTV1y=L0@%011 zY5F7$YGs<6U3p5i;@n@1pU2oO)83NQ1D>*bS_h{dKyRazHPi&C~dmIThykp2Q@Q^0bV&b!x-qUafPg(1w`o0^oI2XE=uCP zBEe0I^yj9;n8Itf;L;c^g3sGQZqP@GG9|=XyCzliuH0m#sI5Z)1FZhkJtm2X@C(~+WH^EJV+>C>p*PMCuk23=nFwhWG zdn>?8v@@>_XitQzufw04tsXBryp1Paco4+O5n&;fD$L>vVpbi~f>!Zrd1{%iZxKyG zQ}yZcihH+h4Ey$eus3OUXu3CFfl{T_l=p^I-!unB+Rj5drO%UeHY5%eQ1!QYo5J1+ z3m>z;H{J^5W=MQf*ZWJcNUZt6N+T%Bcwjji5?3z__U~`NETk#TL*oEh7m~iqQO0o4 za$aTGEDNG5tg;kW+k&iJ%pZ>qEA<`Q-RBc{b8nbkN&JaV~Lw8LDXSLfJN z`xQKEdn)tc!vSB;hl2%Ox*V_^p-Ik1(wA2G4N*@$e6VchtY)0fm9wCkXwL=%2R%>k zo{4ACs-~9EFvY5}8>7UzC1uhy8Jh-2UpGA5@dWHy#iMMLWH@I}>;wXD&iIDG$IYnj z+7|k|PiV6|4$hj;MihjM&yQp_Hj}F^+d#p~_^2ascig+5QAR%ZBYxjs#?RD&acf7F z;dKyem6l1-yx*+4YTFsl$ey)9|EAo%_mO--UDFS+N6nk~gkS8UzC}6m#SAr)%Wzgy zHIi$)r}@ojCQpqL50-@EXDs7~9gf^|r)NACL$Vto-%GS142Y6m84)0<>Gg~vxStF$ z{VW{VUdQ)yg@V`dn_P#b>3Yo^-ZzYDoPk9OLaK|ex-d2~*ZjUXG`8V^uUksjY;oIrLR+W5Myx_~7DrH_x0d8%6KMq7if>&ze3|%dI z?DgfvDU6m8d2fz$(#7H%Rjp5aQXXM+az%%XCvJjwVrZScod}rTI|JhBAmq^ zg&_JMsg7Bx0==xrA0v7tOJ>I*MC`g?;Rc0EB&kt^X7`D z zlT{jpOsG$a8O;25qAzO&sG=EvIZYY=^^Cquieq72rB6k&&cSnDyy}7d%>xZdAuG#^c1+3L8I68$DS| zxtIv2>EG?&?gbv58PwUAdx%xW;d72QPJ%iVY8+n~=(fkx+f7ZfHYntlh3Pe+W%b%s z*gW8#+K#hI3#zxlSLbVMLegb^c#e`AB4UQt95>uiQ5S>$Y2YvmZPtevOnsJh&4qlUf)OASY>Z$4cCfXMoPwxz zu)&nU>JazikQHD8?|zPO6gdo}d50!Ys<89PJ*|IeY7sqjA;y;h0~($2$#iu zLC=r=EqB@$9YW1<=O%+31Ri}1f-iK?_TM3bi4d)~wn*&A#vn^&SYS%cynXi!t7w=G z+ozwvdg{&&4?ODTB0LE6b5dTmqiI<5$&$ENQX>fBlDutTdEEL4>{ECC#Y9V^;}JC| z2G28#%Q_k>DZ`cm#pE+a^mCRi&Bd*EwRSKaV;5Yq>Me--tYi#Utz=YrCH5PK=LO8W zp+8=ob%k7*x51LLo_|LK9zAu?%5jKjR(_y$ul+<>8q8VQgC^5*VJ_en1@5a@&FbVlicn`$ykR&IOOFc zWmX%h1Fcyl*+yH0+qgkk4<|(VZGO7iGnr#W`8auZr!4Ghl3ox0q`^D?O?k`m@ROav zkvBQ$x9^wdS^Un9s_N7%%fs;B%N!Xf;d9Pq^Hd&$xFPbHkm;CTiczv~;-v7HrMdR- zbVlXf3a2ka68s8|U>U~}h&W15X?c@ZYwLyi0869lpWL$QU|c49Vp%wh@N2T=Pnn*{ z53g1I#>K#Sx>6yk=DwwnoCNrKQp&kZjR)5{IA_X0>g60N`05DtK~dFjR1BP>DEV{;Us;rL%wLtA)#cQa&Tlzl z0%3VrCFKlOwdK$YIXjP2j%eKb>Fs7O`pd1}kIOcmKC)5r*w1!dHs>wuHoiqf=tp3HdN_TcE}(w6`Z$V)vdVE}MB4Ax zQ*cu(1h^QcH-1mBi&wx~it#pcaL8H^6q6Q8rts`1>l}BIKV==AHGmJ4GWg0F*rHE!*;&mKQ!HT#cV4U^TA#f5 z=&fc7W;M5j;<6K0ruonoS%3u=?MtM!9>N3btK_5Pr&EH$u31uAoFhU{DkQ8XEYgIS z7?jG2N?~DT0!42Jo}>Z*mbsX{0I*Dn~HgcU~ zv=w9?43j#aM3WiTH%OkvVrzHr!!-L;asnV)jj{Q&poYGqJw@fVT4=!7!c2QqY)u$m zUFrQ@?dYT0Yce{Etr7v)ZuV-ua{}bXTSLe#ju55r?;5=dCFQk1Y3Thv;0P+6^!{kl z>$aMLD`=YsPDlj!et=u)-Ca!?@;D{VboHv0dN^vB09u1FeyXx~dJ3pAIW z`JYnwb^?Gi9jOxMx!0f!%P$=+^_6>PIh_kk+i?ZX1KD~jXdxUJI<3GN<^}wHCk_FH z6>!6_HxIxDi4G7veW_+%1^MZI@&t*J66bdo2c>WZ5YIds53Do^qH!es&Osx}{U0?;Nx{>^S8_AqJs!GYwX z{TA9)tgMuG0E)7$9?DMV?6}vW>9-^XY1Ng&Q(g5dg@h!)SCiA*Q#Y&)_4%ZnGDxscmvxPni$qC+`U zCMn|xjqm~v!@@E!04ZB?&h7J5+SZvXg}DQ?Sq0Fh*&J=+)e-8$i!aSis$Y10LF@8S zz>gP?J@NYc@E_}X4s%KTXs=mLM?G3RQINUWoX+iUz0=XLDir`HCyR0N0eFwCH_S=6 zODFIuJs2YV=AZY(OekKxW(-qDCe;6B6t<57F&jy#I)pj~_FlAQ6y zvoF!dNpaci#)*Kk`^L=VsFko0H=LAPA?I*u9a#$pc0%VE4Ya2mU?k9hx2)8_^F*GJnCCBcFZdH-WSTlO9r zak0hUN0_9W+={kZx*NS=%oAuh!>5*cHYEK`5Cr0Gdw!t>>$K?6FKC^SG+!X%D3KHQ z)+4H;BVD;^Aa(v3{r2wiG`CiVEx$kAXbnCmRqK@n4ckS+7i;N_%}S(Q6TTS}S5`q; z11+v0n(dc-)aXT}pyUWz0Mw0z!9IE(VR_~S*-V0ePaOM)Pc1YAlb&=d^XL3BP`uTP zN=eBRv}6yB&%hk>&8V70>s!GZZ@XT#@BwI=m2m>L#avh8Y z7}G&XzE{Da^qPp#p7AZMV9psK2Wb3z%c(tcMcv+bqb{8p^c5ZWADyYmR$j^h|P+PAmYg z3YmGYR8!>!rsN@=Q_8xHwvy*{m?Mef6&Sql03+)D2g+M5JLw6v8tF)0;>rprD=m6h z%EJasfM|0F?WB$i-*aYXUHo7ve_jFiouFuH5jCdv;AJ&_Q35f10mgJ5r4?FW`uQFB zyXnvrf5+i#(@<%Vq_*ILPpTkYlJs=~Z+e5{AkO`sYtlSh6S{I7-XH`o>*Rx}L1v{l z`KmBLM4#YDNx42%sHwPCb7(V%0pg#Wa~faCIqiStT;p2KF~`?(e%!L%qSf+6 zSg?v6`k@4RCBIcuv^o8%eltxRRk~80s%!ucS0%uIC8Z?Qeo|uPbZMCc_0L`z>nZyI zbx3~8wh{Fd4}i?83w?b@CkBK4vy+@odeH;d9RRt5lK-*NMp-ms;EI-@R2l1uQ9^U1 zyaGJ-uw*c&OD)J;9|l;|RXaF?-MYis=DNeLM6jF`7>IqIOoDoW*rzW(1yx(BmTkeB z&CZIdg~+)7Z!3J*1lhc{m4R2bG6Q4=G^>>5|FtrhipiFke-i}s;U6<17SA02QR5W^ z8J%AG&Hsa-71l#W-!HYE(}|sOzm0pu#OYQLptZMhaqzJttMWZ>yH7hOy4g<>V(j(mRBXVJp z$thawe>=*!n_p||2AS9+8jswKr!uz!p1(aa)9;DzzJI0EWTnl73cxK=bKBiQ|4*O( zBiD6+T)&Z3-j16G6H3U-mvKhZp-;8rZFa-!Fr-TIadD^Kw=AtwZi(Y4oSl}aiwg?-@G!fNlmaN|;ka8DbsX+@JPR>51MaEn%OCXSrR zW~)AyEAUn#!ikdf%x`1h;Y8Zz(eQ9?_1|X!_64d&#-aUEL5eVLZ=WJ)l6ppDk-EMz z>FOkxVODI3r5uc#bd|Q#NR`l}>R)<_fVW zixzX0&OzxV1JRG0l0T4#c@hknMD@c`5oj6LoP~}%2_f}I`im8hWZW?>$v0g{iA96) zCy8}NZTW(Mw2K^PT>C6&l$bpEF@=#tqySfxJpj_UW?Cu9c>ts=J{}B3>yMI~^ZCjX zs2zkSQSz!4Gbh*ae+f%j04T$>sWM!hvMw&0`o4t`5c>}$?E`tHZ}|NPJ=ki3YQ+Lj z7?&wpL2~|2qFjaqy}i-~tO-b1NziWtk@+LK&p^u`sfjG$SCM%Yj1~$crmiCMC?_70 zRq5x68*jxJX}DJ#iNcghT=n0M?DW5`hlaE#6>kMD89vPd(rdcenY9q(WJ_KCmDgXg zOiQ$+&H~h_>JY3S*vfb$s$^7?XyBr-+zy$rRxKUjK-4|rbf0#(K59HX`_|i8n9PfSM zUL6qTy?Er%HNteMc{)BXs$k4ziS#c;Vket5@Co!0x;X@Dbx!1JatjLHU>WZcNIN@g z;`3o?4{zQGu{R!isOKJm^_lWfQ`8L9@fE?k@izPsO)_NH=yi^ak7J3CHjAP9ug~NK z%Y#2p5g5znwCrPdN>{sIpGbcr0Y&fEqV`5cWzRyO=(iF;08iVw&<*%Zv@GI&TZR1% zI!DKm79+ofIY=YGa4I*sLNDMLHrDv zjq6N}Zi5kU3Jj#HWH=uitzKd0b4eK-h{t8FT_q5IM;Fyv6(GlrCp@EzlH%h2gG%?t zu8tfgea5iD8Jh&ISPm>MWat@QBkTuNuWs}()kDkYgdsDVUN=E z^vw*$8mBg=SXH%D1$VHFJ0Oo9V9eN>enBj`xs_4VuJ6~{o{K24G_u!LaM+Cs2tdrG zVu`g@w|Y@ft)$YU%X+o*%CN9fON*<|Z|4Z&&wDDshO!5oh`+?~9lN-^^shcU>}O zIgXY<#kD680iH5q<`v$IIq+6vWPusrDW57dSG-Y(tM4E^#OS)!e! z>E`XdO9!Ka26n`Li?H;wXvHYCoK3%D%PoSnxjK>77H@;9uDA;J4^%(FpX-K&cNI(K zlHW0TO+pr8-p2gwC40#e7iZ|<@U8R9tuJ*>yZ(LxwU&{rWt18~ms*o| zV&})SM^;P20Sy5MUm_rvkkL*M=r5a+_GM#8X~=;`DE*GgT+E8GJKw3f{0Wk>T%|*; zHzSg7&%;M<4-I3kX#D%`rbY*UkG_0nu;uEs9lM)`funOrSL+k#jc%}QJf&?VrA<7g zNey783@E!|65?eZBPuY~1;D#SyV{^tAz3NBa36!}>voOHzl7E$(dp2a=#NXm=ymXaqu$P5=dZ#=+f@#dGpi`#y5%P9Xce5U*0}&2&fbFoxc^E|S%M0cE!D0h8)XJ~3-{ zoYMeqq9b|QD9KKN6*^#P3h2|#iHBnBHC^Q~aahI|Kl7&G48$gN5U`r0pi8sk!23iL zBW52lVtkh(`Y|eQ1Q`XSE4Mw-+VquwSGPS^W8p~u1=aaVWsUuY4kij9`iTRAAL3^q zwr6a%r`AbWI#f!tzCxsbwIX>?T%1Hau}Qia&FiC1FZnPaAwxpEPb~L{=R>b2o|1BQ z967PCrDO2jg8imK0VJ-guh)b)|cg3GBk#fVBHKGQ#3N!|^LU8mRGtj`yS(_DeETKij-5WjW1Qicx0rYJ zMdj$9GSW5FcU;C|vAg$wAPvDsx>BFR<#mZ#1m%!uiFWfB}1sxyGI-tv;#0O^XG5CyD#;O2u87TE@4Tj z_`4)#)Fo1*#s{%E*2J=GJ`hU^!RQU9YNk#Q^?lHQy#?p(>te^I|0xDrJp}dfu!gcd z*)<#FEyrNCZnlB)Sr;uGLj2upZ;vX(`c+sJe0YdW|M+m!5X3}^%S7C#@>xS-i&sld z&V2PSSFTlS4pGq_`-SqEnx?7TXH`!JrlOxUULBgNAy64lHaZ8cs)UR!7J+@AF<`Cg zO*2^iGxK^?S3`h&*Z*6NX`4mh*k`P8IpLdW1{f#@a8xLqtLUU=szWm;6e{CC7`z%S zr=i8CiMF5@_|ptM@DaTK2O*x$ypLRZ-6b9GL72s9&*Hqm5(DIBycI1g!-9l(vYnUahgwiFhv-wrpj9hV5BhseFtTMz>TpeZpe~=E9wR z`3MIZYdIkIe9~5*@{D$%Z)^L{ZZC6gdoUf z!TSL9^oi9bH*2!_KxOU^1|LXr#5ZfAzw4Ug0ZRh^8OHX1ml`L@n!+l`n)^V$CT;I) zY5I%x^YWW-C`2E+d)FH=?+7i_-$PM;1ry$YMR~EpaGuQ>ymqjHg}^@)x!2ZpC-kX| zB_Y0<+rO6MHhArBl`p|U(6~uq`u1U9nHB-t?ppKs)xT{KdYWwpXmJC-48c}!pr;nzTIL;x1`BF67&)N ztq=rCcTm|c0&}%`49|Qq$MhGE)i8yt9y=q()4evN7c<@h|DYx;)M<6tvzC~r)1Jg6 zYPPKvUfcrDRCxm`lM#Vw;w8Vw3)Ve;GUxk--gsfF+UvN~B%%S<0~bB#4X-H;-+<)3x;M0ETi8pkZ+Ix1Z^kmYm9(_ z!IqX=YSZ9i%bL3G>QgmjJTN7Snf^%j@GS?YN=)LLb#*hwr+sm8aq$^^W(g(8(M7sp z&4WA7IXm^FUc5MnadYE%1DV`^y5PG`?P4C|5#g;?r}gA$X?yxs7Nh_EJW!lNGFpx8 zO(|Ey1~{K`IQ0QQopDO<{8{S|W>m~TjJH0iF|)J_|E4&6%iPD2AN8vGQ!b~#z+|GK zKhiB~YmisTp<+(sV89K4kFad(JJ{>pwHaFw0IR@Rv2Qb;!^kX*Buvxwx55{;%ppnA z=ekV4{4W9wh1m`R#9xkxBAzkm165K(&>lsd6ULIm@gb+##?cTgZNW#z9{j})kjxX{RvzsZRa>GeL}htVaeKBYEQBY ztHL3fx)tJW%O6FjnHk1Ig_*q_s6VI?#zT#XN^)jGknXe=85{rIabWR}t{X*i1CzQx z2`c^}=o0>epsu;bYanJuLn^7>3jSKRWZiuY;x<5AUDSy9-B+yP${QYjLR-$&+&%D( zCY$m0uQ6ju{!Jxf^_=WlF5@I*H5aYs2;RuX(}A7=oqbx9z-cexd#&AbUx|{5?VhRW zlQ`}F>z=PIe*xWiA<(_Av$t0i$?Nr$)kzJLDe6yVhL4)8G6G$^bMGK7bN`;6GG4SY zPFi6FCOtCI2ai_yJp?g*)^D8LZAnbZ;<$KJMd-IbwNx5o%1BhBD<|`!G^^-*1uUSC zA=PhGsBsbf`}BXq>Dx(zkGM}QaWR7Lc@)wYBivy(!(I{MPsRQt%cCU|R> zG4v+wCDP47Gt)k)mBh#xWxl!F#fCM>1NPu#2*glN)1Ls8s>D}yF$ALK%awMGfA3pD z4W>(_Lv!gg0P**fzVV>0b3EWAJvJ-`G*$Lz5RVT#qmqV&=k{DO0%km?pV)M*xVf=K zLos!pD*G)w2^h4pHhNZRbppdVqX@1P(mvSJ(zFE5M+KMeM`9TdFoW^EbN*FxGX|@3 z&2Y~b8AjG+S_|1JQ%A3Tgy4!rpzact{ntr%>np8a&zS4Hs(a?6uPFQoCU3k2?VduM z4$97fi*ahbMvJ30@e=E8>=pTxTybuiY*jxLqU_o}cRdnaQfX@Sw`r@U>LU$UErNp8 zv{0+00h>kePj=q$vrTWfwN7wyZd9_6Y%{o^l~jM<(%O;vL)3_xL-_JqOwE3nldh-H>l6|>L4 z-3m-Ub2jjRcVFC|b&=IUNx-<;gF*dn@`vrDWrB^STHV%kTjjBY`zH2^I|$0Y&udW4 zR#5e^?RVtvxG>)VJ9H($Ao(`xMGxP}{Qs)zs^g-1-YzI0pwto)0jVN$)P3p9Vk^e8J2q=>S)4Sq-*v;0?E@mP zGY+De?9{>JJFMYTKZb8r?RrhzO>W<;Ndz*BOD)?3zWgkT0t)emBbI$4l@?}UtI*WG zR8SK*jvo?`H!{+5f6MJyIlT((79l_}k3Aby-D z;;tdiV-^$a0vt9UBNH@9|3PGj8AtR#h$ICO0*E9V_y>_5^C$8L0CI=cXKDDJ+&V>s zI0{Zv-yNVcBf zx;2<&LYeMQ6_Dz9`33z1i2{q&*JSBX*l@q}2V(EGAV!Vy46j=L0EoqYvKiM>X1(s`1{`o`E z;D>{2x{f)~FB8%y1Rt;Hn43KV+|x3fy6=cJ(Vr`1`-b%k!N=-yfbxeHF{}(wGGU~! z@c8@q`7r{z?bDAZ^UEI=fGOJ;8IN9f7=;@Uw5FE~>K46exR3*IWC_uwawe0fFn_JM zy7BRhc0p!Subz151IFNDpXV1;`4y_Q?f+i)j*Y z!=29{D^}cIP_)*^Z0#f=sxG_7zMh?Z>uQ}B--aAV%(ozLEZOo&;7N>kw&94R z=5RSHlUe-)uGzdEkVJL2;)F!R*)I-!hT5s$q%hIL{C|0pP2emikkSO-lA`kZlea>aQ@6!mz%MGfm6 zH?$M`;a<4kX0X%>XT7;+L7OY;0Ze;8XLxau8|R+G&k{GAey`n}%9OqivL06w8`o3R zg-5#xzbB~uSMwtHyZCh7Yq|oyUwg2egm^SmLmu#(BndS-YT}Bld_Y1gVe;)`Gwn8* zuNfHE-cV zJ&*Z23gaodNHxoxXBqK_di9N&X~yFEK2t@zZgO2RYHyMn?FB2k$>ju76O@>-^~YzH z`l|=3t4S`qg&RbEbG3fG=Br6!gn|5BGFtAtoj_yd;KnhY6=~9j>~sXnz~384UyU=E z7{`@d@{0 zXrXF5c&~$9HBs! zX>3L`2=+ROGG2q&wmDxu@imS74&^EcAe4HmT*Ey@q$A*3SrHO+I;(nUsP8WXh`by* zx*vPG9U6Xb*w68Zsf%z{$hZ}MTIw9ymB8lejz-nzYtTK|{q$hv5GUr!>hMGhU$8ni zc!y-f7hq`HHU}ztm``|*^nC^elRmB&g!!8wCS1C7&Zl`A5ba!=3-q7`=O2{?8b-?g zjSnb~aD*PLIL1jD|1{lzHGfCQH|UiQlvy2mVed55#FV)oyCB1qoRTqZm8Y;1e#N32 z7dY%hpZ48!A|0L9p4l%uMS<)^1QVxq!c{QT)Y(dmn`h`ejbg6Rxz~}Whtl=Q2=B^b zycf~_c4=Dm)8ylJ(f}#&#g~^!p}$i7P3|*@>vNNm5kSiM*gwomBsgUYsgIW=D@<%+a~bz zs7bbu^5VYE$V$pOwZ7L;@l55rh|vX73MB0$&AUp<3chx93t(6bgt!a{djI^KR*x>V z()$la{bLJ(8l$6M2XJs2SpPJED@J>(@qWx%v10`Bf*{V+<$7Zlq!dT4`_3|k0g9j9 zSoG{Rg?#`M*A&gM?ce9Ss^L6m35)z43nimlK8Sgd_n8%i=y0k|G#?Q!>vF`at?P|s z?z|tyuN>>#vzc0ZgXuO&RePr0WneskvfZT-Tr6Vt=5l+I z^W6t1@PlG0%dHwHWxC5R<*hTh@4GG4vNJoAtuj@I-c+2l}>?D+y(1u zs%BDE0r19*mf{U$TS^<}Km&YdvESOo_fnZ*KCi(ul(H|6X?f|Zp?Q;>`3O*58PxLa z3vHxd#rL5_jq)CqAQIVWI`b+^NEOogh#1KbQWr(r=^p zXL}0*OSe^&^2lQ+Nh>8$JvIk&&+wuq85*frjApdPx$N6BMUrF{5ogU9DRKd)roN5@ z@L+fOMON{hKc&GuE!AvjS=VZIOW!BLB-Jz|qEKj*L%E7ckf_`&ixtQg0T+y5!E);NT5pKm3RP389OAPyV&U=)>jwY;OEsBOZ{v(2sQaB@dwCXm z*R;7Rs7@hEeGb$F+>fx*2xly^6e3xtwux@8VPSXp0Ew{rl5Kov#v<{Wiix4(v~Z9HB;N#?2Za{31WI~+GF74~wHb!F+VY5Y)(hGE*%rvQzoLI|?h*IxA+dX@4| z_;!IjUaqI-Nvd;$ucOeXqZ#v5(h74M_oB}ws&0|aKvVr31p`Xd_8sF>vR1pQ(HO$M zs`K91jE}BATO{8c>nhQInpbH{O@qoueZ;r*>O5r1%6;RNu%0*Tv;g_il&y$-q8|p9 zX;6d*dPe{5@6A_2d~t+LBi?$g4)f_Zu#~lrS*&Rz2PSB~srl0Ba5)er4c^c{+dAGl zOJIM=uq?zg!n7thGC2foM)zEKJIpfcH z$FZ+s8b`eS-?c9gGtvG~H>ixNzf`#${>z$c+Da^NHfISUf@sfP7JX54{4*n0OgM{# zu18=8A}`!?E^*#APbI>;-3m{h(4=Wj#~FXoljr4djlgsy??ZSV)>gGcQzlIahOE@o1`uEpBqgWp`Bb!}9$3@M{T}?6&jGESDc_oC|tQv6O|0?&L&@=GYNRW?z#;Ez2|) z5|5a^BPWL|;NM}OXh)ag-^o*mXAu#*-fJc1J}a{+_= z=)Fwh%f0nR}R1oQ@_F;`16}wJ3B$dkL1}Z%TIb$71!q8taI5VyOywo}ssSZz`=(87$+fV~J#ao+@?u;S; z8bc(5Uzm;kBwC6|reA1LQ$z&+Z?_`c4X&X7j9DDw>x;z@m^rSCv5$3mVK`0Tk`y~5 zy@dBbgyn2s^Y2Ahe{k6%8ikVkyY7V9c_9gSJljxjUX5e$bTLdOaO^9$hW-XBasF%8 zR=wLyF7bFap;K03VY8?6GY0Gk{P?qvMReEF?>qoxSkI}-wp*lHFmsuu&n=C!fz{J= zAz#){RZ@x@z1ZBM%2O581GYxxy%8Mkj}%~asQ2{-E~kKhFB8X{Wn;VVzsjGIYRkqkl zP{Hfwx1J*Cw|>=}ju$W$*Ju9aL@GgXjW0iO(1&-0{Dg!d^Y|=CNY{w?1&_o#VM00`kex@J(<<_xc60_*|7fV?Ft#~F|=TM~~I(#fc4aA_x zhBh5-c5nBK#dSej@qUxSaA>!Lr#gw%OetmTp6O9==TIf~aE&}th6!|YTwDfZJE-1K z4gsNlSSL>qJ5{9J7A@r9|I&|I=4&jBs@ysz?$YQ$?Y#}5=oLhWxcBBKs_tqWa+t+3 z*;+f2jzBR14sJQOMbQM@Rl}%dr}{#I+#zxHL;W`O&_nGKBKIvk@^r}GoG2h?R%V}w znMRv%;{adM){pLyIL_*!*o@TOx8~Gys&7}iH*))*B~Qq29E$kISyvXVdWka(-Hh5Q zUjr^IQ6SK>I?-n_H*vz7tFMx#zmldx zG!@JMjMoexc7{o|zEO0h^>=vqErxXDx2v%O@nM_M)Eq{_FiCgo#ntF>uA$kd7OFqe zqb=eb!NETMiKPrVX0iG4$aQbPC`)X%*$KkNj%;?!B|q=Ws-SiR|~n8o@I_mp1^Z- z^PTG30`iMks)wbnfG3?J1>qAPL^dO_dF!sm3p(4*x*gLY-v_jb@>t!xP#s1LrbN+O zbPbJ|%tj{;KPYEP7XI2>56`VGM^EFsja+_H-xAp4DY_$F=K8Pe?R)vLDo){5H&~V> zYHE))DDQm4{oZE$VGcv@en3F(BlEb}gtzv-qE|$9y2>$K-1+utm5EQ<>y;OQj5x+0 zW-t=^{=>zIuJSOp82ptSLTUdLH-T#ACWt?>0wCcP4nSZQhKVWhTPW2F&4s}7=PE$~jVk+-di!_aE_*&QQiu#ou>d|i^YfF2+Fqlq z07y)zUF5P6Lk=rdwQ`#ZkqhZ>ds9N2EjqF$T#hIvYlgrI1-3#hGc^?UO`E4lz^Z_Tgth)c{1MA&%@zClaP_>+}v{3LC9WT-0&{TrEH4$LPC1;sdp(1@KkmS(a zgZE%24+M#-Z3@-OMfQ*S*7XgYKdgR}zoxa{UcW&%c0wuQ-n~q>(OB!(VzwF#^^*ZJ+?@|iNE{m>s<4m+ne522wZ=)U;ERAG09-G)bS2elm@*1YM$>MEe zF^zI4Z=bNZ>9)>IVq6#vbD#``~~(Up9+*F3k-VZG+*JV7n>M^m~b%X8s#j= zXc^Hfx3< zhimu3KE{l$HB-pf?oWOny!SQ5-qjtTmee?ijP*B(IU+jm0@OfCy`y`bVA7IouDrsC zOs>4!br9F5SdtvGfQJVNpKM3XdzsZG0@t}xsaa&Bb!4Q!g$oDI_Ods}u(lM`-zxH% z_?G@zKpqkN74#T(zOI!a=91GoXYQT#-Y;|A@$jonnARKH<`4Vr(|YcIfa#mNx!n0T zCF7GI$O>t#TPLu`!;ZKw^?C^L_boR02yV~W^-{`yPXji`?P8z=C8z6Sea}r&@|QsEVX?w9%-_-onCQSv{Q*?s z0ygZ%gDWi!kL7(BDv|GOwE79TBn1F@O!$i>hI(RL$}vH&vb|axFk{w66RAuskoqBM zF=;Ps*%9;Zw;L=0^D{{ol~hQOI79~1Y$GO5*hODYT&*N#N{?XEFOL|rp!D-JiV8z+ zEldCg$bMA-u+r!NW21&z)t7MQ;1eErLB^TM`!hPs3v+-4rt!mRdECx|!$=f>eF+P6 z$8q9&kDa?Ea>`YWGQ8Q^bUY2Bilg#1uVE1y1}6@J;f-q7%ruUX>9W9(s0{3E-1Wj0 z#$N0srO4T%)^=}%@kz2Tvw0U;mx``T^c$5L^=!||UHReUt~fpP1$sIM+`G=)<)BB2|=b1 z8bJJ8nTd>53)Jq&Mu!&bHiH#gx@5esLme_=67H23tttYRbj&D8E3AFzO-O5EhVoWW z{Q&rIGEErS`Ob2ap#9~EF%3O5+QlDpYhaoTg>iCoXzcs)Sc5(-UG`$&$$<$PvhMk$pF5)xtO z7sh9o{MFt|E|mI^)mfLchb+kZ^w6Td^>&I~_omNv`Y{%Bm`hL?a(YD``!>PkBuR8z z;o{CMN$wp9rg+A<6KHsBk^y63O>El z-f&Fj%8-H(LMv-d&-p*B7OR+Oi8*BP6FMU0;_sfVD<04}IXPo(VjkT! z0*n9Zm+-JryJk{#V@8obVsMKlk12hB)B-|L93H1#m=5i};iyg`Jwrtud#>c2dY#MJ zSE(1FJrib@J_C`KP}?YI_GWR`;U9}DtS%y8_Gsg=Bz3(a z6T-L6f-K;t&JcX|{q8FWJ_R87P@02&N&@s3&Ms8Inr6Gb+l!b!M!-E6a?%`2%Ow)F zo-~19Q}JYsdXe``spLW5YnntR3|{i-`m@BNh<%NKU>a@>A%10{nh&7FYF$LgVpJE# z;l{mk7?1VMZ>C*}XP$M%yJWl!P59QZM}+U16iK1AG4mFxOy!C{Az% z5XJFniwj%>h>yBPpGPFRwlRQ61>hJvt*m39oOtT-pZTxyAL6syifyBVcsy|2p&7={ z+1=-3KBkNM*fz<|#OqCI%vl9x$*70`eoa*W6AQi618|S?ksy4!Y9hpAb=^{5OJVos zr3lLdcx*~#X+g&am_?a;GL92Rul^W@?)U%+o}Njv=<-G^P|$As^t#* zw$`Q#*>W%KyJpSm0AVcRTr zLAa_J1!@~Q+$Yb0Q`FTSg)i08Zp zx|D%CQ{LhZ#+mgXIzbs^+1^=&F?-|1YR1LsE_r}Z$ao;lWrfomsW*w?8qLTx6$TVU zRMn}+_sq{`>k?JJf1)slg#G;L?{+WYX<3{Oj&s*~8KtHKGQnntD|wD|rMsLcmpA2W z0gSb~Kq$_Ph(nW~3i!VkMm3wJ;+OSW`$ zc<++y%i}P(E3~VsUcCDhw(bY0myR+IL;Xa!Vea78GMBw?l2Stc1HRYUpI03NX0ytF zQR^I>9_OcGIajPUpo!au^kgfZsM9Gz8Xw?&K3z{A=5l$ERiu_xbezZ!(etHyum7Ch z&2(l8(PE>^|6t}U>}7Q9OL4+3Yua1FW`KiBgvTBn}|foxhllHZ&=m+#hy7TR4)v@V_{z3^}`f ztfrklO3BgzRelJiHjH-_`sx+*P%g)iOBq=(iSge_eaNEr$o3soW2wCB3a1DiSY(W? zSAn+@)th<(vE*XD)b7$Zh3`L zP|p=gE&qekfBXO(^IyYR@nS=b2>@v&=2;*I=QHcszjjmauifNU{%bc6i9Q2j(O@^8 zim$yJ_HI{RLzmF!nT2O@TASpC9Gf8W8O2~aGz4^4bokgYfr*^i_IOcuC9Vu%V z$^F9|r<$OCDS%T`HGyvmZR>ia%A0ysg(L4W$+aB2K-hQ=Ix%!&5vUNa2s)|^jy^pO zHEhSj1dJibo9;bz)JwyL4O|TGQ4^nE{=$sE+EmPFMtre0*=-(}Vc8rkD8Erjeo8MQ zsy6!e9haMG)=Xhkk?GhL$q2-O?%J!&`NVNN>-!x_w}mae9%f+mCU}p&SbP;gz5{&F zx$KUTJls!Z&7<$mlgE>VWH&x@0|I?zv)Prm7?-d0jeTdhZTO%;b7M_r4UEG9 z%9#mrx=B%=`eyNIRbG2+K~Kn=vUeUj4|RH!nBR7|P;*#u**yyVTC9tBm};ZjmbzK~Bp_8j``piVubv zm4`ikafua0Q9@1$pZogp=@J;8vTg0ludqjK7!J7bPYmagsqJcrGn&P&xn$)4+pnlB zW|_Wmigchr?&VN3Axkqk*XoHI~NdSvfE;m#_QcKQAJFj)``PDr^CoNM!SD`pPM->vpnE`0JGF%3cB6?8+&X66omB7J9P+w*Kps22C9f_%|br z(>A(sw9k}+f}n;A2l;_lHWdrl)cxvVR>Vo;;*Q3tN6AXKDTb28;9e9sqIeevF~uv| zB&u%0NDP+EJo`eMWdj@g1FX~WVJ{MbS1)eC93tJ4e}&2YJiP#Jo^yy?EzxG3)U#fSBi9{xn>-lRP@ct#^`;$D$&}Q{f}Y& zYga9Iuy8{vC&2_`>Lw-r)b7-( zlGRlLM8bqM`mXN@K>~YZf1Tf7uT*MAu{`mwSL(fw0a$8VQhI=;{;sC+su)V>J)-F2 zO?m3@y)Pv;=>z^Kn$l@SMCM^H-PH>wzBOfWa7iQGQRxNj7q<D7DheaC3b}jIAkG86ul#J7iI^43`dEu#jn;Bu1<17!geT1}lNoD`2IlITbiiC4ki+-yS(MP znl!Cx<}p_2`idxj=mNG2Hkhq?K{?f4eqLkJ_RQ`=xm+mUlEI(=f+_e{+Tz)A9a)a1 z^VPtgUJo_o^Uwh{&T#=7=WG=9c|3vunfB+0hzT7md@ZK*JVWO$Bd;6lg5JrntJb$e zOLpMp>K`Aj9SQ@l|DD#)#J?RE{Tnl&Y65$(1ZbZ|y=FQtwmJ_-4j6swSUsrGj|!qb z09Lj5>ENF?5{7hf&VZ}>B;np1>(SN_j(H$cWO{s}7&U zqFo$LRuJj}m`KkJ8C;IcBG5p|xPw|6)(kOa_csr@=}*;{2)MPslTzN1@p)^25SJk2 z_UjmLX`lv(pRhDZOBjRX8~eeI6$C&lNgkome`e);bw=JNTlpQ{-X+#f+|@OW|4MU) z9@b|YINz&r+fM#VEnQ6O`C?P8?hrp(O=f5;3j9zFz8d=b8M?&zl({5&fIA2ScetBI zZv~t2;g*cN+O?OpbPImPEZI>y0nCytz$}rfcu@d4H9Yn`L>sEgDbBf{lOA~k^D+#0 zRY&4xP*}bLkkR+(CtyqO)wKgZhY*Nq%VlhrK=r}Z+pMVW5EcL#mw1TDNa)8F%=6%c ziLMGCjVWFMZ&PxvJaDq3L(Gm;#D3Pnp3t%%I>@wwVe&2;#uoJoSKqT&=PZX;=PU@O zzXvTKDLEjz(RX&F1a~G};Xb8Jc2bk4uui)@n{_=ObI{w=VSdW^`(GDZ3Qrtl5JP-( zwSr+Gvm>krq<*+E?tf*&@?8GwB3bLdlWdQHq%OX>i9CHENfoGUzHaX-i3Lcj+6Ahm zs&F@k>HX^>?e~8Q`lS5{fZ!{naRhQ-o7+v(3gp3GN%IB1wbJqfuP*clvLm*ITgQdu z*8LcZd(X5xf4y9Ec*$}gLpE*|T4EVEv~y2$xOIGYbzVa7X$#^H5HbM>+;Cb~VbOZo zyR+CDc<^W5Zm}u&VtHayq4~66SfM%O_cBF{%9_r_@&4%V(>jEF(!ns+`0`}^_vyys z#o^lKk>KLR^okuK;Nh_flg&*8;$nSm6Cs;;Uiseb zDf9D-vwHc~KWC>BZi}rU7eCJ}4Ho4ue=c5}Zr;A!A1*r*M7+c$)O~Kf*t>r6bFB_| zqG3NExWRenpXShmKhCAELN9+B=Tr0+$d!*JBlah9cAhd%HOY)@hXM*3t>fz36)hKk zDw8S}FSjSKehR?|JcY9#3N8M76o?b5bl}GwPPqN_)y4VK%bm}yrx%yUxF44n7n|dk zxfchB%e6FC(ca?_RnTQgCn&`CPb5P6T!uBG_3V#iY7Eh<-1GS#ZY-WUBbVDN4$K#a z6>bX`Sdzh~mw)5TJZ@Ji@Uz3i)6XXWVw2!sqrn4W4-)+od@$`GSp09yLH-bFav=7g z(SHNLrFn-yS+A0Gc25Go0I^Ltfygh6!12GI#I&{$2=P^(t5`N^dm(iA#c9N$?0<^^ z5o7)nFox>CWq`BpG>y=^fAjor*c8hDm&Y|NE|m3e%gRETuDt`Lje=;?=0k7&P1*`& k!VgO$Mu6{L-TQx^kN*Ev!bzK^Ma!6Gji4l24!*kbeAcQW`6Ob+_AVsB0i6BZRbU{Hv?@}V2h*AOs1t}uZdkMXV-UOtD zUIe5U1r&sT!1w*{_uX~xT46HGoO9-sefHkZGdVfO|8tH{tpg<_V!$IKBg1=DC|E`f z#wP^6EAHSc6I`Cezar#RHXe3Lxy2ALZ)g-~!EKMi(Cc`nzCV)CcM#M{K3aHg~|wnBv8W`m=;P{nGob6J0c&$c0u4c2j~nRDPu*&--3BoIfMg zj*&klk~cXKQpx{p5cYvy$zF~>=j(NX5(Q1GR;5`y&j53#R|X%<~3R>%d*LQt_bo840&lb}2adA~mUC zqx|RH*Pkss`FJz+VeFmTUzWnG+7p**i|?=~V;?#R$p(Z9G)hh%`<2hR7Sq&era4O+ zNdAPix|9@1J)KohRqTsR;nEa#bv!Yu{rSi+AxpT6Em}HQ=tkbgw(bYQYm(7i%fa$L zz9OF2X8m%K786qCc~-t0rm&d!r<1Y#$(7kbGTv!haHBol7XNi7cQ>w z;$Hs>wRebW)>=lG=})esaZizKr$PibQ8S(nl$5M8T=Vq~0Ulli3m)+Q z|G;a-2NLEhz{XdQ4k4mpI?#Q!0seu{U`>-3{0~2-p7;eyF!t@elJ9nDTq(NUR}rQc zmR$0a1ikjkgoZHtrFLdo{rN&ZXx~GM{jAKZ@*KzUMl_iP3Cs8OLpu|Ho1D;C~KaevPwc&e`K&Htm_ zYV60gXeF`Qnnr%VjCXvF_1A2aX~H`^>~RMM)2#yQYf&e%CUy7ql$o&XoW@ zI;|>eAmSEDcaWV%e4h=?jx)GWZfO&0S_#W^_+=6$ZmGgfn*GDM!A1Zpo=}$&qK~L%a{Za5wjS(Pk=N z(OaWZvza)1QzhWtCpJs*nWRi zKPGkK^KQ-`=kkD0Kl1i8w12(T+*)?&Q;bo)(`PyJetEk7o<`4;1MfL*iu~P0?J$9;x9Z5o2u}6zVLGGpo;HSvvN3n_%rATI zocBjc-){$qA?889lvqcdgCBexoMmozUt2!%6`f?rfh9wrX(I2zyZ(ZLQhZeUu`cs) z#Yhat38XKw#%8}IFWBW!XEQJM28K`fx~S9c!hsWk^d$X|jBk9YTq7^vi1r9_QPaO| zaQ)~(Vd1$SVQ!4`fEsq(UkxE|Z@&5ZC=r)V`l!_#;c3jBCB*@6HeNFs{%Q1eb@BK- z1ay6t``wu5=$Y?kD@fOS={x($ifS&^}YS5%CLND1b3WRN|l2pZQbn0 z_kPkAt~k{ppUiH@ak_8LOT}qO!JjB?(m^jLH}5+ zhp-a^4J+>t9yKxHvc3DD_^xxzaM@XzOj6*pkfSh3 zGU!0S%9LJul?C!NZPCd7t-TG2YxayM_*Hc3S8bm1WPbhPOZ&ZhAAdgVik~}KCp~U} zZfaimi=3+?VmND_skHw2v7g1cY_Sr$$=+pjP1!Kzfzq2}>nGTUkA{#;e?SP)N8NNZ zrLKgNb9CsG!d!P6>t%gmn&si_`k4WBx!PV`M5qPh2$#D_t$Qebk;iSbhQ+rA8D&Mo z5Kr|lZ~Q+~6#jG>qM+0bC#(#q^IOyku#YjGjq!1P^l|^bALHZ08HeJZrn!H_k&)Y9 z*CrmxgO&Nh$}Gs7mzhg9`k6bfKOAmd`^#v#SwpTnK>0T8#-H|(9rQ>QG)={wq093_ z@h(DmW;f+|p}oqr0Ia2ZRXVkWqjL02^|J2L4}^*P%a9~S z%U(0`i#;e-ZAMnW?KGUvv(3kUK^0E5EM87EMkTm)1CfdK>K@*G`5Y3)gpG7WFMbcFQzYdvnc+c!wR@ z12X+C_Ms`hQosC8EAE!V)+5hJRf!0#=h(V42gX2iZd?RC`cTc(t@v($12YHf?bJ^q_aX~91^SBq@aC3A$| zmqERMR=tJ?x^OVN1*m-&KfX}sec-_xR&XH=eAo^;k&1d z`q(NBd$lN?>y`F6a(g)syJ|tGY4@ zda`nM9M&>hk=wG6g@HGSCn4nEp>k9ULyLNBUOmBZSdDC`+NY5>qXB`_H_TSVaj(7Z zU2C~n`{f;VgL482#>hZbuUIm`wb(E?!j57(Hy!`}AWS`s(sa=u^W^zQ+^+2udZ=es zfvx$3m`*)zz+7#t?@rDNhZm2tm{Y}Xf*0b0gctWTojS`OT+R;bt4MF|Gdw)JRA7ew z_v}=G#;%~`x7EgAz3cLpYQy)7Dl@3eot+qd0=@RAzZZPFw;nmw$(I9l6nzI*5Fua(=ypN(n5 z-HYWrokNJfeY(pRXGaw!76GT{-={D3S34HnfB*Siy=%^KK6gBH@$(=?Z2n?s_c7w) zZ*#-%wRTSVvu*z7^Y8K3F7`?gzn8|W$YVH9UpQL?{w)}~_;h;uz~j_475)3YTt_@3 z^L>2jcs*u5!kzT<_yFd+h+9*EbN4T{3ZDIG=6v9XNa^F3jM>UqRZ z;9HoYGcy}c8|Id0F@Mn*^q1IyiLBm;JpYyeg z7JC)Wi>Xf`rvmq7HZLZc&g}%2i*Q!3BxQC{B^9~df+hyO`5H&zj$YR%&^0mz~a}O%z z5f^6@&HksWCFza#%mjDqo0=sqzD}zd{Uhty&W6#_b;N|)lnPS{@`q9 zF9-4a*Ll+8bGI9d5m@K<>x1;owwVte%iCJteSF4CzwEo@{piseQjTx+5S#Q!cnx_m zh<%mj(~0#;J83L5D$7O0cE=R_S;1?+rt-50x&Byr^FD{kzUz7R+IrN`VKqqL{?{Df zFpN06d+;Z%@UKqc_gw_b#?iEs@Q>IXO?mLs1MWBwEixf=GL}-wX5%xxL?xfi0ufXR z{1n6!hq}B&Ma~T}@zUKNp3`uKaDfEyt+K?z4X1iPKJ7pIQ2CSq(MCr|`@xquHcygk)KdZcl%S0a zFU~+yA)AOcoMyMABkV%EQ}=*-S>Si9!JEyc+xA~pLI_DXCH5&e-5u_)Zu+Zdttj(+ zXMe~8;dE~!Rc@~odXOOZqo|=>J&Pzbu8HLks6rIVOTr~_NWlelP(W|K2JWcvT=m`< z0a9SOerjgn|Hpd-Mjol6slXy2_lmD5;k64EPvyBezKtVw_bYZ_=>M(dKtQHE8d%M6 zTmd}gs-3q#RaY*@^53BpNpem9XDA$sS-|*3@Kuy%oh+KZ_rC6ZLHlp`P2V+zAY3;P z;&^cy`gk(Q?VT^-2zI)@gttc74R6%5#n6YGLlXLrV*mW9ShKiyVdeDTbawBsd3yKg zbpKX=$>S#H3D3CXSC{J!M-WGGG>%xhU!Y@e?A{N}E)&fz{WUbgv+VDymztR2*6# zxJlwv5*fr}=U%sZM*ZoRXyJ;@lB&2)G9YR1?Yu5J{<2;n!Gwf`D8KTyp^3R+Ab*~d zxz`tLLj{NHA(?-ktRXacNNR}YzDcxn^b5FJy?pNtGyYgX zqX^}C3<)79t|BxcK)j^X`TV6;aho9QCF@rn3|-9iAl2aYz%gB zUcE1`ihuZ5Tzi`!9ViZB(RU!Ne6I@;c_b3iAz($GmH&>sR9&u=84+Zd_=FxkQ+RZ` z3hT$RS;u^^DeZYAF=@-k3cpS7tZoFB^r|nLA+}_<{tVn2eargIw}^d9a=Em2>Jd}M zL#Vqej&$jpM270srvocsZ}oD<>$U11Lg65mM5>of<207!*xZ3;66on{K@dw7m8FJM zDW9B?RvL&Y8vez=y2+i#q7Qb_=pg$SVuIK&}}3|AgJk>U>#vCS`B z@T3%K8?Ad(^C$9?h)|o9di_5#^8bnS9Qy&EF=}cVN|_%QflAxG|}gZ}9Xcsfn|# z%-84PQOXOJj`A&B-lYNVq|>A{;}R_j5+caiEGXE{Xb-5t9oIuhvd2>v$>D4t;g2tEIcu5K+G{a4L(1H5ep9R43k)P$; zoK(%Vl=PNrKz9ryRs%gVn7|@I7FAxo(sTg&R8n*ywibJdG*xnG|r?evP)w*|H=^th^;D zBIjSj?-|!g5Q;g7#oc62>cE&_2^zh zw=|i^`2^8y6;P#At{i#VIa!d_sg8gq4IM})n8Yh>S)CELPBl$>8JhTKdYHqyzW7Tu z#&drXhL4gy9?>>t!aOqWj{gy#W4cT;Ai1NUp^--L&S86DgBSL+Ro6ov|LH>B<0b)N zLM7u#zH7-lx0(Ce#+mIX;H4ru+cz-*hZU3Sw-n=TbePaoy=^Z(2nwJCn+4#6g6Vd` zy7!BWNci&*u6N}%wXXP+az>oC2DRwxH$rnWR%{|ka#0*qgQ`2yvPvP+o`}Z}exvZM zcTZha^kvs-rWch85W=W(y@Z5VFR&m@G!l91D&~5vGX|(wh)Bje38~x&<)oxbpIKT$ zl&P{(4;J+#uv`+QC?1j#wp%qj7U{+SKRS&eo*T4h{6!WX3+`HL`8*o5p`OXF3gHj4 z+sx0ZbDT;9b{y?-^oor^Pl9tLKn6XFg|#sDl=?AomjV>GNDvI*256qF*FCAK;$VBc-L#Y=YG{eC0T+%4HU`$*G z=z(yMNfmIhvP}Q!a=DP?cQAR^;5fe{Kfc+#6b{XFV&ogkWKCPeai3J|;BZS{R zN0=OzExgq8vq#s-HD{H{n?ktQrdzi(#z104KsE` z#xv|75U4xZ85)ti5NXu6z{G&KYs%)it?YC`4-0Bfq!MEtp;3t4ok-GO6ma`5_|9|0 z;%}N2RS^oJ(#Lwuw!h7cX$KV~Qst4E7TM^~eB?0{5`dRh&-JD`h5$l+^h{_y%hZrQGnEH$6V}p4EgsnTOfM?R9wih+907~N8$Nn&dS!}|(4(TBapJ@(mwjY{ZJ1~c{S8Onc2wH{74kvn03JRF5M zP)_3!tPk7e8R1R%@Q&ias=#)Frxh#+#LOlgIHYTk5e{{4m5pK{77enj@_G&BGFr1^ zF38HB4W196KKm!*Us_9l69Uh~ojH`=IWDO1dC~$r*CD5Y-dOH61UDm?_h~-Sxz~G~ zJCN^gX%1@f8gU;1z+h=O0>mYSJ$_M^22fZI02^{`?)RVXm7=a^oBe*}`QmaY(V8Sc zhk&6>K7qZyE;6vaF6_lnNd&XK#1lL*bsz)9Bon@%0IglaUNWQsz>uPFN<0&Sfq&?K zp4uTCj8>=sxDZZ`=^e~A)`-elDQFwvPKO}~{=VE!aQ=$H%Yb|>k*WgP|FtQM1KR&H zhHI@-_4s(5zYNc^gk@g46tO+B}>jM4-VYh5k6;> zC+3*IwT`JteF@H4&mhRsOj`|j!pz~N+q}2|&aW<{oL*5J4Oq1{oBV?y&L+erLowd!YTNHFTaDqlv#G!Y*9Sf;wh-91W~3Loxsly%p%ON!3J@XNV`R`k zVYs5ZVm(o?fdp0oCy;Ii5Gs$NkbpH;BYw!{tD_H>l)Eu@Nu;%}%yzWqJCgT7xrRNo zAqtJ6!{Y|fU!zV!4xQuAeuJ$(9IRgb3E`O%9KUogSVWA>G>QiKB~rPP&lFS%s$Ln^z4p*^@rL9`wpAbD#jVv1j|>2aVuB zIFUhCYPmVECPG0zRX-+->_yF!6dE+c3yGG-aQH&Q=LQ-*$B|zE;r20f$hpHNg=hiJ z5Ge?1^y-`^c|(B>8Fay{h`j~m=$H7dbf-7ny0(JGm5rh>-$q9aLyRX9q<0Xosj2Ux30l@|=^ zFRy#i7mEZLS5eu;-KN+>{JAk{$SP&uv%NVo(y86quVY1g3xs(aVBS`(@AJ5Y*MKJUOKS#`eE!J#etCfWYxWyCjk z6{Nuay|v9|DW}ttd)25#MrB+pqjHnKg+bIr_dL%pi+rZ(GZ*97--$88X#872?NySw z_@gt6#Q@_XsDj9E6x-k3G>1^em zpV>HX8kpelCF_j54RIYPsigr&@y*5F31MzX7v2K7Rf6Ic4e~Yn{I?Ko;{9EDE7g7DsGkYs%ls`g2lpskuLbawLY)|b z767f7OS@Vyq5qcKh5TEAO(ZnKe8O(IAd4@JMhH;zmIf2KQZ@+yfr$5pDF|Y; zJ6YONbrRs?&Et?0`dwHztmEmllYo60O`lwxttJpzyeSh=(1@a9tDOAyvhvPxe#(i? zSCEf>Pb_+2FIWV}CX{D|6_wt+R!X!4NIJ{(89tOt`^qgujcPS;TatTy)eJ8slCzVJ zF9=no5u5bMMKl5f4W_O{DYi~B;Z+h5j9*DPem(LI0O!|8s_mRrc^aIfu&fzw$T?L+k(Rkk4S>?&fcP0J zt!Af`?^loXS|bTelY*{gh-1*pJCfC{DO()GS`&_Yx;+^-4XW9OPiGgy$R`pNewvUx z77oHzaWCo)LUzVYmz;vIiBu)5OSfDHVt2nML6${OHR_3wWnWn_*4?!xL^|5m^wcr6 z7gaWJEs6Mpg}|yXp(R0#gM$uXc5T-zL5vV90lklDPliE_Du?0ITt*-UDgt7l&4&vw zE@PnM3YhzYdg8!Kay$d4nSHk;u%!KMtU*WkgPO&(x?%|ayoKvliBtsz$!y?!a)@ry zZZX3YwBh}|qw zP;NkVE3eOinU0cNE+}dY-K|~OH)h>l-Y!>sq~Srp>%gst@??+H=Cbu<&tJbYQJy1O z@|ix;m~v531;!&g+-VrKFVsEG3s0emT2P06|6EW^&`N$*h$vQK{J0u^^zFN+3xS#g zH$H!9<=Q98gtB@ae2?TnY6jQI<9lB$5VL+IB{D0>D3?;b43 zd*I*b47aadljOhaVxX*|=HYG(ANS;v4N4sI%*`B~=}W6?h}O1zE&^UB;^+DpA)3)X zSu-DZ;|FSm2=Ql3DOY||BKBiT%Z7wrkNuA2V>5Gp{>gX;Zf^d`L_dx?1)68e{qN8? z{$X;dRTDB>J2TQudOI_-2tnC_j-9-|&2^%e6G{ge^jlx=T{BZqvtD`VHGUw&uTzf$ zS@aUtIuJ5DxiwC2r<~5}CQa0mQ8y@*chzclsC9+o~7 z<+L0wU@U?ykt&L_=3V2Tpz7)_GwT=#7K#k@5s0JBp8(cD@0M4QdeQAxNb7Tgi5J`; zl)80_Q)289ss;)!3k{7`0YS+;dk?=7E2&hW6E(L>h4nYie1_G3mb^o%&txF#kN#9c zf0l$2k<+F7)FsAp#r?2Al7mLL<7%7`=|9dQ5h^@hj)D4MT-5B2IY*#rt7weD>45S& z1&HTP-)^%5)W0qgvt&}({#eK%#vh|zSsb>P4KL6MG&EP!c5(VzXXaNljSK_dMUGdY z$+R;)q7HQ(^cZs;4e%r<>fl^gAOrR?Kadl>uwiDK)PKyJA z!*x=kC|(i8m`MOTDx0`V?38%Q#g&2ihwH{c&IYY?RKNtT+>-LB|8QKea0a8MV~-oT zX)!HJn~I&n$?6T;@51E};zcU_u9$JqFnRQ|y8wJ5%B&JouZ{B$Yh)FM8a1Q8Hjv69 z6RJFOKaK9Dd>)N@OC$^8ksSwpEknN^G|r8V#&+6ECw0xeOjqbqQczPWw17sgcTXat zidb|Z3bN_eYGeTb35fH+>9|B$n&rR?d0fRl> z?syJL#h#i#8#cO0U<|B&hfTrStjcj^Y~MG>PJTUSW1yVGkk~|hVkL%e(qMGP6(;Kx zxsJDq-NZ~1;1Gf-lO;6pZHusYaaa@9~Z zvypL!UPzc*QORWKu=wM$0$4&wSX@y_77Ut5-MdXm4npo!{nn4OEAcz^`{GlZJIh~Z zs1&S{>30feF2TwMmW{t!xvj?ICxZ2U5&oQ^%5epF+dDN~ozxh>;|BpRfXgRLcW;E zHI67@P%yt7nUeJ=29|MB^f)tqiv>;VfWy$J@Rv1Rbs2`3=Pqly?DOVjpSQTkqIya+ zVd)3C@pcvtYvmhr2KwBbPzRl#>)mmASq1&l5x?>n9;%C~8 z&b9hh3A`=1`Yw|DR%uHeTEup?|8!i<63&5hSm&Pd6y_eUgkY18Vp*RfTj_BbCu9saNa5V$ zH*C}otmZSKBaSwF)W4O5u1N5R>`ULT7bV91%54=v_u{TeKG0E7CRu~gh^VrnmWZx`c(S4Qh3#)N3wR#iG1$GkOdsZ~6S z-tO4Fd8$FK%@cTu(v{a3;U1%Gi#(Bd_0@S9GHJw1) zLZ3!F9da}D&EL~98h@~LF<00Q_V-sRgM7%fr;v7 zSUP|+49Gfc+8|*aJU%}D>5aCZgWQ`k zux!t&6@a9k)kVbcx8jWU_kj-6e}Jn;R^(-ER}GWGuh^fEqvI(+i1<)-4o}o}`)3(T zMK$XqV1&A9o}gU^k^K(&{U!-7#Wj*$x$TtCw~+%^^bA_k2bfqXEo@_*E1cqZl9_R5 z$0$N23`WvHQC);TSw5x`HeIJ21{+7bhEFN!PrVe2iBE?$7qG}V!!nqChIW2UWN)R7losa z4^cU7niHJbB?`se6A=(1mxilf7I5tXp@1KGJu`o}l0~dnlhe=68=l@jH;CxNwFjo1 zwufcS*LgO-j#A;82K#=Ar7dAVDgf_*+D6T}9wQadu`TgrHsocIGPVT9*5422?IUhl zWOD~na-G3!fmn%|*FC4ejYh+!1Dery|Y#l~~e*-7svbahzC0CWysC&th zuysyTi4lae#yNUkQWE97BA-efp}i^k)_#uM`CFBU>PB5_pvo2)1CX-ZRI~+BtDX_Y zlLgRb96*~C)0hk}aE76hbXyH@cY8h@&!wgWR#R$#8AG|&g!TBltf!0p%Nj@TySA6p zevPB0oW^7-sC8<4z=Hu!uAh-{tp)Io{SHc9sfm=CrV=i*nz{0x;9`I|5f0PAsE^pO zf7JPM4Lf#4om5xUDXL`MjuE0hPX#PC%B&q^ZFYs^)rl)4AIkBs0=lDZ9asd(jAv)I zDswVi-6?#0e`B&GGP*L9*&X&IGv3D{#S$|jVA5nOwT%jC^g+VhRzg$8mq$4rg0k}Bdqv-4 z>>uAl+%*mdmH<$7RFz6quTri-4+WXAw9k5NV?+lfqzlv*@ zO3s=_fBRC&`)_f+`Yuey6ZgUDKlXDcEd7Tj9TK7P8+Z0nUHEiWUHI5!f4SGo_h81E zLn$dPR_FKMA2~P>huomjuK^m+=EGZ7_m*1Qm1-J|$i%*amZUL`D|lT7pD48b7V9Ik zA$O5`mll-AKM8(V+_6XTj2)Gta;zDd=t#cLHhl%r+4{c-IyPX^4M!=XZjUE=8916JZN}INk?HhK$zi)lcwZlK(mVcWwlbRg0kC= zJ3KV#b+FWg34%wqM}{tH%2Y8zyZ{bM0`r$ufvjy|N&qE0{3GJ3sI6ZRnVw=R2jmL4 zKAc&%PAPipI;I!%3qWN6fJ&fru=Y}*BM|sidN)TIX=cXPSU4ab%l0%acFdGy@B%GE zFD2avxGJ^^JntW40;6j}L`|Apg46+N$Ufy4wXtkHXZTg%SuR}6?|kqmP5RE0_M7l& z5Ut4NH_ZDcybnZXB7L&_rSX9|_7A8C%L#)v2==U+W+tZc0=hnF{wJ$cMA_PE+TgVf z((0krw9?IgptM`}oc~yuh)b~1hzxTiFDngT%2(z^h@aT9F{Hf~4vk3O#QbTcl79l2daJC_E*iovJ5$p@)1-j2?G6WAk7^%f0yNtKFAd1F0Odz$km z;4+H=m+1hFw3tK(QA$hK%vCjRBFyL~gt!+Unk+rjSb8-9KP|>K6pEydOip!o0~}J0 z30--f*li92G637QyUE?=Q%Eg8OPiYiVk}n9cna=rX7we zqi2T!arySZF8ckYS494<0xYYSW@txYp-8~NlddaU((oP%^r4{y=mSFAZ?_&Ychv`M zK{UKUb=&p!uF!gdctX_#o$a>mQkn-V!zK<0dZ076HgMzY8@O_kwsC3#Uk9<+Y85W1 z`lRL&BXH~;j8iBqbSQCuI)UacD|Qr8C|42xTZGeOTJN@E9QU?%xwFs*;$xntTGJ zkh}=A3Ps{l73k9=L`&P>Ghi>HpHeLDsWEMJY%INzwOP2J%z(%~khEDLLL0#Zoe{P; zP!H0J)Zr1u67Gd>`v~nYU6&aX_A*xlGU5k<;##8np1$m<3Iq;72H>vg5|D0U@66&V z20*HCU_wUhN=Ysgv@&){!KMd5rb%17bjk?EBh&hP8OV#cu~Y=t0P-EY-N~e+I0F!6 z#@nk5nPKNuh757@nIpiItzMUfJ-~d#uA90Xo&;8fB8kr1Odt>7jJ_~))RZOtGKaNA1kUNX2L_?)D+|OfMm=Ju#$QPSVsV?GnU7v zt0bqujFuO(ZRId2sh$DDzTVmUriSLtkV0!vI}^%J&l2tVYV2BltuZh`f7@yL%Q4u# z$d7|M2G}8G=Exd2`ncZrZb78jbm`C0Qfg)IlgHm5yKi3FOO1mnO$_W%la2*pV}`sg z4+!Flkd(W8S93 zOiB?TRgO)_yqPH%e@!8nKAp7{Q=8V*Djs`ndpakr0}Lk(NGcG`RIW`}&yqNSrX0B4 zc+0B`9X5GlQ&f&{JbJbEVt(~10LRwEp-=Qs-E*S2BM0#k2k8GbnZOpWHH2U$m@<2{ z{idfO7(=BtZEHZA%jq3yG4IE!zWg(o2+#)ZG7z6~=+lAZG;VE!ri6gR$lgTSO`xC$DAC~(59Z&!fJ?C%yg<;r;DNlv4ogKH##6%$q%Q=J3k19Z&L2mA z($x0TpN8Zc0CN5hmBT+kOrv#|(j6?)!DMZQxYTZ*f7;F5Y<3y~tbbqg9GX3UPxI2v%47#)2K?sWP7eisOYLA~n$j+uxZaZ)$s35>}eOM{j~H2=S|Lw5;#aaY-)KHTVU z{MEh&ui3jI%jJU(zH28>`Fn)I9)X6WnFN~=>yGgZK2EgV0e(R<`~=2I1dn-QA=vBB z)5&e3_Gx(8GsEorTDRL?0dSV$ z3V>u5R{>F5b#v027q;66IXF%w&XP_HDG0RjT7}2|6z;tnG1;ZwUr&SB9U6zE%K=J% zdnGz>2N1v(&Y$0A%@+195NgAE^4cr z>WNTntf^=J35A^W-T9`*!|jf5DE9DBcJlo?`m&R)sN?< zO0msg6CC;Do#u096wv%HOg67kB1{A#prxoI<6P~&2%~rCcDZAqGnr^pL;yO7B@Pv!g#7?Wh2SYE5vcO{JBI7u#8J+3(*fC(n_w*ejp4#jo@sLV zgf_!Zu{7kWOP&z04#LKK;<-_XHGJ2z>z;YFw1POFxuKF-?TyEhVcyvlI%aKezf6Ab z^2lLda-3GG=~*Y*S1-tG3RQdF{f-XE6nfy~W}iF~9@h9+99nlzs?X@ny3JE>hCEmx z`_bU5m1zuh)Yc@`K15S1F4ZQ!xJWrM^=QMJ!3ydH`X$8uj2|H*Y~4Szt9~q(fZHB? z#o&b+q)Z!oSNJ=_5Mwz_$_d_ky592W~7=fwvC2y|Bh$9FaCYEZ-o0A z;4*EH#g}gk`x;(_BI4r1~pW_MUmiT95>(-n~?5%)hj_eW(KJ!!? zhgl70oJT~7WY2XnQ)#1>vPM-7RXb2ImIvBhtc85Yp~XvSI-@Y7RZqS) zrJm04O3J_C#g7|SKW$FhI;fAl;m!!PCrK+jWz8T7QI$HS^>r`-PTDH%Srgn7cm)xaMbJCb4X=UW&%n*pp3DE-uZ;rax*Q7zC zvqljv(o$aLy71so9vOx1-Qw1O?q4omA z_$ZzK-oY1KII)*U_?~Yvft-YD`Lj(O+nh$qG!QeKyPUq(5*nAfB_DwlHS$mUd2K{g(d`e}5=EWU6r8+bX-T;+ zYD3xb0tSsMfPwMm`}R?RIGFh`UN6Xy;pdFBdZwoX)KHt7u^ltG-S zydD|Zd-^i0jrcb4g#_Qs`G&IZlj~T=7YUdrf;*~rWTuVZ8u{ucV?KZV!Qu4ku-L!5 zzG8px-Awkw8u+=-$B}OoHRa0u@YH;ls_KCX&<1*iT; zJ57jReYdf{5g;V<{+Pon%qInt8Co-Wrs^^1?xr3^e_Q zxoYZd1ub@Ra$BdkRCGW8`RBDNRVAf|Ugx1&<(d!uVDc#!U{<6kCVQoaU*@UL;1Lt_ zQI9$eBW5_BikzHv>IX=wN04gXIXC zZZrP8Az-ILZWSiRy3om4L56fDUTS&a~7yH_m2#KS5f%-haq4EfxsZq5@YEWq8)Ai&`d2Bu~j z1{ecMkk4KA>$tZso09q%7N7NxJ{3E8~=gQYV@xAE?yj4iRfYRR^8 zLIt}MvlMXDd~yY?lRDGVbY1pd6NECuWtJ;4=_uGo{JTaCNU=~0v6$2$tXd`mkvtT759BOTmM=!t)e2!%dUinTbg2wtN2%t82) zNYh#AE?nL}sv40;Crba#Kdqc$Zpjv(p_q;6*NC}}Shg;?Ay00VKwIJsm$LU6Of|hm z`ywCHx4rvh|1RyROP*i84m_0p6ChpKhb!8Ycl>UTwb-zUj2~c`Umsy;GUe7a_~>+N z9P0P1G183jBj{O?7F~{w*iY+D6Bp~ZexHhzn=lZ+Po5R}TIBeM@~HEYhWFD~^~F|` z+d_aJ-nrJbDwS-D{Jd@qEVA}EgR7?3-IC{@i1|BD2%fVq5%+fv_Py1LHMMb@$~O9* z*=TCcTPrNE*p|F>JGR@@EpFQx{oaL}9Tm0m?O7^UZFfVdR#~sApIF1-fpt@G6qXX2 zE5r!{7-y&x@qzhap+9CSJZ5vN57R!V$VQW%LazbmZmM#4vupMNjIqrxA2SD)@ZIk* z;6WDUp(1jUd0-#F52@hq9>C{g`JYFt%&o@H4vvH7R~;*EZ){1pf7u}EXuufu7uf4Q zO}zQs@r_~OO3OP*-F~JD+4^5SeNW3jO(`A7Itw%nB3_8%_>75j8>7s%K7ul^sxVzQ zV-(@d6WR3CydW0ywWNxP-%hw+-<3~O->I9g(;GT+`(~CiSghYRbQIEWcbJy$a=2YV z(EwI$C=^(N2sC|758LqJKC1TnRNaHeZzkXH)q&#Lx`b_ek3seuT|eK(53YRL$OcR{ zQI1X2PsHi2dUIBwp2z@`r=w03+)R z;L~dL#lQk9&1-xRF#B0Cun^L!y_MWO`g58fmtkmca`CpawM4YGMMMLaiGOkmKYHl4 z`p}29NeI8pz_10$zUM1FpKMguBNYNWxmAPg(D$=0cn;BNbppf7j1bYSij;=BAqMP72&8IkW`-{6g4DF+u5Wp4 z-_$SL(AsN?WOBw}_GxA;L5dtrT~3ATEDkY|XblirZ6#G{f*;0@+>ol~nHFiWSY4mk z!s@~>5{DRV*#ffxMYOD;MR&M|3SXtfl8v;i8*=7#rbT$Hd57~?;8W?~!9?phBzsA+ zaG0NffR>5dggeLngTJ^m*-PQrPfC()&_ticQS-D$hFtSgw;!doP&>;$=Nmu8K}>YV zN!!?>IIK@Ms88;PHIF7mPXEFy_?s_fF-M$x_-6?L5kKl;N^WWIl_8q%y!3fXvZ$Ai zD~ZCBqEDFxEQ8H+bwuie#c#kXo+sd?4B7yz}d-3#U|VW5PWs z@g6j)v7(a`1c5qxrmHbuq$nqgUi;ydZ0qp=7hm)WIZmESfj&)AU*iu-2ZNZ@gJV0X z!NM+G&{KSb4I?piFcbMc0)NP1N~(T1Pj+#+aBkxM>3Q zWr^X~>H$rc^AB*)HMW(G;Gm&UVkmx#ABdY&lShjUzEi9YFz8d{DTGKHP79L9E>9hJ zFajT-LQ_>>(>y!`JRwh_t_pv2Bivtc?Knqn1^^#T(<5=F^Y)&Mh)ad^kOyuU8r>Uo zyaS>@T01tNKYGooH zUi6VZe*HC}FH!o%y|aan+jikr&lCnX2twKE$eyD$vQL%@{E?r&wvAx7;V!YCyoD z0y=%|x&OeA?xD8npp#h>cMdq^J}Mdx!k-a(UQ(Y*o_b%81-pGfvQJEP z|DG%8{FMYXPvxqRHwg#<Q2$S(#3cDVyj=OLb={PAxeMiWT^ERC#*%c9KS3=sEe6}% z*fN!1fL8UK^4xWn>XlGo4R5hcul#gJDmhkxc<$o~=efDw`k^u`+;OjPlkm}eLu0ow zEL@ntkEd5c)1|Nn{5z$rO&M)C{Bk^wU_wQ&YrVvH|hB zqY!>65x&lMdJ1BCdU?u(+J11B4}a=u+XLABg$ekQD_Yu0U$4j|7;|>qwF9R^^oNO4 z^LMGmDvGQg;F{12(8La4_YfxFPL^tFD}9wO_nKoVuu!>+b-$iwRg24*&;sf63bY_- zFj9`pzOOWKV_}Vs&V>5aOcC5QE)mNSrS#ex_JE zg%&O2ei79<@AU{hrHlI^!|~K^1ptxEtVbOyUhF0F zHzs&Hp8idXELbvcLsQ7KTE1J)xsl1QYN4VcSQ@LTQ_C$kN~+uF%N>y->cQd_RJlyhWH;9zAXs2NoMC(;W`0_}4Mb79l$&+)3MM63IG!gCpTcB-9+N6bD`oZEg_SC;2|pc-?Y75@AD0oHUL z&*}+|thi?C175`tSPpwX%{w(6M2dvMLj%1BoU_f3xSSm51ebtEk7J~^$PJhoB+$ap zsJVNvD|&ti!XR#u{pI}{MgVwAoaWQH6J1D%!heXvM z*iFI|q)mV95y9W0m?P)u-6Ug>$d%yRq1wFfO^@iy|gvKg95-eT%$HxFjTIj!!M zJ)bloAwwUbQVnBLGibwC$I#CVz3}iYidGql`4e~oAHZkP3$;nrF#f&BZ^GShH-_nG zttD^(+x3k-p^mK(3Dj?pgrmI$_8+|vu$~jBP?!G4?qp!py+N1Fx@+>Cs1-ZnR zeX1QBU_H7pwwVHnH%rtal{t$7aUD-tJ$OvLWOA0;C~{%6RpC*ISz28!$-H>KqKAJ~ z^m6}+JKOjZSHP{BSo|!pSj`W#3H``h6tw^8{F44Qmi}k@{j1|tQtex6n@ZS*yFw$IUQCnr63?TFV*`lAvx z$1e2pGAw~NboE`$J!y>8zU`bxbYf9dBD@nKJ@e~!)V}$#f8%89R>^@Zb~vIp8T~b3 zdpfuS)~5^Wdr?~r){?+D9@rv$2NH_*#I3m6>($k64Gud$D`$sq%K)>FA8$9epML~Z z`w)ZLM(E}ULjO;la~hO13)}50B&O!Vx&r5Fk5pId90+@2AwzIqY$AA>UHsK%A_zPR z6Kv9amqgQkwPb%QtmvX4bQr^y8Bk+vF{Dt}o4{{$GJQ7^o==YuD^k9gcCP8ML`X;~ zc|rBgr@!7g^kb252Tp5jyiVldA7)pY0Jo8@o}CYu+x&Y-_$~CeIQ}x*7}~_4OTTiZ z=ZG^2C9Hv7A?GYL50`#N-_WI6d8_5TU1V$f>m}@&hP<58hL@B++qu4D?w zi?q}vB)wTQ5q+0)*{^BUh*Q&KWQK9#M8B=GS6~0OeGCi=5T`k+647V;OM8<uZ~;5Ie?PpVOPCkdMk==C1D&O&jw^k_0X;c7LjCBmzvG6hMCWbA@IFv zp?6%AsZB|#?p}_$qErc@yK{#Jit|9KR-&qqa{8F z!lB}S%lO97Mg;E@K{3Tmny(TKQ>}W1zQWvpF)bvJNwt3PN*@N2={2pdov=} zkvKj8@7I7vb)Ws8deJUDSctHqUvdibL-$s>ksplh9DW~dikUy|$|`-5dLkk_YRO7> z#v~LTKvsJ@W`wud$G$4IM1|HNCb73T_H-jBi|TO(A5DK{Hq~R#AH#3$jH}sRMD!Aa z6Cx}_=b<@@)jY!s3yrVF&icmG*A=V0$u8;yM9{G@c5mEVLWcT0M zuma8o2_x$wDScdl?qj!`^}OVMu8$hKmN(Y=oaO*mx2Qkwna_BMeVwX+q)inT zhZyD-E|>{_a;{6}lkjsEFLN8sni^{WOS`9n#Wi{_S@1Wb#0S$)Rnuor-eAz{UKk~; z7*!C^nQVddAEv75^(hbY>>pHjD-R0?(FPpwFHl0anxU{(Qv6!gkn8c~>xb z$)>I*<#tLhJKIde-<~#jr%91F1nl~i6Y3y3Br@&U zpCOkT#^r*NZ?J5@B?K%c0)+dfP-l4K0^4eJt~Q~RpLgU9&{99oeKPB)uoL})oUlgD z#iq8^Y{xntmRPE)BATq|Do5N}xXojWqSDNC{sd0x_sv%GX|!n)3`sa>#h{t_>MEs& zB|qm`ebWQnJ!mLW0EIqX9#i`dVXHhZBIPVjFno-N(+s0qqI`}-+S0RBPOk;sZuD3R z3(Ts|e;S8$MGc31qw4G*4ymRasO}1l>s?lhnzO2hgdpuq5+^!st9)t4koaukKVC6*b9^-`z!zwW_P&0$6#KEAE59IqylJjE;1YtUWQbeCUtp2#c zVcmfj0)rY&|9${Ym%8Tb>Ed)XT{0gG^oLbkm7+y&wF$S@5?RM%f4oxbSE=85iy2I# z`_kqu&6kIS8k6Qz6>`}cGqm7(#7-K|IV=c|Hlrwm;M#ml%JsZBshEMZX?>c2-E!s0 zL`Nuo|L25Fz|b)U$I2RFfswPrG$+EO4?o?ua?A#kLRwsg4KRdO}x=&s6cAmPwa$v#pWHoA4 ze&3A2`yeRwynG&1k~-l|)A(#DdLB;STO1H=Er62Wly13^J+Tgq{8c6kB&_1Dah zVF;7@KG&qK{}hUfUV>zTUjB;sGtE95Pwg{s39{2O@aB zG<`oI1DdDr*H~RbEzom{HzN`kBL`kxsWto#jVhBMWkz9F)ztd?Q!9JJZvRSxz4mS%@vl))vUa#u zkSZ2fjT}IJ{zVW^W|ZvuAtNR1|x)V%YsBt9k0M3o?ro{ z3B?WAo|iTf2-aenqNuC*EWN3`xBm1{ET1p9Gu#QQ8or%aO*8u}y>L?M=a;xD-Z5xs zS=-*ikTzwdZDVDT!VIK@A3oz`+&jGTN}J=UGa0<%?4=fPoU~uPQ$C2_%w9h_WftqX^Tt zBl70fvaS;S#d`r65%(y+l7ewyIMKb!_V$dy3NArcwm78$=??Z2MONh9wLV|);P|Xt zf%dVvJMhTawp~jvK6=9qJ8spf;Km(VvS+7UA}A1{edcrfc(2EsEIq%zQatNm=F?_k z;ww3a(xukY+EufOIr->z2Gf>%?)FTk!u47A}-UG*;g20qHo&Q}beRzXnK5MjtjM^^?Zh-O6@&rBkq7j;#O{5`W@ ze>9rz!d38~F7VI@of`BEmw4^1mmY63S3&GfJeq4VRg&XoiO5yRo%@gR2&(MmWkSG| zD=+2#yjh)|2aEy?6*L$C#|8Selyk{)JZ)S7t@G?N=tUz>@qxqn#f)hu+cf(&i}Y)b z*_n+}@&UIOEcQ;>AYw)inKaaM+akUb4n|D{MLnK5UQWShpkZYgpeGaIvtmpCyw=_% zB<)FGja0GJ93Xi3bQNqnIDVNv>Lw=X1YcRwR;4q_ze=lyP-$xM*bBMakm7F522?oH z8k(vT(M{?b_SB~aAq~NJHM%ZbGHI_M!yI%0kzGc<gVpvwoLQ6)u1f$pX;4ezq|MdnjS#&N?#R0e!K0v zm3OMFP~P5y`eGl40ip5=-J{7-lO8W*L_?|$TO?iQSMTp8#-G0&{E-r|^7Y$NO|&(A zQQ}GeEHUF{>K)$j3U~BvwGqOu=af`P z{_cwC{hL@xh4Vy8y|bJPprW%PrK)CNcbYO;^+NVGq~cgprUwz+lmm$f$Lojp)SWUw z-|Y1nsmWwuMdQD8nN?qwPVPiex)fA&BwMJ~h!XKE&-Vd*<3+Kxe=bM&58CPS zdgOfGqp1RFH1z13yJ(Lw0j|uB)aXcs zmN)4@V^4&WU@c;y@ycOnsq9l-?Vo1cINRfjBD7SeN~=pQrd_ezzmNWy8QAp0c%6JN zkYFSquMR&cv|ypa6$*Fe8zAO15q-bX-ga+C69!OL*+y0taUR$6E~jC>DQ;t(jpuxz zmbJ1ed`9YTq#Qwh`5WYyY6b|;`8hA6QR-4lbw^HZTcf;3p!V=)qCS!1sp-jNL!9!@ zW-{Yav)|)B&h?Ng>V`9HZKJ5HIy>u(Luov1*7BPxvSzOwSPVQ}y*2#F*?2H0ESeXv z=-&9u@V3IY;)7KE@yF060|9fcNe|dM%=6?n4{jp$~ zH}%L^Hmv8GH-!;wUs{m7Z0Wd-k=ilaNn6HeIxa1GkBx+9@>y`gbNj{k;bd!Q(ZJsO z@9G`(*k!D3_WcVq^Mlw)^3Ug&T_Ul-9dChMwLsQL2QKLgH8sw`JK@jbMBi=4P6=|- zAmM=uL+tz%b;VK8;t^X^?eGcZV1#X2;Tx?A)o7y(2rmbf}BNw zGYCDT^}R`!h74o1Zx)jNQ=xWR*Z&17H7|vcBzRg|fdljcu~zojhTVqBX8_p+?x9*t zvs>$3*c!@g6%He{Zxk)DtLtXshToc6J$*VD`ZyxT&wJjD`CRfZgMlP@EYilxzYRg= zxR93vMx*&w^VWuO>W-k2jncDfpG65Cfs3}^l_l7rC+K}jdJ>9^^*yu9G}ixi!!kO6 zqJ*(Srm~l}!G#Tg02Wdg+91DrH;b{H1()qfm&hk>I*jHXc?QUk=#WI9Qi99?5e~Xh zmadQOiYFNn_;K*VD$N>VB?Pmif;6aRM4Xz9i$Wk~Flnd-o|0QgXneLA=sMe=wS zz-eggv4lnPLU2@LMtH8ud!4XaPi)m7I887dffxD_Y%U9tl~mjy50#vWnTnaRL}X}4 zC<#u1OmyJ2iEi=}rq6Iwev9e2i2&F24f7TanLYKtf=sd&QAyRM`Cb+3CS}Hn7zl<= z^_6-Jekqs#^o)sdugB&BS;LlR-!4tcJe(2edMIY+Ep)^^{aU|D=B)Fp?+?FitX$$P z^YIGDkix#KM=>$8RNV5lSKQLt3+`;)*FW@1ZAadViFa3i0NMI3!_a*Dckyy1xN&w3 zGc6A4{(wUro0+vO(HmjKPQgS6^_K+YZGDVvi4I)2Ly~;_76VO`?|fh5ZXckR*@6KZ z8Qpnrsfzg9Dtl^J0;4Elhm6b+_s~toImF`QgI16M4jmqRNxe_=`0XaOOC=)>MR3Y} zYIAqCr(UlJJ#vRYb+hY6B1USD&KIPBr{CMnRBNW6zP(A~!naEzEy;SM9Vn`G#>|}Y zx2_{d*=;;D;^YORm}N$ZoJZ)B94zpa<*kM@9;-S9tNK0~!X@VchFyeBYf?Kf@F#sI zPpY9pA`R&UMNYW|F}(X!h8F5Xg2}6%%DUw;ni&ujowLd$%f9OH4Rlfva>n$U9b&y> zwn26n*MF&|*4e*Z)r$|RoMx|=jzLTgPYL~Qsu)V}t_?qjl?bF3pod+6I3*e6xI{dU zaoNP?yFP0P6!b8{bcjEbo_UsFxqX@q5^Siq4%nMOpt>^H{LIt!cO;rXp!T9UDs5N# z&<}e!eU_~v!$6)|bImqi+!PAum$+t|oNJ|Rf;n(zzWo^NpI0%X+H-g&GdU)`f!ziT zR+2o@GkJh&`Y&%fnJd1jHgnB4izLC&-%)BVD@O-B;{ma|dgvM2$B(?U$39ir5Bh{v zo_$LjE!K)ZR;oK`us+)zQU!fqq4F=K7g`{is#D8Lnea~167S$8ib zs8_C$e(gn6%!6@(Eh%D#f)pnUB{|(C*#OAIZ|7o9_Q_z{EmD;#-r^6W+t@cI<#>D? z^jbS$fm1Xe`~bUMZw~ibe2%>qZC=G6GFB2k6!KkX3d6o#ExW~m6oI{*@7AyQT73RV4XA}7%6s+h8Bi2@JiyTtC0^5XFa>UyL+~Nh8ASU<(biev!L3nykdq) zYki#fV{PuXDsUu!nx$b%gFt@5ZmK@O-uqAPhRn^;-Km8xRg;Zl>@lC%n_w!d9r~I~?j;cuR!bJvyNqHyb-FO8y#aSbuB5W`jBZF= z!zU7LxAncOQ&{xCn48;rbv$F`upFKeC>O5v!(}nuE)=BzD*%GWxNLe|ly?OR;wI0?AG zyN5Axu2A1Jl^C7=jg=f`~_MguY+RYooF1@^KtUfFn&#KQtlIu~F@Z>|^ zbhs$L#e0+7k6a(7#=fO6A-mrj&*7^k+8I#MG;qC$gwdzwFsyHnnhXPc$gGA`Fd~%7 zNOD2#3cE@M1$sfPmsEwrX{e>Q$U{^l+>d>ThnENhXrUW!jujum8oZm-*WGv_VTMNj ze>Lx9Lx+A4o2MTWGE+!a$v9bZS?$1|fzXxMv>eat!Fj4IhS$5Ji${FOEl`!Sblj&G z6H~Q#JoRY#wS+3bipL?Q+`XaXvdu}#DRa$xNla#2mLYB+eYg~S?Mk-ja(zt8v;2DT zzQ0+q1gawasIS(uG2oo`MCDG%H*)(VRKZhJG`FH?6d3mQ)T98@i=vDv=Ur@E_aM|w zjkfG{;x?M|iH-}8((o{=9#TU#$x`!UUhY$tg3J^UoTTBG90=}GFOC6K&{R+bO}-Jz z%WeiEoGymmuyk||n(D_fiZQb_`iN4AF#{nhGnF_qXe3V0=Q{#C3IZ@4!ia0>PS&c# zbS2#z!haVQ;>Qi$P}k^GN${zzxf}O0>Lz_^h-**fLPOhalii{<-x)swy6=_7>S@67 zdC4M8XTKMQRlofle%NO^y>r|$8aV&UXE}~H>?Sp7zGNPk|C%bzvtP|!^i`Pbef!}z z9*PVIUd62v$KXo1CBKEt%GsHy&?~f$%eXm#pdY7&J8oZ8y?AfoPR1_$ox))4E zJdPwPFa|%0N6t1|d!V%*yEKJ1Pl@LGj~dFz{`{)O#g4reN&`RexD>S1ZCX4idP)|6 z7rQy$0jG}_f4Q7&C;J$Y?9a{4Qtk3(EHqpb>)gUb98V3=Hn5|o{`{nBhRLK?XII+Q z-DG#M%BYc&`TGE;&)n_kL?R>UEU4al?g4R5X;EA7_nS1<{6v|nvh_-hDIi5J$N=2W zWTv5xeUjy@7JWM=4U)-B@uW+=x15U=WoKqo&TWAa-n0LWic-7>)y1A?W{KClC8X)) z%N2Kp37mee0B)<|sEbg6a^E@QO1I=(#D4ugqp^d>s7}GCI^bSgbiIwp9Sa#!MtaKc zHNrUJG!_#^);2$ zxmq+x2>wRSRLQG|;W>N}<@9aX2!UzM;C`rp1iVnG^UdrKa;sU8qsANA1A0nMC28mRI5V)dJE$?e8_4p5!CM;F7Q7rC!T}vxCroo(m za~A2d#yhv~P~#d2#?TOnf?JQozF~Oy4At$O58EUDM(X6_up80XPimxwQ=6+4IzNWS z(Lo;?SoAGTY@|07>7kP0FophzYko=&@>5U?aVPwaVh5rEI~xZ_|vIg7T&YA%qX zZuMwiGLkvaFw=Ar{XFGL*vl1Z#T#%+Xcp+VF3z6K^By#zDA|WL4@f!0a4oJP<|5jl zgS5&n(tqt70}baQG#{d)h%y;srcfWKt4c1~h3|rqWP)3ZA5L&^RcINGXrt~3R)mp|-(U+Vb;HlzyBFj95V z?FyamZx?MIaXl?JC{gYn>PZ%GhzV0f>rZ`9g97eGpx@C0o|*>K>RJWJVLgiREeXsc zC-?*Lecueyx-cXyQ^PMN$hpTvLfv*UbB5I9;%m96 zg;nBo)uafjmD;%Lxwy@NJ1)#!If*?5Lts;b*$x_bxN;)-g4~%iKk$!R9HWVZ(Yp$RVkd(+5Q=07#j!F%APD1(n>h=Qw9 zKH)9R&TId@WVHge$_93cD!jgTGrWcS8(1;r!j}tIDuu(31Ml^}6dgZK+@2I)@ED&` z;CFRn$d3(h3Is=J8CYWOH?%9Hk$9RN@#}HNn1IxV_r2o2bFH2~Z(=o|#|36^YS*;=qNZ=;^56i#oEezzJ4=fFIX~Ct|JQfe2>5ya zJef;3?U0E-#ayH&n6~*HUi|v^Z!7aSvMJ|s&DDp03H+FHUTp37m&p7|{PyO^5`eup zylQl*+}Bjinz!5!N>kSV0q#U@ICx*eue}Nznsgh9z3SYvzlnY4`F`+e9G)- zzf1=o?Xsk2nylU)h`pHGtXgDNI>H=QU1FF`I!;WNTK)bVM9#E> zX*0H%Ws<5)0?#ncOa8|TE4eb|OIxB-0R7`9E+v>caqL5dwRsb)atYU<5%v#qkos@ zExZ2`!RNg=HqE{C{5$e*Z;(UAI${4Tf&FqM67qNZ&&_}Se{H1k!9)tK>|~^pVrR}J z{|=H6ZkJ2aIg=|Lmq%ac015Nct$)l{IY}05(;^&gaB$AE@WGTMxOgN~IRBe}FlFCg zIz z%5DG+ZgmP_AlrkhOI80TPYlKXuLFJ?Axl{yyPNVl@b-1xtCT4zE`c<-ekqZG%-5qS z4P?NrPx%zcdVTgAJc~;q1X!=z{lAX`rl;6|~ F{|_ng(QN<# From 0f2fbcb86d56795611e585a19efffb802cab3f15 Mon Sep 17 00:00:00 2001 From: Max Parzen Date: Sun, 15 Jan 2023 21:06:51 +0000 Subject: [PATCH 07/24] fix FOM calculation --- scripts/compile_cost_assumptions.py | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/scripts/compile_cost_assumptions.py b/scripts/compile_cost_assumptions.py index 3d15840..5c1dbde 100644 --- a/scripts/compile_cost_assumptions.py +++ b/scripts/compile_cost_assumptions.py @@ -1695,10 +1695,10 @@ def add_energy_storage_database(costs, data_year): df_tech = df.loc[(df.technology == tech) & (df.year == year)].copy() a = df_tech.loc[df_tech.unit=="EUR/MW-year", "value"].values b = df_tech.loc[df_tech.unit=="EUR/MW", "value"].values - df_tech.loc[df_tech.unit=="EUR/MW-year", "value"] = a / b # EUR/MW-year / EUR/MW = %/year + df.loc[df_tech.loc[df_tech.unit=="EUR/MW-year"].index, "value"] = a / b # EUR/MW-year / EUR/MW = %/year c = df_tech.loc[df_tech.unit=="EUR/MWh-year", "value"].values d = df_tech.loc[df_tech.unit=="EUR/MWh", "value"].values - df_tech.loc[df_tech.unit=="EUR/MWh-year", "value"] = c / d # EUR/MWh-year / EUR/MWh = %/year + df.loc[df_tech.loc[df_tech.unit=="EUR/MWh-year"].index, "value"] = c / d # EUR/MWh-year / EUR/MWh = %/year df.loc[:,"unit"] = df.unit.str.replace("EUR/MW-year", "%/year") df.loc[:,"unit"] = df.unit.str.replace("EUR/MWh-year", "%/year") @@ -1708,9 +1708,9 @@ def add_energy_storage_database(costs, data_year): for tech in df.technology.unique(): for param in df.parameter.unique(): filter = (df.technology == tech) & (df.parameter == param) - y = df.loc[filter, "value"] # add random value to avoid duplicate issue with interpolate + y = df.loc[filter, "value"] if y.empty: - continue # nothging to interpolate + continue # nothing to interpolate if y.iloc[0]==y.iloc[1] or param=="efficiency" or param=="lifetime": ynew = y.iloc[1] # assume new value is the same as 2030 if y.iloc[0]!=y.iloc[1]: @@ -1733,7 +1733,7 @@ def add_energy_storage_database(costs, data_year): 'reference': df.loc[filter, "reference"].iloc[1], }]) # not concat if df year is 2021 or 2030 (otherwhise duplicate) - if year == 2021 or year == 2030: + if data_year == 2021 or data_year == 2030: continue else: df = pd.concat([df, df_new], ignore_index=True) From 21ca0e29185b8c9adb131ab7749d45b8a810e9a6 Mon Sep 17 00:00:00 2001 From: Max Parzen Date: Thu, 19 Jan 2023 14:07:05 +0000 Subject: [PATCH 08/24] fix magnitude for FOM percent per year value --- scripts/compile_cost_assumptions.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/scripts/compile_cost_assumptions.py b/scripts/compile_cost_assumptions.py index 5c1dbde..d881fa3 100644 --- a/scripts/compile_cost_assumptions.py +++ b/scripts/compile_cost_assumptions.py @@ -1695,10 +1695,10 @@ def add_energy_storage_database(costs, data_year): df_tech = df.loc[(df.technology == tech) & (df.year == year)].copy() a = df_tech.loc[df_tech.unit=="EUR/MW-year", "value"].values b = df_tech.loc[df_tech.unit=="EUR/MW", "value"].values - df.loc[df_tech.loc[df_tech.unit=="EUR/MW-year"].index, "value"] = a / b # EUR/MW-year / EUR/MW = %/year + df.loc[df_tech.loc[df_tech.unit=="EUR/MW-year"].index, "value"] = a / b * 100 # EUR/MW-year / EUR/MW = %/year c = df_tech.loc[df_tech.unit=="EUR/MWh-year", "value"].values d = df_tech.loc[df_tech.unit=="EUR/MWh", "value"].values - df.loc[df_tech.loc[df_tech.unit=="EUR/MWh-year"].index, "value"] = c / d # EUR/MWh-year / EUR/MWh = %/year + df.loc[df_tech.loc[df_tech.unit=="EUR/MWh-year"].index, "value"] = c / d * 100 # EUR/MWh-year / EUR/MWh = %/year df.loc[:,"unit"] = df.unit.str.replace("EUR/MW-year", "%/year") df.loc[:,"unit"] = df.unit.str.replace("EUR/MWh-year", "%/year") From e8da342f0a48c7b759c1f4f59c2c8d887052806b Mon Sep 17 00:00:00 2001 From: Max Parzen Date: Thu, 19 Jan 2023 14:08:15 +0000 Subject: [PATCH 09/24] add outputs --- outputs/costs_2020.csv | 629 ++++++++++++++++++++++++++--------------- outputs/costs_2025.csv | 629 ++++++++++++++++++++++++++--------------- outputs/costs_2030.csv | 629 ++++++++++++++++++++++++++--------------- outputs/costs_2035.csv | 629 ++++++++++++++++++++++++++--------------- outputs/costs_2040.csv | 629 ++++++++++++++++++++++++++--------------- outputs/costs_2045.csv | 629 ++++++++++++++++++++++++++--------------- outputs/costs_2050.csv | 629 ++++++++++++++++++++++++++--------------- 7 files changed, 2779 insertions(+), 1624 deletions(-) diff --git a/outputs/costs_2020.csv b/outputs/costs_2020.csv index da3a9b6..c80ea04 100644 --- a/outputs/costs_2020.csv +++ b/outputs/costs_2020.csv @@ -5,28 +5,28 @@ Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene. BioSNG,C in fuel,0.32,per unit,Stoichiometric calculation, BioSNG,C stored,0.68,per unit,Stoichiometric calculation, BioSNG,CO2 stored,0.25,tCO2/MWh_th,Stoichiometric calculation, -BioSNG,FOM,1.61,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,2.7,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.61,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,2.7,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.6,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,2500.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.6,per unit,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" +BioSNG,investment,2500.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.25,per unit,Stoichiometric calculation, BtL,C stored,0.75,per unit,Stoichiometric calculation, BtL,CO2 stored,0.28,tCO2/MWh_th,Stoichiometric calculation, -BtL,FOM,2.4,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.4,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.35,per unit,doi:10.1016/j.enpol.2017.05.013, BtL,investment,3500.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.33,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,1.8,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.56,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,880.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.33,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.4,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,1.8,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.56,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,880.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station., CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.", CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station., @@ -57,6 +57,24 @@ CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .", CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +Compressed-Air-Adiabatic-bicharger,FOM,0.93,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.72,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,946180.94,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Compressed-Air-Adiabatic-store,investment,5448.79,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-charger,investment,188018.41,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.41,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,752073.64,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,29432.58,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -75,6 +93,24 @@ General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nish General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .", General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .", General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,415570.52,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Brick-store,investment,187325.79,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,365630.71,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-store,investment,144713.47,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,905158.96,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-store,investment,113887.53,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)", H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).", H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", @@ -115,10 +151,32 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., HVDC submarine,investment,471.16,EUR/MW/km,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,investment,1586.29,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,investment,1586.29,EUR/kW_NH3,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-charger,investment,187899.51,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.42,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,751598.02,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,112560.01,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Hydrogen-charger,FOM,0.47,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-charger,investment,1269303.37,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-discharger,FOM,0.47,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-discharger,investment,1300882.37,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Hydrogen-store,investment,4779.95,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).", LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", @@ -143,6 +201,49 @@ LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://pap LOHC unloaded DBT storage,FOM,6.25,%/year,, LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", LOHC unloaded DBT storage,lifetime,30.0,years,, +Lead-Acid-bicharger,FOM,2.41,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,149731.23,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-store,FOM,0.24,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,365289.85,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-charger,investment,503663.74,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,efficiency,0.52,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,investment,353636.24,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,186749.11,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Lithium-Ion-LFP-bicharger,FOM,2.07,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.91,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,95584.19,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,325690.76,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,FOM,2.07,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.91,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,95584.19,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,lifetime,16.33,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,372111.99,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,lifetime,16.33,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-charger,investment,149374.51,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.52,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,597498.06,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,69421.83,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -157,15 +258,40 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -OCGT,FOM,1.78,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,453.96,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +Ni-Zn-bicharger,FOM,2.07,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" +Ni-Zn-bicharger,investment,95584.19,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-store,FOM,0.22,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,344828.41,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +OCGT,FOM,1.78,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.4,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,453.96,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" +Pumped-Heat-charger,investment,807189.25,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,lifetime,29.67,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,efficiency,0.6,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,investment,566749.9,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,lifetime,29.67,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,FOM,0.06,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,31293.83,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,lifetime,29.67,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1397128.46,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Pumped-Storage-Hydro-store,investment,57074.06,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR,investment,493470.4,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" @@ -175,130 +301,169 @@ SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydroge SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-charger,investment,152624.56,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,efficiency,0.5,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,investment,610498.26,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,8014.74,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,investment,891679.11,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.2,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,270.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,232.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +Vanadium-Redox-Flow-bicharger,FOM,2.4,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,149950.21,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,317614.19,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.77,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-store,FOM,0.19,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,194899.01,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-bicharger,FOM,2.48,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.8,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,134297.45,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-store,FOM,0.28,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,476623.91,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.86,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-store,FOM,0.25,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,276873.61,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,investment,891679.11,EUR/t_N2/h,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.2,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,270.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,232.0,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.09,tCO2/MWh_th,Stoichiometric calculation, -biogas,FOM,11.38,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,FOM,11.38,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" biogas,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1710.69,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,907.2,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.51,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.69,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,423.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" +biogas,investment,1710.69,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,investment,907.2,EUR/kW_CH4,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,2.51,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.69,EUR/MWh input,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,investment,423.0,EUR/kW input,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" biomass,FOM,4.53,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.47,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.61,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.11,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.45,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3381.27,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.83,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.83,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,3300000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.61,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.11,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.45,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3381.27,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.11,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,875.42,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.39,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.82,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,682.67,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.83,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.21,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,951.39,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.9,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.48,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1900.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.31,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass CHP,FOM,3.61,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.11,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.45,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3381.27,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.83,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.83,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,3300000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.61,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.11,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.45,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3381.27,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.8,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.11,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,1.03,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,875.42,EUR/kW_th - heat output,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.39,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.82,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,682.67,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.83,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.21,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,951.39,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.9,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.48,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1900.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.31,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.4,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,0.96,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,590.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,590.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas boiler,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.1,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.35,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,0.98,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,564.0,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central resistive heater,FOM,1.53,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,0.9,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,70.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas boiler,FOM,3.25,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.1,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.35,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,0.98,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,564.0,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central resistive heater,FOM,1.53,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,0.9,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,70.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.89,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.6,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3534.65,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.89,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.6,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.35,50°C/100°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3534.65,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central water tank storage,FOM,0.52,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.58,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central water tank storage,FOM,0.52,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.58,EUR/kWhCapacity,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.63,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -322,23 +487,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,2.96,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,2.96,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,940.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.56,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,940.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.56,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.97,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,312.08,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,195.05,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.85,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.97,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,312.08,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,195.05,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.85,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1500.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1500.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.01,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -361,41 +526,41 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.35,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-input,2.5,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -electric boiler steam,FOM,1.34,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.86,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,80.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.35,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,heat-input,2.5,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +electric boiler steam,FOM,1.34,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.86,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,80.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.66,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,investment,650.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1300.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,2.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M +electrolysis,efficiency,0.66,per unit,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,investment,650.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1300.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.2,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,20.1,EUR/MWh_th,BP 2019, -gas boiler steam,FOM,3.67,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.1,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,54.55,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,3.67,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.1,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,54.55,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.59,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.03,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -410,12 +575,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.2,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,377.0,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,323.53,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,20.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.2,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,377.0,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,323.53,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,20.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -426,27 +591,27 @@ hydrogen storage compressor,investment,79.42,EUR/kWh_H2,"Based on Stöckl et al hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", hydrogen storage tank,investment,11.2,USD/kWh,budischak2013, from old pypsa cost assumptions hydrogen storage tank,lifetime,20.0,years,budischak2013, from old pypsa cost assumptions -hydrogen storage tank incl. compressor,FOM,1.05,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank incl. compressor,investment,57.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank incl. compressor,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage tank incl. compressor,FOM,1.05,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank incl. compressor,investment,57.0,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank incl. compressor,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,3.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.09,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,2.95,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,1045.44,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.11,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,871.2,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,3.0,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.09,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,2.95,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,1045.44,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.11,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,871.2,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime lignite,CO2 intensity,0.41,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, @@ -466,21 +631,21 @@ methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", methanolisation,investment,757401.0,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.67,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.6,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,10045.31,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.67,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.6,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,10045.31,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.51,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.36,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1804.77,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1916.48,"EUR/kW_e, 2020","Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020]" +offwind,lifetime,27.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -488,16 +653,16 @@ offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions oil,CO2 intensity,0.26,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.57,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.57,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1118.77,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,343.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.25,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.5,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1118.77,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,27.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -506,34 +671,34 @@ seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", seawater desalination,investment,40219.78,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -solar,FOM,1.58,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,FOM,1.58,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,733.47,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop,FOM,1.15,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,investment,733.47,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar,lifetime,35.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop,FOM,1.15,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,957.47,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop commercial,FOM,1.22,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,790.08,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.08,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,1124.86,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.01,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,509.47,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-rooftop,investment,957.47,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop,lifetime,35.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop commercial,FOM,1.22,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,790.08,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,35.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.08,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,1124.86,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,35.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.01,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,509.47,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,35.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,5.45,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,618.18,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,5.45,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.78,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,618.18,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2025.csv b/outputs/costs_2025.csv index 12faba3..78b425e 100644 --- a/outputs/costs_2025.csv +++ b/outputs/costs_2025.csv @@ -5,28 +5,28 @@ Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene. BioSNG,C in fuel,0.33,per unit,Stoichiometric calculation, BioSNG,C stored,0.67,per unit,Stoichiometric calculation, BioSNG,CO2 stored,0.24,tCO2/MWh_th,Stoichiometric calculation, -BioSNG,FOM,1.62,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,2.2,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.62,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,2.2,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.62,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,2050.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.62,per unit,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" +BioSNG,investment,2050.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.26,per unit,Stoichiometric calculation, BtL,C stored,0.74,per unit,Stoichiometric calculation, BtL,CO2 stored,0.27,tCO2/MWh_th,Stoichiometric calculation, -BtL,FOM,2.53,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.53,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.37,per unit,doi:10.1016/j.enpol.2017.05.013, BtL,investment,3250.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.34,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,1.9,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.57,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,855.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.34,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.3,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,1.9,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.57,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,855.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station., CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.", CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station., @@ -57,6 +57,24 @@ CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .", CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +Compressed-Air-Adiabatic-bicharger,FOM,0.93,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.72,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,946180.94,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Compressed-Air-Adiabatic-store,investment,5448.79,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-charger,investment,166105.34,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.42,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,664421.36,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,26738.41,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -75,6 +93,24 @@ General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nish General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .", General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .", General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,415570.52,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Brick-store,investment,172353.76,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,365630.71,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-store,investment,133234.25,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,905158.96,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-store,investment,104935.02,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)", H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).", H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", @@ -115,10 +151,32 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., HVDC submarine,investment,471.16,EUR/MW/km,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,investment,1441.86,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,investment,1441.86,EUR/kW_NH3,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-charger,investment,166045.89,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,664183.55,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,103333.78,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Hydrogen-charger,FOM,0.59,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-charger,investment,790713.57,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-discharger,FOM,0.5,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-discharger,investment,857468.43,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Hydrogen-store,investment,4779.95,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).", LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", @@ -143,6 +201,49 @@ LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://pap LOHC unloaded DBT storage,FOM,6.25,%/year,, LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", LOHC unloaded DBT storage,lifetime,30.0,years,, +Lead-Acid-bicharger,FOM,2.42,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,139292.42,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-store,FOM,0.25,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,342960.62,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-charger,investment,489692.48,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,investment,343826.64,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,172876.94,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Lithium-Ion-LFP-bicharger,FOM,2.09,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.91,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,88568.84,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,281086.79,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,FOM,2.09,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.91,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,88568.84,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,lifetime,14.67,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,320844.42,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,lifetime,14.67,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-charger,investment,146783.39,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,587133.56,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,63731.51,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -157,15 +258,40 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -OCGT,FOM,1.78,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,444.6,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +Ni-Zn-bicharger,FOM,2.09,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" +Ni-Zn-bicharger,investment,88568.84,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,306333.14,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +OCGT,FOM,1.78,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.4,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,444.6,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" +Pumped-Heat-charger,investment,784485.96,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,lifetime,31.33,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,efficiency,0.62,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,investment,550809.29,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,lifetime,31.33,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,FOM,0.11,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,21420.31,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,lifetime,31.33,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1397128.46,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Pumped-Storage-Hydro-store,investment,57074.06,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR,investment,493470.4,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" @@ -175,130 +301,169 @@ SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydroge SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-charger,investment,148408.42,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,efficiency,0.51,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,investment,593633.67,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,7357.8,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,investment,810492.64,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.25,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,215.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,187.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +Vanadium-Redox-Flow-bicharger,FOM,2.42,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,139486.63,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,287843.52,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.78,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-store,FOM,0.18,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,184643.51,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-bicharger,FOM,2.3,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.82,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,107925.47,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-store,FOM,0.27,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,444465.25,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-store,FOM,0.24,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,258047.1,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,investment,810492.64,EUR/t_N2/h,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.25,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,215.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,187.0,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,22.5,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.09,tCO2/MWh_th,Stoichiometric calculation, -biogas,FOM,12.07,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,FOM,12.07,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" biogas,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1625.16,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,831.6,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.5,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.44,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,402.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" +biogas,investment,1625.16,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,investment,831.6,EUR/kW_CH4,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,2.5,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.44,EUR/MWh input,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,investment,402.0,EUR/kW input,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" biomass,FOM,4.53,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.47,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.6,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3295.78,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.83,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.83,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.6,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3295.78,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.78,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.45,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,854.02,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.43,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.84,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,665.99,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.83,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.21,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,951.39,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.87,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,0.92,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1880.24,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.31,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass CHP,FOM,3.6,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3295.78,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.83,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.83,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.6,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3295.78,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.78,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.45,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,1.03,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,854.02,EUR/kW_th - heat output,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.43,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,665.99,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.83,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2800000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.21,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,951.39,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.87,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,0.92,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.5,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1880.24,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.31,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.3,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,0.98,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,575.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,575.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.05,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,55.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.37,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.12,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.72,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,535.8,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central resistive heater,FOM,1.61,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,0.95,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,65.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.05,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,55.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.37,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.12,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.72,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,535.8,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central resistive heater,FOM,1.61,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,0.95,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,65.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.88,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.59,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3442.07,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.88,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.59,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.35,50°C/100°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3442.07,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central water tank storage,FOM,0.53,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.56,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central water tank storage,FOM,0.53,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.56,EUR/kWhCapacity,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,22.5,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.63,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -322,23 +487,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,2.98,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,2.98,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,895.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.62,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,895.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.62,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,304.45,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,190.28,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.84,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,304.45,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,190.28,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.84,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.85,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1450.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,3.85,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1450.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.01,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -361,41 +526,41 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.35,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-input,2.5,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -electric boiler steam,FOM,1.39,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.87,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,75.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.35,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,heat-input,2.5,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +electric boiler steam,FOM,1.39,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.87,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,75.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.67,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,investment,550.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,27.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1200.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,2.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M +electrolysis,efficiency,0.67,per unit,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,investment,550.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,lifetime,27.5,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1200.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.2,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,20.1,EUR/MWh_th,BP 2019, -gas boiler steam,FOM,3.9,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.05,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,50.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,3.9,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.05,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,50.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.59,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.03,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -410,12 +575,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.25,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,303.6,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,264.77,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,22.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.25,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,303.6,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,264.77,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,22.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -426,27 +591,27 @@ hydrogen storage compressor,investment,79.42,EUR/kWh_H2,"Based on Stöckl et al hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", hydrogen storage tank,investment,11.2,USD/kWh,budischak2013, from old pypsa cost assumptions hydrogen storage tank,lifetime,20.0,years,budischak2013, from old pypsa cost assumptions -hydrogen storage tank incl. compressor,FOM,1.08,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank incl. compressor,investment,50.96,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank incl. compressor,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage tank incl. compressor,FOM,1.08,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank incl. compressor,investment,50.96,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank incl. compressor,lifetime,27.5,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,2.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.09,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,990.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.11,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.62,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,825.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,2.5,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.09,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.0,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,990.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.11,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.62,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,825.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime lignite,CO2 intensity,0.41,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, @@ -466,21 +631,21 @@ methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", methanolisation,investment,704056.13,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.43,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.6,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,8716.89,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.43,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.6,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,8716.89,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.37,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.23,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1602.34,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1706.12,"EUR/kW_e, 2020","Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020]" +offwind,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -488,16 +653,16 @@ offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions oil,CO2 intensity,0.26,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.51,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.51,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.23,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.42,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1077.17,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,28.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,343.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.23,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.42,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1077.17,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,28.5,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -506,34 +671,34 @@ seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", seawater desalination,investment,36907.69,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -solar,FOM,1.73,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,FOM,1.73,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,612.79,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop,FOM,1.26,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,investment,612.79,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar,lifetime,37.5,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop,FOM,1.26,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,797.07,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop commercial,FOM,1.36,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,651.27,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.16,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,942.86,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.2,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,428.52,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-rooftop,investment,797.07,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop,lifetime,37.5,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop commercial,FOM,1.36,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,651.27,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,37.5,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.16,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,942.86,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,37.5,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.2,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,428.52,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,37.5,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,5.76,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.8,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,604.55,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,5.76,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.8,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,604.55,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2030.csv b/outputs/costs_2030.csv index e3090fc..6f7d772 100644 --- a/outputs/costs_2030.csv +++ b/outputs/costs_2030.csv @@ -5,28 +5,28 @@ Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene. BioSNG,C in fuel,0.34,per unit,Stoichiometric calculation, BioSNG,C stored,0.66,per unit,Stoichiometric calculation, BioSNG,CO2 stored,0.24,tCO2/MWh_th,Stoichiometric calculation, -BioSNG,FOM,1.64,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.7,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.64,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.7,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,1600.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.63,per unit,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" +BioSNG,investment,1600.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.27,per unit,Stoichiometric calculation, BtL,C stored,0.73,per unit,Stoichiometric calculation, BtL,CO2 stored,0.27,tCO2/MWh_th,Stoichiometric calculation, -BtL,FOM,2.67,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.67,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.38,per unit,doi:10.1016/j.enpol.2017.05.013, BtL,investment,3000.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.35,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.58,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,830.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.35,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.2,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.0,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.58,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,830.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station., CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.", CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station., @@ -57,6 +57,24 @@ CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .", CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +Compressed-Air-Adiabatic-bicharger,FOM,0.93,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.72,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,946180.94,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Compressed-Air-Adiabatic-store,investment,5448.79,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-charger,investment,144192.27,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,576769.07,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,24044.23,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -75,6 +93,24 @@ General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nish General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .", General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .", General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,415570.52,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Brick-store,investment,157381.73,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,365630.71,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-store,investment,121755.03,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,905158.96,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-store,investment,95982.52,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)", H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).", H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", @@ -115,10 +151,32 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., HVDC submarine,investment,471.16,EUR/MW/km,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,investment,1297.43,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,investment,1297.43,EUR/kW_NH3,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-charger,investment,144192.27,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,576769.07,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,94107.55,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Hydrogen-charger,FOM,0.71,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-charger,investment,312123.78,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-discharger,FOM,0.53,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-discharger,investment,414054.49,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Hydrogen-store,investment,4779.95,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).", LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", @@ -143,6 +201,49 @@ LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://pap LOHC unloaded DBT storage,FOM,6.25,%/year,, LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", LOHC unloaded DBT storage,lifetime,30.0,years,, +Lead-Acid-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,128853.61,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-store,FOM,0.25,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,320631.38,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-charger,investment,475721.23,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,investment,334017.03,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,159004.77,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Lithium-Ion-LFP-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,81553.48,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,236482.81,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,81553.48,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,269576.85,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-charger,investment,144192.27,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,576769.07,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,58041.2,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -157,15 +258,40 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -OCGT,FOM,1.78,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,435.24,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +Ni-Zn-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" +Ni-Zn-bicharger,investment,81553.48,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,267837.87,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +OCGT,FOM,1.78,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.41,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,435.24,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" +Pumped-Heat-charger,investment,761782.67,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,investment,534868.69,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,FOM,0.15,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,11546.8,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1397128.46,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Pumped-Storage-Hydro-store,investment,57074.06,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR,investment,493470.4,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" @@ -175,130 +301,169 @@ SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydroge SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-charger,investment,144192.27,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,investment,576769.07,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,6700.85,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,investment,729306.18,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.34,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,160.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,142.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +Vanadium-Redox-Flow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,258072.86,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-store,FOM,0.17,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,174388.01,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,81553.48,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-store,FOM,0.26,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,412306.59,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-store,FOM,0.22,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,239220.58,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,investment,729306.18,EUR/t_N2/h,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.34,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,160.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,142.0,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.09,tCO2/MWh_th,Stoichiometric calculation, -biogas,FOM,12.84,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,FOM,12.84,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" biogas,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1539.62,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,756.0,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.49,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.18,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,381.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" +biogas,investment,1539.62,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,investment,756.0,EUR/kW_CH4,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,2.49,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.18,EUR/MWh input,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,investment,381.0,EUR/kW input,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" biomass,FOM,4.53,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.47,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.58,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3210.28,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2700000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.58,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3210.28,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.75,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.78,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,832.63,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.49,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,649.3,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.54,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2600000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.23,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.51,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.25,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.84,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1860.47,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.32,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass CHP,FOM,3.58,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3210.28,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.72,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2700000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.58,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3210.28,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.75,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.78,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,1.03,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,832.63,EUR/kW_th - heat output,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.49,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,649.3,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.54,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2600000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.23,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.51,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.25,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.84,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1860.47,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.32,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.2,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,560.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.41,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,560.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas boiler,FOM,3.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.39,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.25,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.73,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,507.6,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central resistive heater,FOM,1.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas boiler,FOM,3.8,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.39,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.25,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.73,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,507.6,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central resistive heater,FOM,1.7,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.87,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.58,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.82,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3349.49,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.87,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.58,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.35,50°C/100°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.82,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3349.49,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central water tank storage,FOM,0.55,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.54,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central water tank storage,FOM,0.55,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.54,EUR/kWhCapacity,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.63,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -322,23 +487,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.0,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,850.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.69,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,850.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.69,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,296.82,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,185.51,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.82,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,296.82,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,185.51,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.82,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.9,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1400.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,3.9,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1400.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.01,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -361,41 +526,41 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.32,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-input,2.0,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-output,1.0,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,6000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -electric boiler steam,FOM,1.46,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.88,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.32,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,heat-input,2.0,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,heat-output,1.0,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,6000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +electric boiler steam,FOM,1.46,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.88,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.68,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,investment,450.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1100.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,2.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M +electrolysis,efficiency,0.68,per unit,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,investment,450.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1100.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.2,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,20.1,EUR/MWh_th,BP 2019, -gas boiler steam,FOM,4.18,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.45,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,4.18,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.45,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.59,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.03,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -410,12 +575,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.34,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,228.06,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,202.9,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,25.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.34,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,228.06,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,202.9,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,25.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -426,27 +591,27 @@ hydrogen storage compressor,investment,79.42,EUR/kWh_H2,"Based on Stöckl et al hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", hydrogen storage tank,investment,11.2,USD/kWh,budischak2013, from old pypsa cost assumptions hydrogen storage tank,lifetime,20.0,years,budischak2013, from old pypsa cost assumptions -hydrogen storage tank incl. compressor,FOM,1.11,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank incl. compressor,investment,44.91,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank incl. compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage tank incl. compressor,FOM,1.11,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank incl. compressor,investment,44.91,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank incl. compressor,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,2.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.09,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.05,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,934.56,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.11,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.7,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,778.8,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,2.0,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.09,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.05,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,934.56,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.11,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.7,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,778.8,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime lignite,CO2 intensity,0.41,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, @@ -466,21 +631,21 @@ methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", methanolisation,investment,650711.26,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.11,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.61,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,7410.27,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.11,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.61,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,7410.27,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.32,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.17,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1523.55,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1626.14,"EUR/kW_e, 2020","Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020]" +offwind,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -488,16 +653,16 @@ offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions oil,CO2 intensity,0.26,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.46,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.46,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.22,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.35,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1035.56,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,343.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.22,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.35,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1035.56,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -506,34 +671,34 @@ seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", seawater desalination,investment,32882.05,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -solar,FOM,1.95,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,FOM,1.95,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,492.11,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop,FOM,1.42,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,investment,492.11,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop,FOM,1.42,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,636.66,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop commercial,FOM,1.57,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,512.47,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.27,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,760.86,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.48,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,347.56,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-rooftop,investment,636.66,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop commercial,FOM,1.57,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,512.47,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.27,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,760.86,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.48,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,347.56,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.08,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.82,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,590.91,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,6.08,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.82,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,590.91,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2035.csv b/outputs/costs_2035.csv index 0d28b40..64053c7 100644 --- a/outputs/costs_2035.csv +++ b/outputs/costs_2035.csv @@ -5,28 +5,28 @@ Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene. BioSNG,C in fuel,0.35,per unit,Stoichiometric calculation, BioSNG,C stored,0.65,per unit,Stoichiometric calculation, BioSNG,CO2 stored,0.24,tCO2/MWh_th,Stoichiometric calculation, -BioSNG,FOM,1.63,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.68,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.63,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.68,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.65,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,1575.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.65,per unit,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" +BioSNG,investment,1575.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.28,per unit,Stoichiometric calculation, BtL,C stored,0.72,per unit,Stoichiometric calculation, BtL,CO2 stored,0.26,tCO2/MWh_th,Stoichiometric calculation, -BtL,FOM,2.75,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.75,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.4,per unit,doi:10.1016/j.enpol.2017.05.013, BtL,investment,2750.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.33,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.05,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.58,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,822.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.33,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.15,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.05,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.58,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,822.5,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station., CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.", CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station., @@ -57,6 +57,24 @@ CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .", CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +Compressed-Air-Adiabatic-bicharger,FOM,0.93,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.72,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,946180.94,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Compressed-Air-Adiabatic-store,investment,5448.79,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-charger,investment,122279.2,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.45,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,489116.79,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,21350.06,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -75,6 +93,24 @@ General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nish General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .", General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .", General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,415570.52,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Brick-store,investment,142409.69,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,365630.71,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-store,investment,110275.81,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,905158.96,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-store,investment,87030.02,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)", H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).", H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", @@ -115,10 +151,32 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., HVDC submarine,investment,471.16,EUR/MW/km,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,investment,1179.3,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,investment,1179.3,EUR/kW_NH3,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-charger,investment,122338.65,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.46,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,489354.6,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,84881.32,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Hydrogen-charger,FOM,0.82,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-charger,investment,-166466.02,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-discharger,FOM,0.56,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-discharger,investment,-29359.45,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Hydrogen-store,investment,4779.95,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).", LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", @@ -143,6 +201,49 @@ LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://pap LOHC unloaded DBT storage,FOM,6.25,%/year,, LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", LOHC unloaded DBT storage,lifetime,30.0,years,, +Lead-Acid-bicharger,FOM,2.46,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,118414.81,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-store,FOM,0.26,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,298302.15,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-charger,investment,461749.97,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,efficiency,0.56,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,investment,324207.43,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,145132.6,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Lithium-Ion-LFP-bicharger,FOM,2.14,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,74538.13,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,191878.84,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,FOM,2.14,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,74538.13,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,lifetime,11.33,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,218309.28,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,lifetime,11.33,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-charger,investment,141601.15,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,566404.58,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,52350.89,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -157,15 +258,40 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -OCGT,FOM,1.78,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,429.39,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +Ni-Zn-bicharger,FOM,2.14,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" +Ni-Zn-bicharger,investment,74538.13,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,229342.61,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +OCGT,FOM,1.78,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.42,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,429.39,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" +Pumped-Heat-charger,investment,739079.38,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,lifetime,34.67,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,efficiency,0.64,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,investment,518928.08,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,lifetime,34.67,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,FOM,0.2,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,1673.28,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,lifetime,34.67,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1397128.46,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Pumped-Storage-Hydro-store,investment,57074.06,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR,investment,493470.4,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" @@ -175,130 +301,169 @@ SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydroge SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-charger,investment,139976.12,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,investment,559904.48,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,6043.91,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,investment,662903.6,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.42,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,130.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,118.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +Vanadium-Redox-Flow-bicharger,FOM,2.46,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,118559.47,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,228302.2,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-store,FOM,0.15,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,164132.52,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-bicharger,FOM,1.94,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.84,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,55181.5,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,380147.94,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-store,FOM,0.21,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,220394.07,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,investment,662903.6,EUR/t_N2/h,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.42,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,130.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,118.0,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,27.5,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.09,tCO2/MWh_th,Stoichiometric calculation, -biogas,FOM,13.14,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,FOM,13.14,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" biogas,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1501.13,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,680.4,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.5,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.31,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,371.5,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" +biogas,investment,1501.13,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,investment,680.4,EUR/kW_CH4,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,2.5,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.31,EUR/MWh input,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,investment,371.5,EUR/kW input,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" biomass,FOM,4.53,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.47,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.57,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3135.77,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.92,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2550000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.57,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3135.77,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.74,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.87,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.78,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,812.77,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.5,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,633.81,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.92,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.51,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.23,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.35,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.62,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.25,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.81,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1841.32,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.35,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass CHP,FOM,3.57,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3135.77,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.92,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.69,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2550000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.57,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3135.77,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.74,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.87,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.78,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,812.77,EUR/kW_th - heat output,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.5,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,633.81,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.92,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.51,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.23,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.35,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.62,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.25,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.81,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1841.32,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.35,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.15,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,550.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas boiler,FOM,3.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.4,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.3,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,494.91,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central resistive heater,FOM,1.66,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas boiler,FOM,3.7,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.4,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.3,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,494.91,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central resistive heater,FOM,1.66,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.86,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.61,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3301.1,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.86,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.61,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.35,50°C/100°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3301.1,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central water tank storage,FOM,0.57,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.52,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central water tank storage,FOM,0.57,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.52,EUR/kWhCapacity,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.63,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -322,23 +487,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.03,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.03,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,827.5,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.7,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,827.5,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.7,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,289.74,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,181.09,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.86,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,289.74,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,181.09,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.86,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.94,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1350.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,3.94,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1350.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.01,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -361,41 +526,41 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.31,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-input,1.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-output,0.88,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,5500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -electric boiler steam,FOM,1.42,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.83,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.31,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,heat-input,1.75,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,heat-output,0.88,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,5500000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +electric boiler steam,FOM,1.42,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.83,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.7,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,investment,375.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,31.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1025.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,2.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M +electrolysis,efficiency,0.7,per unit,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,investment,375.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,lifetime,31.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1025.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.2,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,20.1,EUR/MWh_th,BP 2019, -gas boiler steam,FOM,4.07,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.45,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,4.07,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.45,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.59,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.03,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -410,12 +575,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.42,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,186.57,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,169.68,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,27.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.42,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,186.57,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,169.68,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,27.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -426,27 +591,27 @@ hydrogen storage compressor,investment,79.42,EUR/kWh_H2,"Based on Stöckl et al hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", hydrogen storage tank,investment,11.2,USD/kWh,budischak2013, from old pypsa cost assumptions hydrogen storage tank,lifetime,20.0,years,budischak2013, from old pypsa cost assumptions -hydrogen storage tank incl. compressor,FOM,1.39,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank incl. compressor,investment,35.98,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank incl. compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage tank incl. compressor,FOM,1.39,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank incl. compressor,investment,35.98,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank incl. compressor,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.75,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.09,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.1,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,905.28,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.11,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.75,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,754.4,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,1.75,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.09,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.1,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,905.28,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.11,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.75,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,754.4,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime lignite,CO2 intensity,0.41,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, @@ -466,21 +631,21 @@ methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", methanolisation,investment,608179.55,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.18,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.61,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,6998.59,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.18,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.61,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,6998.59,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.1,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1469.32,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1572.26,"EUR/kW_e, 2020","Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020]" +offwind,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -488,16 +653,16 @@ offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions oil,CO2 intensity,0.26,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.45,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.45,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,341.25,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.2,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1006.56,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,341.25,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.2,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.3,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1006.56,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -506,34 +671,34 @@ seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", seawater desalination,investment,29589.74,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -solar,FOM,1.99,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,FOM,1.99,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,449.99,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop,FOM,1.48,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,investment,449.99,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop,FOM,1.48,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,580.91,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop commercial,FOM,1.65,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,464.79,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.32,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,697.04,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,319.07,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-rooftop,investment,580.91,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop commercial,FOM,1.65,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,464.79,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.32,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,697.04,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.5,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,319.07,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.12,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.84,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,577.27,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,6.12,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.84,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,577.27,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2040.csv b/outputs/costs_2040.csv index d50ec77..0da9f21 100644 --- a/outputs/costs_2040.csv +++ b/outputs/costs_2040.csv @@ -5,28 +5,28 @@ Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene. BioSNG,C in fuel,0.36,per unit,Stoichiometric calculation, BioSNG,C stored,0.64,per unit,Stoichiometric calculation, BioSNG,CO2 stored,0.23,tCO2/MWh_th,Stoichiometric calculation, -BioSNG,FOM,1.62,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.65,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.62,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.65,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.66,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,1550.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.66,per unit,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" +BioSNG,investment,1550.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.29,per unit,Stoichiometric calculation, BtL,C stored,0.71,per unit,Stoichiometric calculation, BtL,CO2 stored,0.26,tCO2/MWh_th,Stoichiometric calculation, -BtL,FOM,2.84,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.84,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.42,per unit,doi:10.1016/j.enpol.2017.05.013, BtL,investment,2500.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.1,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.59,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,815.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.1,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.1,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.59,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,815.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station., CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.", CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station., @@ -57,6 +57,24 @@ CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .", CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +Compressed-Air-Adiabatic-bicharger,FOM,0.93,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.72,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,946180.94,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Compressed-Air-Adiabatic-store,investment,5448.79,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-charger,investment,100366.13,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.46,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,401464.5,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-store,FOM,0.34,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,18655.89,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -75,6 +93,24 @@ General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nish General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .", General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .", General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,415570.52,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Brick-store,investment,127437.66,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,365630.71,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-store,investment,98796.59,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,905158.96,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-store,investment,78077.52,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)", H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).", H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", @@ -115,10 +151,32 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., HVDC submarine,investment,471.16,EUR/MW/km,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,investment,1061.17,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,investment,1061.17,EUR/kW_NH3,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-charger,investment,100485.03,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.47,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,401940.12,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,75655.09,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Hydrogen-charger,FOM,0.94,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-charger,investment,-645055.81,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-discharger,FOM,0.59,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-discharger,investment,-472773.39,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Hydrogen-store,investment,4779.95,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).", LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", @@ -143,6 +201,49 @@ LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://pap LOHC unloaded DBT storage,FOM,6.25,%/year,, LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", LOHC unloaded DBT storage,lifetime,30.0,years,, +Lead-Acid-bicharger,FOM,2.48,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,107976.0,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-store,FOM,0.27,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,275972.91,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-charger,investment,447778.72,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,efficiency,0.58,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,investment,314397.82,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-store,FOM,0.31,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,131260.44,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Lithium-Ion-LFP-bicharger,FOM,2.17,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,67522.78,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,147274.86,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,FOM,2.17,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,67522.78,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,lifetime,9.67,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,167041.71,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,lifetime,9.67,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-charger,investment,139010.02,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.56,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,556040.09,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,46660.57,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -157,15 +258,40 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -OCGT,FOM,1.79,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,423.54,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +Ni-Zn-bicharger,FOM,2.17,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,efficiency,0.91,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" +Ni-Zn-bicharger,investment,67522.78,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,190847.34,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +OCGT,FOM,1.79,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.42,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,423.54,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" +Pumped-Heat-charger,investment,716376.09,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,lifetime,36.33,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,efficiency,0.65,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,investment,502987.47,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,lifetime,36.33,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,FOM,0.24,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,-8200.23,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,lifetime,36.33,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1397128.46,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Pumped-Storage-Hydro-store,investment,57074.06,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR,investment,493470.4,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" @@ -175,130 +301,169 @@ SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydroge SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-charger,investment,135759.97,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,investment,543039.89,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,5386.96,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,investment,596501.02,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.54,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,100.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,94.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +Vanadium-Redox-Flow-bicharger,FOM,2.48,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,108095.9,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,198531.53,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.82,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-store,FOM,0.14,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,153877.02,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-bicharger,FOM,1.76,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.86,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,28809.52,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,347989.28,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.91,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-store,FOM,0.2,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,201567.55,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,investment,596501.02,EUR/t_N2/h,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.54,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,100.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,94.0,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.09,tCO2/MWh_th,Stoichiometric calculation, -biogas,FOM,13.45,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,FOM,13.45,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" biogas,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1462.64,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,604.8,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.5,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.43,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,362.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" +biogas,investment,1462.64,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,investment,604.8,EUR/kW_CH4,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,2.5,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.43,EUR/MWh input,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,investment,362.0,EUR/kW input,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" biomass,FOM,4.53,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.47,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.56,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3061.26,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.56,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3061.26,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.73,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.95,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.53,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,792.91,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.51,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.87,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,618.33,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.23,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.25,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.78,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.53,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1822.17,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.39,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass CHP,FOM,3.56,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3061.26,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.56,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3061.26,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.73,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.95,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.53,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,792.91,EUR/kW_th - heat output,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.51,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.87,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,618.33,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.23,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.25,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.78,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.53,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1822.17,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.39,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.1,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,540.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,540.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas boiler,FOM,3.6,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.41,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.34,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,482.22,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central resistive heater,FOM,1.62,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas boiler,FOM,3.6,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.41,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.34,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,482.22,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central resistive heater,FOM,1.62,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.86,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.63,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3252.72,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.86,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.63,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.35,50°C/100°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3252.72,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central water tank storage,FOM,0.59,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.51,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central water tank storage,FOM,0.59,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.51,EUR/kWhCapacity,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.63,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -322,23 +487,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.07,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.07,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,805.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.71,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,805.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.71,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,282.67,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,176.67,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.9,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,282.67,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,176.67,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.9,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1300.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,3.98,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1300.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.01,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -361,41 +526,41 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.3,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-input,1.5,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,5000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -electric boiler steam,FOM,1.39,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.3,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,heat-input,1.5,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,5000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +electric boiler steam,FOM,1.39,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.72,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,investment,300.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,32.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,950.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,2.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M +electrolysis,efficiency,0.72,per unit,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,investment,300.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,lifetime,32.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,950.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.2,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,20.1,EUR/MWh_th,BP 2019, -gas boiler steam,FOM,3.96,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.45,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,3.96,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.45,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.59,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.03,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -410,12 +575,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.54,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,144.57,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,136.17,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.54,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,144.57,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,136.17,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -426,27 +591,27 @@ hydrogen storage compressor,investment,79.42,EUR/kWh_H2,"Based on Stöckl et al hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", hydrogen storage tank,investment,11.2,USD/kWh,budischak2013, from old pypsa cost assumptions hydrogen storage tank,lifetime,20.0,years,budischak2013, from old pypsa cost assumptions -hydrogen storage tank incl. compressor,FOM,1.85,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank incl. compressor,investment,27.05,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank incl. compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage tank incl. compressor,FOM,1.85,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank incl. compressor,investment,27.05,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank incl. compressor,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.09,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.15,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,876.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.11,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.8,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,730.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,1.5,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.09,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.15,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,876.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.11,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.8,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,730.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime lignite,CO2 intensity,0.41,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, @@ -466,21 +631,21 @@ methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", methanolisation,investment,565647.83,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.25,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.61,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,6586.91,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.25,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.61,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,6586.91,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.18,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.03,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1415.08,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1518.38,"EUR/kW_e, 2020","Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020]" +offwind,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -488,16 +653,16 @@ offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions oil,CO2 intensity,0.26,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.44,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.44,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,339.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.19,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.24,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,977.57,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,339.5,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.19,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.24,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,977.57,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -506,34 +671,34 @@ seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", seawater desalination,investment,26297.44,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -solar,FOM,2.04,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,FOM,2.04,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,407.87,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop,FOM,1.56,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,investment,407.87,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop,FOM,1.56,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,525.16,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop commercial,FOM,1.74,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,417.1,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.37,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,633.22,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.52,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,290.58,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-rooftop,investment,525.16,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop commercial,FOM,1.74,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,417.1,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.37,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,633.22,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.52,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,290.58,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.17,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.85,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,563.64,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,6.17,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.85,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,563.64,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2045.csv b/outputs/costs_2045.csv index 183bf7c..65b9b73 100644 --- a/outputs/costs_2045.csv +++ b/outputs/costs_2045.csv @@ -5,28 +5,28 @@ Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene. BioSNG,C in fuel,0.37,per unit,Stoichiometric calculation, BioSNG,C stored,0.63,per unit,Stoichiometric calculation, BioSNG,CO2 stored,0.23,tCO2/MWh_th,Stoichiometric calculation, -BioSNG,FOM,1.61,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.62,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.61,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.62,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.68,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,1525.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.68,per unit,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" +BioSNG,investment,1525.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.3,per unit,Stoichiometric calculation, BtL,C stored,0.7,per unit,Stoichiometric calculation, BtL,CO2 stored,0.26,tCO2/MWh_th,Stoichiometric calculation, -BtL,FOM,2.92,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.92,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.43,per unit,doi:10.1016/j.enpol.2017.05.013, BtL,investment,2250.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.28,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,807.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.28,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.05,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.6,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,807.5,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station., CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.", CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station., @@ -57,6 +57,24 @@ CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .", CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +Compressed-Air-Adiabatic-bicharger,FOM,0.93,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.72,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,946180.94,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Compressed-Air-Adiabatic-store,investment,5448.79,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-charger,investment,78453.06,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.47,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,313812.22,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-store,FOM,0.34,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,15961.71,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -75,6 +93,24 @@ General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nish General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .", General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .", General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,415570.52,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Brick-store,investment,112465.63,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,365630.71,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-store,investment,87317.37,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,905158.96,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-store,investment,69125.01,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)", H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).", H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", @@ -115,10 +151,32 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., HVDC submarine,investment,471.16,EUR/MW/km,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,investment,937.36,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,investment,937.36,EUR/kW_NH3,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-charger,investment,78631.41,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.48,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,314525.65,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,66428.86,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Hydrogen-charger,FOM,1.06,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-charger,investment,-1123645.61,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-discharger,FOM,0.63,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-discharger,investment,-916187.33,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Hydrogen-store,investment,4779.95,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).", LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", @@ -143,6 +201,49 @@ LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://pap LOHC unloaded DBT storage,FOM,6.25,%/year,, LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", LOHC unloaded DBT storage,lifetime,30.0,years,, +Lead-Acid-bicharger,FOM,2.5,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,97537.19,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-store,FOM,0.28,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,253643.67,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-charger,investment,433807.46,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,efficiency,0.59,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,investment,304588.22,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-store,FOM,0.31,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,117388.27,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Lithium-Ion-LFP-bicharger,FOM,2.19,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.94,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,60507.42,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,102670.89,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,FOM,2.19,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.94,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,60507.42,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,lifetime,8.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,115774.14,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,lifetime,8.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-charger,investment,136418.9,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.57,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,545675.6,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,40970.26,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -157,15 +258,40 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -OCGT,FOM,1.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,417.69,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +Ni-Zn-bicharger,FOM,2.19,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,efficiency,0.91,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" +Ni-Zn-bicharger,investment,60507.42,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,152352.08,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +OCGT,FOM,1.8,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.42,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,417.69,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" +Pumped-Heat-charger,investment,693672.81,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,lifetime,38.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,efficiency,0.66,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,investment,487046.86,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,lifetime,38.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,FOM,0.29,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,-18073.75,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,lifetime,38.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1397128.46,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Pumped-Storage-Hydro-store,investment,57074.06,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR,investment,493470.4,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" @@ -175,130 +301,169 @@ SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydroge SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-charger,investment,131543.82,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,efficiency,0.56,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,investment,526175.29,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,4730.01,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,investment,526904.4,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.68,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,80.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,84.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +Vanadium-Redox-Flow-bicharger,FOM,2.49,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,97632.32,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,168760.87,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.84,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-store,FOM,0.13,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,143621.53,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-bicharger,FOM,1.59,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.87,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,2437.54,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-store,FOM,0.22,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,315830.62,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-store,FOM,0.19,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,182741.04,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,investment,526904.4,EUR/t_N2/h,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.68,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,80.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,84.5,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.09,tCO2/MWh_th,Stoichiometric calculation, -biogas,FOM,13.78,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,FOM,13.78,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" biogas,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1424.15,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,529.2,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.5,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.56,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,352.5,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" +biogas,investment,1424.15,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,investment,529.2,EUR/kW_CH4,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,2.5,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.56,EUR/MWh input,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,investment,352.5,EUR/kW input,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" biomass,FOM,4.53,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.47,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.55,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,2986.75,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.55,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,2986.75,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.71,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,3.04,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.28,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,773.06,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.53,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,602.85,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.23,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.43,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.68,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.25,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.75,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.53,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1803.02,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.42,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass CHP,FOM,3.55,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,2986.75,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.55,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,2986.75,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.71,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,3.04,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.28,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,773.06,EUR/kW_th - heat output,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.53,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,602.85,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.23,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.43,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.68,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.25,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.75,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.53,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1803.02,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.42,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.05,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,530.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,530.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.43,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.38,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,469.53,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central resistive heater,FOM,1.58,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.43,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.38,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,469.53,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central resistive heater,FOM,1.58,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.86,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.65,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.34,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3204.34,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.86,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.65,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.34,50°C/100°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3204.34,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central water tank storage,FOM,0.62,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.49,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central water tank storage,FOM,0.62,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.49,EUR/kWhCapacity,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.63,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -322,23 +487,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.1,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.1,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.75,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,782.5,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.72,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.75,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,782.5,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.72,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,275.59,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,172.24,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.94,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,275.59,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,172.24,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.94,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,4.01,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1250.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,4.01,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1250.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.01,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -361,41 +526,41 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.29,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-input,1.5,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,4500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -electric boiler steam,FOM,1.35,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.29,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,heat-input,1.5,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,4500000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +electric boiler steam,FOM,1.35,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.73,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,investment,275.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,33.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,875.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,2.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M +electrolysis,efficiency,0.73,per unit,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,investment,275.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,lifetime,33.5,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,875.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.2,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,20.1,EUR/MWh_th,BP 2019, -gas boiler steam,FOM,3.85,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.45,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,3.85,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.45,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.59,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.03,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -410,12 +575,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.68,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,115.9,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,122.66,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.68,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,115.9,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,122.66,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -426,27 +591,27 @@ hydrogen storage compressor,investment,79.42,EUR/kWh_H2,"Based on Stöckl et al hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", hydrogen storage tank,investment,11.2,USD/kWh,budischak2013, from old pypsa cost assumptions hydrogen storage tank,lifetime,20.0,years,budischak2013, from old pypsa cost assumptions -hydrogen storage tank incl. compressor,FOM,1.87,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank incl. compressor,investment,24.03,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank incl. compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage tank incl. compressor,FOM,1.87,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank incl. compressor,investment,24.03,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank incl. compressor,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.35,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.09,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.18,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,858.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.11,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.82,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,715.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,1.35,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.09,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.18,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,858.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.11,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.82,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,715.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime lignite,CO2 intensity,0.41,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, @@ -466,21 +631,21 @@ methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", methanolisation,investment,523116.11,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.33,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.61,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,6175.23,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.33,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.61,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,6175.23,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.17,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.02,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1397.68,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1503.13,"EUR/kW_e, 2020","Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020]" +offwind,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -488,16 +653,16 @@ offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions oil,CO2 intensity,0.26,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.42,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.42,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,337.75,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.18,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.23,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,970.32,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,337.75,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.18,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.23,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,970.32,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -506,34 +671,34 @@ seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", seawater desalination,investment,23661.54,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -solar,FOM,2.05,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,FOM,2.05,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,389.03,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop,FOM,1.58,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,investment,389.03,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop,FOM,1.58,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,500.27,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop commercial,FOM,1.77,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,395.99,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.39,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,604.55,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.53,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,277.79,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-rooftop,investment,500.27,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop commercial,FOM,1.77,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,395.99,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.39,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,604.55,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.53,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,277.79,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.23,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.85,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,6.23,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.85,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,550.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2050.csv b/outputs/costs_2050.csv index 2ce922a..f44df42 100644 --- a/outputs/costs_2050.csv +++ b/outputs/costs_2050.csv @@ -5,28 +5,28 @@ Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene. BioSNG,C in fuel,0.38,per unit,Stoichiometric calculation, BioSNG,C stored,0.62,per unit,Stoichiometric calculation, BioSNG,CO2 stored,0.23,tCO2/MWh_th,Stoichiometric calculation, -BioSNG,FOM,1.61,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.6,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.61,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.6,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,1500.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" +BioSNG,investment,1500.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.32,per unit,Stoichiometric calculation, BtL,C stored,0.68,per unit,Stoichiometric calculation, BtL,CO2 stored,0.25,tCO2/MWh_th,Stoichiometric calculation, -BtL,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.45,per unit,doi:10.1016/j.enpol.2017.05.013, BtL,investment,2000.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.2,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,800.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.25,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.2,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.6,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,800.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station., CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.", CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station., @@ -57,6 +57,24 @@ CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .", CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +Compressed-Air-Adiabatic-bicharger,FOM,0.93,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.72,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,946180.94,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Compressed-Air-Adiabatic-store,investment,5448.79,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-charger,investment,56539.98,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.48,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,226159.94,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-store,FOM,0.35,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,13267.54,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -75,6 +93,24 @@ General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nish General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .", General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .", General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,415570.52,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Brick-store,investment,97493.6,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,365630.71,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-store,investment,75838.15,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,905158.96,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-store,investment,60172.51,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)", H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).", H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", @@ -115,10 +151,32 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., HVDC submarine,investment,471.16,EUR/MW/km,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,investment,813.55,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,investment,813.55,EUR/kW_NH3,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-charger,investment,56777.79,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.49,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,227111.17,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,57202.63,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Hydrogen-charger,FOM,1.18,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-charger,investment,-1602235.4,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-discharger,FOM,0.66,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-discharger,investment,-1359601.27,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Hydrogen-store,investment,4779.95,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).", LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", @@ -143,6 +201,49 @@ LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://pap LOHC unloaded DBT storage,FOM,6.25,%/year,, LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", LOHC unloaded DBT storage,lifetime,30.0,years,, +Lead-Acid-bicharger,FOM,2.52,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,87098.39,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-store,FOM,0.29,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,231314.44,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-charger,investment,419836.21,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,efficiency,0.61,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,investment,294778.62,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-store,FOM,0.31,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,103516.1,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Lithium-Ion-LFP-bicharger,FOM,2.22,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.94,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,53492.07,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,58066.91,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,FOM,2.22,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.94,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,53492.07,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,lifetime,6.33,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,64506.57,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,lifetime,6.33,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-charger,investment,133827.78,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.58,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,535311.11,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,35279.95,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -157,15 +258,40 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -OCGT,FOM,1.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,411.84,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +Ni-Zn-bicharger,FOM,2.22,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" +Ni-Zn-bicharger,investment,53492.07,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,113856.81,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +OCGT,FOM,1.8,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.43,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,411.84,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" +Pumped-Heat-charger,investment,670969.52,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,lifetime,39.67,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,efficiency,0.67,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,investment,471106.26,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,lifetime,39.67,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,FOM,0.34,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,-27947.27,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,lifetime,39.67,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1397128.46,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Pumped-Storage-Hydro-store,investment,57074.06,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR,investment,493470.4,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" @@ -175,130 +301,169 @@ SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydroge SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-charger,investment,127327.68,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,efficiency,0.57,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,investment,509310.7,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,4073.07,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,investment,457307.78,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.9,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,60.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,75.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +Vanadium-Redox-Flow-bicharger,FOM,2.51,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,87168.74,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,138990.21,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.85,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-store,FOM,0.12,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,133366.03,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-bicharger,FOM,1.41,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,-23934.44,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-store,FOM,0.2,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,283671.96,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.94,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-store,FOM,0.18,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,163914.53,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,investment,457307.78,EUR/t_N2/h,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.9,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,60.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,75.0,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.09,tCO2/MWh_th,Stoichiometric calculation, -biogas,FOM,14.12,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,FOM,14.12,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" biogas,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1385.66,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,453.6,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.51,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.68,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,343.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" +biogas,investment,1385.66,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,investment,453.6,EUR/kW_CH4,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,2.51,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.68,EUR/MWh input,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,investment,343.0,EUR/kW input,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" biomass,FOM,4.53,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.47,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.54,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,2912.24,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.54,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,2912.24,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,3.12,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,753.2,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.54,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,587.36,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,1800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.23,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.67,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.25,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.72,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.54,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1783.87,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.46,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass CHP,FOM,3.54,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,2912.24,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.54,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,2912.24,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,3.12,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.03,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,753.2,EUR/kW_th - heat output,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.54,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,587.36,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,1800000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.23,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.67,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.25,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.72,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.54,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1783.87,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.46,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,520.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.43,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,520.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas boiler,FOM,3.4,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.44,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.43,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.75,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,456.84,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central resistive heater,FOM,1.53,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas boiler,FOM,3.4,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.44,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.43,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.75,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,456.84,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central resistive heater,FOM,1.53,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.85,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.67,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.34,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3155.95,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.85,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.67,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.34,50°C/100°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3155.95,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central water tank storage,FOM,0.64,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.47,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central water tank storage,FOM,0.64,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.47,EUR/kWhCapacity,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.63,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -322,23 +487,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.14,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.14,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,760.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.73,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,760.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.73,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,268.51,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,167.82,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.99,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,268.51,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,167.82,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.99,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,4.05,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1200.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,4.05,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1200.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.01,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -361,41 +526,41 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.28,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-input,1.5,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,4000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -electric boiler steam,FOM,1.31,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.28,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,heat-input,1.5,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,4000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +electric boiler steam,FOM,1.31,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.75,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,investment,250.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,35.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,800.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,2.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M +electrolysis,efficiency,0.75,per unit,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,investment,250.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,lifetime,35.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,800.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.2,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,20.1,EUR/MWh_th,BP 2019, -gas boiler steam,FOM,3.74,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.45,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,3.74,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.45,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.59,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.03,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -410,12 +575,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.9,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,87.43,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,108.59,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.9,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,87.43,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,108.59,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -426,27 +591,27 @@ hydrogen storage compressor,investment,79.42,EUR/kWh_H2,"Based on Stöckl et al hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", hydrogen storage tank,investment,11.2,USD/kWh,budischak2013, from old pypsa cost assumptions hydrogen storage tank,lifetime,20.0,years,budischak2013, from old pypsa cost assumptions -hydrogen storage tank incl. compressor,FOM,1.9,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank incl. compressor,investment,21.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank incl. compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage tank incl. compressor,FOM,1.9,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank incl. compressor,investment,21.0,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank incl. compressor,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.2,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.09,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.2,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,840.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.85,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,700.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,1.2,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.09,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.2,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,840.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.85,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,700.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime lignite,CO2 intensity,0.41,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, @@ -466,21 +631,21 @@ methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", methanolisation,investment,480584.39,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.43,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.61,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,5763.55,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.43,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.61,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,5763.55,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.17,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.01,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1380.27,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1487.88,"EUR/kW_e, 2020","Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020]" +offwind,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -488,16 +653,16 @@ offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions oil,CO2 intensity,0.26,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.41,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.41,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,336.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.18,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.22,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,963.07,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,336.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.18,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.22,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,963.07,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -506,34 +671,34 @@ seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", seawater desalination,investment,21025.64,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -solar,FOM,2.07,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,FOM,2.07,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,370.19,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop,FOM,1.61,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,investment,370.19,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop,FOM,1.61,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,475.38,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop commercial,FOM,1.81,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,374.88,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.4,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,575.88,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.53,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,265.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-rooftop,investment,475.38,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop commercial,FOM,1.81,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,374.88,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.4,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,575.88,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.53,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,265.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.28,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.85,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,536.36,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,6.28,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.85,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,536.36,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) From bc6e438ff3a518d771944c1a34a809a18c3ba44d Mon Sep 17 00:00:00 2001 From: Max Parzen Date: Sat, 28 Jan 2023 19:20:46 +0000 Subject: [PATCH 10/24] add new points for linear interpolation --- outputs/costs_2020.csv | 34 +++---- outputs/costs_2025.csv | 32 +++---- outputs/costs_2035.csv | 130 +++++++++++++------------- outputs/costs_2040.csv | 140 ++++++++++++++-------------- outputs/costs_2045.csv | 140 ++++++++++++++-------------- outputs/costs_2050.csv | 138 +++++++++++++-------------- scripts/compile_cost_assumptions.py | 23 ++++- 7 files changed, 326 insertions(+), 311 deletions(-) diff --git a/outputs/costs_2020.csv b/outputs/costs_2020.csv index c80ea04..d9dc48e 100644 --- a/outputs/costs_2020.csv +++ b/outputs/costs_2020.csv @@ -69,7 +69,7 @@ Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'c Concrete-charger,investment,188018.41,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.41,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" Concrete-discharger,investment,752073.64,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Concrete-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" @@ -160,7 +160,7 @@ HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.1 HighT-Molten-Salt-charger,investment,187899.51,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.42,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" HighT-Molten-Salt-discharger,investment,751598.02,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" @@ -213,32 +213,32 @@ Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier' Liquid-Air-charger,investment,503663.74,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.52,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" Liquid-Air-discharger,investment,353636.24,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Liquid-Air-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" Liquid-Air-store,investment,186749.11,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Lithium-Ion-LFP-bicharger,FOM,2.07,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.91,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" Lithium-Ion-LFP-bicharger,investment,95584.19,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lithium-Ion-LFP-store,investment,325690.76,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-bicharger,FOM,2.07,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.91,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" Lithium-Ion-NMC-bicharger,investment,95584.19,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,16.33,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lithium-Ion-NMC-store,investment,372111.99,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,16.33,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" LowT-Molten-Salt-charger,investment,149374.51,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.52,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" LowT-Molten-Salt-discharger,investment,597498.06,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" @@ -259,7 +259,7 @@ NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 20 NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", Ni-Zn-bicharger,FOM,2.07,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Ni-Zn-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" Ni-Zn-bicharger,investment,95584.19,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-store,FOM,0.22,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" @@ -277,14 +277,14 @@ PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" Pumped-Heat-charger,investment,807189.25,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,29.67,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.6,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" Pumped-Heat-discharger,investment,566749.9,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,29.67,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Heat-store,FOM,0.06,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" Pumped-Heat-store,investment,31293.83,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,29.67,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" Pumped-Storage-Hydro-bicharger,investment,1397128.46,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" @@ -306,7 +306,7 @@ Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carri Sand-charger,investment,152624.56,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.5,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" Sand-discharger,investment,610498.26,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" @@ -323,21 +323,21 @@ Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'car Vanadium-Redox-Flow-store,investment,317614.19,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.77,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-store,FOM,0.19,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Air-store,investment,194899.01,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Flow-bicharger,FOM,2.48,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.8,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Flow-bicharger,investment,134297.45,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Flow-store,FOM,0.28,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Flow-store,investment,476623.91,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.86,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-store,FOM,0.25,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" diff --git a/outputs/costs_2025.csv b/outputs/costs_2025.csv index 78b425e..4acdad9 100644 --- a/outputs/costs_2025.csv +++ b/outputs/costs_2025.csv @@ -69,7 +69,7 @@ Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'c Concrete-charger,investment,166105.34,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.42,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" Concrete-discharger,investment,664421.36,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Concrete-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" @@ -160,7 +160,7 @@ HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.1 HighT-Molten-Salt-charger,investment,166045.89,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" HighT-Molten-Salt-discharger,investment,664183.55,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" @@ -213,32 +213,32 @@ Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier' Liquid-Air-charger,investment,489692.48,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" Liquid-Air-discharger,investment,343826.64,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" Liquid-Air-store,investment,172876.94,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Lithium-Ion-LFP-bicharger,FOM,2.09,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.91,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" Lithium-Ion-LFP-bicharger,investment,88568.84,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lithium-Ion-LFP-store,investment,281086.79,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-bicharger,FOM,2.09,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.91,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" Lithium-Ion-NMC-bicharger,investment,88568.84,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,14.67,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lithium-Ion-NMC-store,investment,320844.42,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,14.67,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" LowT-Molten-Salt-charger,investment,146783.39,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" LowT-Molten-Salt-discharger,investment,587133.56,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" @@ -277,14 +277,14 @@ PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" Pumped-Heat-charger,investment,784485.96,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,31.33,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.62,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" Pumped-Heat-discharger,investment,550809.29,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,31.33,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Heat-store,FOM,0.11,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" Pumped-Heat-store,investment,21420.31,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,31.33,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" Pumped-Storage-Hydro-bicharger,investment,1397128.46,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" @@ -306,7 +306,7 @@ Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carri Sand-charger,investment,148408.42,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.51,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" Sand-discharger,investment,593633.67,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" @@ -323,21 +323,21 @@ Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'car Vanadium-Redox-Flow-store,investment,287843.52,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.78,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-store,FOM,0.18,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Air-store,investment,184643.51,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Flow-bicharger,FOM,2.3,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.82,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Flow-bicharger,investment,107925.47,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Flow-store,FOM,0.27,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Flow-store,investment,444465.25,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-store,FOM,0.24,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" diff --git a/outputs/costs_2035.csv b/outputs/costs_2035.csv index 64053c7..f4ad4f8 100644 --- a/outputs/costs_2035.csv +++ b/outputs/costs_2035.csv @@ -66,14 +66,14 @@ Compressed-Air-Adiabatic-store,investment,5448.79,EUR/MWh,"Viswanathan_2022, p.6 Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,122279.2,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,investment,133235.73,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.45,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,489116.79,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,532942.93,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Concrete-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,21350.06,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,investment,22697.15,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -97,19 +97,19 @@ Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" Gravity-Brick-bicharger,investment,415570.52,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,142409.69,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,investment,149895.71,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" Gravity-Water-Aboveground-bicharger,investment,365630.71,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,110275.81,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,investment,116015.42,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" Gravity-Water-Underground-bicharger,investment,905158.96,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,87030.02,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,investment,91506.27,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)", H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).", @@ -157,22 +157,22 @@ Haber-Bosch,investment,1179.3,EUR/kW_NH3,"Danish Energy Agency, /home/max/code/t Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,122338.65,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,investment,133265.46,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.46,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,489354.6,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,533061.84,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,84881.32,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,investment,89494.43,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen-charger,FOM,0.82,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,FOM,0.74,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" Hydrogen-charger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-charger,investment,-166466.02,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,192476.33,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.56,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,FOM,0.54,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" Hydrogen-discharger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-discharger,investment,-29359.45,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,303201.0,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Hydrogen-store,investment,4779.95,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" @@ -201,48 +201,48 @@ LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://pap LOHC unloaded DBT storage,FOM,6.25,%/year,, LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", LOHC unloaded DBT storage,lifetime,30.0,years,, -Lead-Acid-bicharger,FOM,2.46,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,FOM,2.45,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,118414.81,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,investment,123634.21,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lead-Acid-store,FOM,0.26,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,298302.15,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,investment,309466.76,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,461749.97,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,investment,468735.6,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.56,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,324207.43,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,investment,329112.23,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,145132.6,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,investment,152068.69,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.14,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,74538.13,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,FOM,2.13,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,78045.81,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,191878.84,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,investment,214180.82,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.14,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,74538.13,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,11.33,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,FOM,2.13,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,78045.81,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,218309.28,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,11.33,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,investment,243943.06,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,141601.15,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,investment,142896.71,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,566404.58,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,571586.83,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,52350.89,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,investment,55196.04,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -258,12 +258,12 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.14,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,FOM,2.13,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,74538.13,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,investment,78045.81,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,229342.61,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,investment,248590.24,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" OCGT,FOM,1.78,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M @@ -276,15 +276,15 @@ PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, f PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,739079.38,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,34.67,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-charger,investment,750431.03,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.64,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,518928.08,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,34.67,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.2,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,1673.28,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,34.67,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,investment,526898.38,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,FOM,0.18,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,6610.04,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" Pumped-Storage-Hydro-bicharger,investment,1397128.46,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" @@ -303,45 +303,45 @@ SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,139976.12,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,investment,142084.19,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,559904.48,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,investment,568336.78,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,6043.91,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,investment,6372.38,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Vanadium-Redox-Flow-bicharger,FOM,2.46,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,FOM,2.45,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,118559.47,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,investment,123791.26,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,228302.2,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,investment,243187.53,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.15,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,164132.52,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,FOM,0.16,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,169260.27,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,1.94,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.84,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,55181.5,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,FOM,2.03,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,68367.49,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,380147.94,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,FOM,0.25,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,396227.27,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.21,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,220394.07,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,FOM,0.22,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,229807.33,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,investment,662903.6,EUR/t_N2/h,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment diff --git a/outputs/costs_2040.csv b/outputs/costs_2040.csv index 0da9f21..d60ae44 100644 --- a/outputs/costs_2040.csv +++ b/outputs/costs_2040.csv @@ -66,14 +66,14 @@ Compressed-Air-Adiabatic-store,investment,5448.79,EUR/MWh,"Viswanathan_2022, p.6 Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,100366.13,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,investment,123831.37,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.46,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,401464.5,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,495325.49,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.34,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,18655.89,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,21540.9,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -97,19 +97,19 @@ Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" Gravity-Brick-bicharger,investment,415570.52,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,127437.66,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,investment,143470.21,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" Gravity-Water-Aboveground-bicharger,investment,365630.71,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,98796.59,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,investment,111088.92,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" Gravity-Water-Underground-bicharger,investment,905158.96,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,78077.52,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,investment,87664.15,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)", H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).", @@ -157,22 +157,22 @@ Haber-Bosch,investment,1061.17,EUR/kW_NH3,"Danish Energy Agency, /home/max/code/ Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,100485.03,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,investment,123886.61,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.47,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,401940.12,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,495546.46,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,75655.09,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,investment,85534.84,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen-charger,FOM,0.94,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,FOM,0.76,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" Hydrogen-charger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-charger,investment,-645055.81,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,94141.08,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.59,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,FOM,0.55,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" Hydrogen-discharger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-discharger,investment,-472773.39,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,212093.29,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Hydrogen-store,investment,4779.95,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" @@ -201,48 +201,48 @@ LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://pap LOHC unloaded DBT storage,FOM,6.25,%/year,, LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", LOHC unloaded DBT storage,lifetime,30.0,years,, -Lead-Acid-bicharger,FOM,2.48,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,FOM,2.46,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,107976.0,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,investment,119154.22,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.27,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,275972.91,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,FOM,0.26,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,299883.8,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,447778.72,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,investment,462739.6,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.58,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,314397.82,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,investment,324902.28,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.31,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,131260.44,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,146115.21,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.17,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,67522.78,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,FOM,2.14,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,75035.05,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,147274.86,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,investment,195038.28,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.17,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,67522.78,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,9.67,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,FOM,2.14,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,75035.05,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,167041.71,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,9.67,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,investment,221940.73,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,139010.02,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,investment,141784.68,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.56,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,556040.09,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,567138.73,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,46660.57,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,investment,52753.95,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -258,12 +258,12 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.17,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Ni-Zn-bicharger,efficiency,0.91,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,67522.78,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,FOM,2.14,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" +Ni-Zn-bicharger,investment,75035.05,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,190847.34,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,investment,232069.36,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" OCGT,FOM,1.79,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M @@ -276,15 +276,15 @@ PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, f PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,716376.09,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,36.33,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-charger,investment,740687.53,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.65,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,502987.47,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,36.33,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.24,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,-8200.23,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,36.33,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,investment,520057.2,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,FOM,0.2,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,2372.65,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" Pumped-Storage-Hydro-bicharger,investment,1397128.46,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" @@ -303,45 +303,45 @@ SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,135759.97,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,investment,140274.76,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,543039.89,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,investment,561099.06,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,5386.96,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,investment,6090.44,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Vanadium-Redox-Flow-bicharger,FOM,2.48,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,FOM,2.46,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,108095.9,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,investment,119300.64,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,198531.53,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,230410.95,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.82,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.14,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,153877.02,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,FOM,0.15,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,164858.95,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,1.76,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.86,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,28809.52,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,FOM,1.95,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,57049.52,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,347989.28,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,382425.84,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.91,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.2,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,201567.55,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,FOM,0.21,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,221727.61,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,investment,596501.02,EUR/t_N2/h,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment diff --git a/outputs/costs_2045.csv b/outputs/costs_2045.csv index 65b9b73..c306d91 100644 --- a/outputs/costs_2045.csv +++ b/outputs/costs_2045.csv @@ -66,14 +66,14 @@ Compressed-Air-Adiabatic-store,investment,5448.79,EUR/MWh,"Viswanathan_2022, p.6 Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,78453.06,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,investment,120635.72,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.47,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,313812.22,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,482542.87,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.34,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,15961.71,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,21148.0,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -97,19 +97,19 @@ Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" Gravity-Brick-bicharger,investment,415570.52,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,112465.63,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,investment,141286.79,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" Gravity-Water-Aboveground-bicharger,investment,365630.71,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,87317.37,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,investment,109414.87,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" Gravity-Water-Underground-bicharger,investment,905158.96,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,69125.01,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,investment,86358.58,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)", H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).", @@ -157,22 +157,22 @@ Haber-Bosch,investment,937.36,EUR/kW_NH3,"Danish Energy Agency, /home/max/code/t Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,78631.41,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,investment,120699.63,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.48,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,314525.65,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,482798.51,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,66428.86,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,investment,84189.35,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen-charger,FOM,1.06,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,FOM,0.76,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" Hydrogen-charger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-charger,investment,-1123645.61,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,81054.64,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.63,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,FOM,0.55,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" Hydrogen-discharger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-discharger,investment,-916187.33,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,199968.69,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Hydrogen-store,investment,4779.95,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" @@ -201,48 +201,48 @@ LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://pap LOHC unloaded DBT storage,FOM,6.25,%/year,, LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", LOHC unloaded DBT storage,lifetime,30.0,years,, -Lead-Acid-bicharger,FOM,2.5,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,FOM,2.46,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,97537.19,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,investment,117631.9,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.28,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,253643.67,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,FOM,0.26,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,296627.45,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,433807.46,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,investment,460702.13,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.59,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,304588.22,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,investment,323471.71,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.31,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,117388.27,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,144092.19,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.19,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.94,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,60507.42,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,FOM,2.15,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,74011.98,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,102670.89,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,investment,188533.54,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.19,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.94,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,60507.42,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,8.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,FOM,2.15,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,74011.98,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,115774.14,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,8.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,investment,214464.21,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,136418.9,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,investment,141406.81,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.57,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,545675.6,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,565627.24,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,40970.26,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,investment,51924.11,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -258,12 +258,12 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.19,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Ni-Zn-bicharger,efficiency,0.91,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,60507.42,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,FOM,2.15,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" +Ni-Zn-bicharger,investment,74011.98,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,152352.08,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,investment,226455.46,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" OCGT,FOM,1.8,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M @@ -276,15 +276,15 @@ PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, f PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,693672.81,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,38.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-charger,investment,737376.64,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.66,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,487046.86,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,38.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.29,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,-18073.75,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,38.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,investment,517732.53,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,FOM,0.2,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,932.77,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" Pumped-Storage-Hydro-bicharger,investment,1397128.46,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" @@ -303,45 +303,45 @@ SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,131543.82,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,investment,139659.91,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.56,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,526175.29,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,investment,558639.64,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,4730.01,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,investment,5994.63,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Vanadium-Redox-Flow-bicharger,FOM,2.49,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,FOM,2.46,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,97632.32,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,investment,117774.71,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,168760.87,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,226069.4,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.84,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.13,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,143621.53,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,FOM,0.15,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,163363.36,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,1.59,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.87,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,2437.54,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,FOM,1.93,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,53203.6,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.22,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,315830.62,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,377736.04,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.19,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,182741.04,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,FOM,0.21,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,218982.08,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,investment,526904.4,EUR/t_N2/h,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment diff --git a/outputs/costs_2050.csv b/outputs/costs_2050.csv index f44df42..cd3a9c2 100644 --- a/outputs/costs_2050.csv +++ b/outputs/costs_2050.csv @@ -66,14 +66,14 @@ Compressed-Air-Adiabatic-store,investment,5448.79,EUR/MWh,"Viswanathan_2022, p.6 Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,56539.98,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,investment,117440.06,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.48,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,226159.94,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,469760.24,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.35,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,13267.54,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,FOM,0.34,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,20755.1,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -97,19 +97,19 @@ Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" Gravity-Brick-bicharger,investment,415570.52,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,97493.6,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,investment,139103.37,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" Gravity-Water-Aboveground-bicharger,investment,365630.71,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,75838.15,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,investment,107740.81,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" Gravity-Water-Underground-bicharger,investment,905158.96,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,60172.51,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,investment,85053.01,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)", H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).", @@ -157,22 +157,22 @@ Haber-Bosch,investment,813.55,EUR/kW_NH3,"Danish Energy Agency, /home/max/code/t Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,56777.79,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,investment,117512.64,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.49,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,227111.17,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,470050.57,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,57202.63,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,investment,82843.86,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen-charger,FOM,1.18,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,FOM,0.77,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" Hydrogen-charger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-charger,investment,-1602235.4,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,67968.2,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.66,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,FOM,0.55,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" Hydrogen-discharger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-discharger,investment,-1359601.27,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,187844.09,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Hydrogen-store,investment,4779.95,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" @@ -201,48 +201,48 @@ LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://pap LOHC unloaded DBT storage,FOM,6.25,%/year,, LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", LOHC unloaded DBT storage,lifetime,30.0,years,, -Lead-Acid-bicharger,FOM,2.52,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,FOM,2.46,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,87098.39,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,investment,116109.57,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.29,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,231314.44,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,FOM,0.26,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,293371.11,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,419836.21,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,investment,458664.66,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.61,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,294778.62,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,investment,322041.14,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.31,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,103516.1,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,142069.17,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.22,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.94,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,53492.07,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,FOM,2.15,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,72988.91,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,58066.91,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,investment,182028.79,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.22,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.94,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,53492.07,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,6.33,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,FOM,2.15,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,72988.91,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,64506.57,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,6.33,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,investment,206987.69,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,133827.78,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,investment,141028.94,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.58,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,535311.11,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,564115.76,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,35279.95,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,investment,51094.28,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -258,12 +258,12 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.22,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Ni-Zn-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,53492.07,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,FOM,2.15,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" +Ni-Zn-bicharger,investment,72988.91,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,113856.81,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,investment,220841.57,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" OCGT,FOM,1.8,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M @@ -276,15 +276,15 @@ PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, f PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,670969.52,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,39.67,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-charger,investment,734065.74,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.67,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,471106.26,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,39.67,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.34,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,-27947.27,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,39.67,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,investment,515407.86,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,FOM,0.21,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,-507.12,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" Pumped-Storage-Hydro-bicharger,investment,1397128.46,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" @@ -303,45 +303,45 @@ SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,127327.68,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,investment,139045.05,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.57,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,509310.7,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,investment,556180.22,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,4073.07,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,investment,5898.83,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Vanadium-Redox-Flow-bicharger,FOM,2.51,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,FOM,2.46,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,87168.74,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,investment,116248.77,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Vanadium-Redox-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,138990.21,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,investment,221727.84,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.85,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.12,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,133366.03,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,FOM,0.15,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,161867.76,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,1.41,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,-23934.44,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,FOM,1.9,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,49357.69,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.2,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,283671.96,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,373046.23,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.94,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.18,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,163914.53,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,FOM,0.21,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,216236.55,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,investment,457307.78,EUR/t_N2/h,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment diff --git a/scripts/compile_cost_assumptions.py b/scripts/compile_cost_assumptions.py index d881fa3..500d211 100644 --- a/scripts/compile_cost_assumptions.py +++ b/scripts/compile_cost_assumptions.py @@ -1711,12 +1711,27 @@ def add_energy_storage_database(costs, data_year): y = df.loc[filter, "value"] if y.empty: continue # nothing to interpolate - if y.iloc[0]==y.iloc[1] or param=="efficiency" or param=="lifetime": + elif y.iloc[0]==y.iloc[1] or param=="efficiency" or param=="lifetime": ynew = y.iloc[1] # assume new value is the same as 2030 - if y.iloc[0]!=y.iloc[1]: + elif y.iloc[0]!=y.iloc[1]: x = df.loc[filter, "year"] # both values 2021+2030 - f = interpolate.interp1d(x, y, kind='linear', fill_value="extrapolate") - # copy previous row and change only "value" and "year" + # create a new point with 4 times the year difference (2066) but (1/2)^4 of the value difference + if tech=="Hydrogen-charger" or tech=="Hydrogen-discharger": + x = pd.concat([x, pd.Series({"index":2039})], ignore_index=True) + x = pd.concat([x, pd.Series({"index":2066})], ignore_index=True) + # create every 9 year new points for linear interpolation which 2021-2030 difference is reduced by "factor" + factor = 4 # the higher the more cost reduction + y = pd.concat([y, pd.Series({"index": y.iloc[1] - ((y.iloc[0]-y.iloc[1])/factor**1)})], ignore_index=True) + y = pd.concat([y, pd.Series({"index": y.iloc[1] - ((y.iloc[0]-y.iloc[1])/factor**1) - ((y.iloc[0]-y.iloc[1])/factor**2) - ((y.iloc[0]-y.iloc[1])/factor**3) - ((y.iloc[0]-y.iloc[1])/factor**4)})], ignore_index=True) + f = interpolate.interp1d(x, y, kind='linear', fill_value="extrapolate") + else: + x = pd.concat([x, pd.Series({"index":2039})], ignore_index=True) + x = pd.concat([x, pd.Series({"index":2066})], ignore_index=True) + # create every 9 year new points for linear interpolation which 2021-2030 difference is reduced by "factor" + factor = 2 # the higher the more cost reduction + y = pd.concat([y, pd.Series({"index": y.iloc[1] - ((y.iloc[0]-y.iloc[1])/factor**1)})], ignore_index=True) + y = pd.concat([y, pd.Series({"index": y.iloc[1] - ((y.iloc[0]-y.iloc[1])/factor**1) - ((y.iloc[0]-y.iloc[1])/factor**2) - ((y.iloc[0]-y.iloc[1])/factor**3) - ((y.iloc[0]-y.iloc[1])/factor**4)})], ignore_index=True) + f = interpolate.interp1d(x, y, kind='linear', fill_value="extrapolate") ynew = f(data_year) df_new = pd.DataFrame([{ From 5c3ab16f1f3bc0678e42b2c724461a710aa33721 Mon Sep 17 00:00:00 2001 From: Max Parzen Date: Sat, 28 Jan 2023 19:22:48 +0000 Subject: [PATCH 11/24] add comments --- scripts/compile_cost_assumptions.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/scripts/compile_cost_assumptions.py b/scripts/compile_cost_assumptions.py index 500d211..e113a56 100644 --- a/scripts/compile_cost_assumptions.py +++ b/scripts/compile_cost_assumptions.py @@ -1715,7 +1715,8 @@ def add_energy_storage_database(costs, data_year): ynew = y.iloc[1] # assume new value is the same as 2030 elif y.iloc[0]!=y.iloc[1]: x = df.loc[filter, "year"] # both values 2021+2030 - # create a new point with 4 times the year difference (2066) but (1/2)^4 of the value difference + # add new points for linear interpolation + # deal with hydrogen separately as extreme changes between 2021 and 2030 if tech=="Hydrogen-charger" or tech=="Hydrogen-discharger": x = pd.concat([x, pd.Series({"index":2039})], ignore_index=True) x = pd.concat([x, pd.Series({"index":2066})], ignore_index=True) From 9bb200b6b6697cfb4caf32c409000d27667ab88b Mon Sep 17 00:00:00 2001 From: Max Parzen Date: Sat, 28 Jan 2023 19:36:54 +0000 Subject: [PATCH 12/24] fix pumped-heat-store --- outputs/costs_2035.csv | 76 +++++++++++------------ outputs/costs_2040.csv | 90 +++++++++++++-------------- outputs/costs_2045.csv | 90 +++++++++++++-------------- outputs/costs_2050.csv | 94 ++++++++++++++--------------- scripts/compile_cost_assumptions.py | 2 +- 5 files changed, 176 insertions(+), 176 deletions(-) diff --git a/outputs/costs_2035.csv b/outputs/costs_2035.csv index f4ad4f8..60534b2 100644 --- a/outputs/costs_2035.csv +++ b/outputs/costs_2035.csv @@ -66,14 +66,14 @@ Compressed-Air-Adiabatic-store,investment,5448.79,EUR/MWh,"Viswanathan_2022, p.6 Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,133235.73,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,investment,138714.0,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,532942.93,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,investment,554856.0,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Concrete-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,22697.15,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,investment,23370.69,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -97,19 +97,19 @@ Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" Gravity-Brick-bicharger,investment,415570.52,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,149895.71,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,investment,153638.72,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" Gravity-Water-Aboveground-bicharger,investment,365630.71,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,116015.42,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,investment,118885.22,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" Gravity-Water-Underground-bicharger,investment,905158.96,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,91506.27,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,investment,93744.4,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)", H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).", @@ -157,14 +157,14 @@ Haber-Bosch,investment,1179.3,EUR/kW_NH3,"Danish Energy Agency, /home/max/code/t Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,133265.46,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,investment,138728.86,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,533061.84,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,investment,554915.45,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,89494.43,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,investment,91800.99,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Hydrogen-charger,FOM,0.74,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" Hydrogen-charger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" @@ -203,46 +203,46 @@ LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche LOHC unloaded DBT storage,lifetime,30.0,years,, Lead-Acid-bicharger,FOM,2.45,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,123634.21,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,investment,126243.91,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lead-Acid-store,FOM,0.26,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,309466.76,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,investment,315049.07,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,468735.6,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,investment,472228.42,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,329112.23,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,investment,331564.63,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,152068.69,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,investment,155536.73,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Lithium-Ion-LFP-bicharger,FOM,2.13,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,78045.81,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,investment,79799.65,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,214180.82,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,investment,225331.82,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-bicharger,FOM,2.13,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,78045.81,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,investment,79799.65,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,243943.06,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,investment,256759.96,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,142896.71,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,investment,143544.49,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,571586.83,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,investment,574177.95,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,55196.04,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,investment,56618.62,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -260,10 +260,10 @@ NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IE NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", Ni-Zn-bicharger,FOM,2.13,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,78045.81,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,investment,79799.65,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,248590.24,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,investment,258214.06,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" OCGT,FOM,1.78,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M @@ -276,14 +276,14 @@ PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, f PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,750431.03,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,investment,756106.85,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,526898.38,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,investment,530883.53,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.18,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,6610.04,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,FOM,0.16,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,9078.42,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" @@ -303,45 +303,45 @@ SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,142084.19,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,investment,143138.23,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,568336.78,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,investment,572552.92,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,6372.38,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,investment,6536.62,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Vanadium-Redox-Flow-bicharger,FOM,2.45,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,123791.26,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,investment,126407.16,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,243187.53,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,investment,250630.19,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-store,FOM,0.16,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,169260.27,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,investment,171824.14,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.03,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,FOM,2.08,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,68367.49,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,investment,74960.49,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Flow-store,FOM,0.25,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,396227.27,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,investment,404266.93,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-store,FOM,0.22,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,229807.33,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,investment,234513.95,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,investment,662903.6,EUR/t_N2/h,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment diff --git a/outputs/costs_2040.csv b/outputs/costs_2040.csv index d60ae44..0d3fab1 100644 --- a/outputs/costs_2040.csv +++ b/outputs/costs_2040.csv @@ -66,14 +66,14 @@ Compressed-Air-Adiabatic-store,investment,5448.79,EUR/MWh,"Viswanathan_2022, p.6 Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,123831.37,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,investment,134211.55,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,495325.49,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,investment,536846.2,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Concrete-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,21540.9,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,investment,22817.12,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -97,19 +97,19 @@ Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" Gravity-Brick-bicharger,investment,415570.52,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,143470.21,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,investment,150562.43,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" Gravity-Water-Aboveground-bicharger,investment,365630.71,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,111088.92,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,investment,116526.6,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" Gravity-Water-Underground-bicharger,investment,905158.96,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,87664.15,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,investment,91904.94,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)", H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).", @@ -157,14 +157,14 @@ Haber-Bosch,investment,1061.17,EUR/kW_NH3,"Danish Energy Agency, /home/max/code/ Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,123886.61,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,investment,134238.63,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,495546.46,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,investment,536954.51,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,85534.84,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,investment,89905.29,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Hydrogen-charger,FOM,0.76,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" Hydrogen-charger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" @@ -201,48 +201,48 @@ LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://pap LOHC unloaded DBT storage,FOM,6.25,%/year,, LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", LOHC unloaded DBT storage,lifetime,30.0,years,, -Lead-Acid-bicharger,FOM,2.46,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,FOM,2.45,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,119154.22,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,investment,124099.06,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lead-Acid-store,FOM,0.26,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,299883.8,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,investment,310461.11,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,462739.6,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,investment,469357.76,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,324902.28,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,investment,329549.06,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,146115.21,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,investment,152686.43,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.14,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,FOM,2.13,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,75035.05,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,investment,78358.21,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,195038.28,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,investment,216167.09,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.14,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,FOM,2.13,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,75035.05,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,investment,78358.21,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,221940.73,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,investment,246226.07,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,141784.68,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,investment,143012.09,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,567138.73,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,investment,572048.37,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,52753.95,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,investment,55449.44,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -258,12 +258,12 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.14,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,FOM,2.13,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,75035.05,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,investment,78358.21,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,232069.36,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,investment,250304.48,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" OCGT,FOM,1.79,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M @@ -276,14 +276,14 @@ PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, f PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,740687.53,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,investment,751442.03,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,520057.2,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,investment,527608.24,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.2,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,2372.65,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,FOM,0.17,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,7049.72,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" @@ -303,45 +303,45 @@ SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,140274.76,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,investment,142271.94,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,561099.06,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,investment,569087.78,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,6090.44,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,investment,6401.63,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Vanadium-Redox-Flow-bicharger,FOM,2.46,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,FOM,2.45,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,119300.64,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,investment,124257.22,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,230410.95,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,investment,244513.25,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.15,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,164858.95,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,FOM,0.16,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,169716.96,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,1.95,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,FOM,2.04,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,57049.52,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,investment,69541.87,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,382425.84,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,FOM,0.25,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,397659.33,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.21,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,221727.61,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,FOM,0.22,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,230645.69,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,investment,596501.02,EUR/t_N2/h,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment diff --git a/outputs/costs_2045.csv b/outputs/costs_2045.csv index c306d91..c1fd6b3 100644 --- a/outputs/costs_2045.csv +++ b/outputs/costs_2045.csv @@ -66,14 +66,14 @@ Compressed-Air-Adiabatic-store,investment,5448.79,EUR/MWh,"Viswanathan_2022, p.6 Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,120635.72,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,investment,133612.36,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,482542.87,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,investment,534449.45,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Concrete-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,21148.0,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,investment,22743.45,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -97,19 +97,19 @@ Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" Gravity-Brick-bicharger,investment,415570.52,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,141286.79,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,investment,150153.04,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" Gravity-Water-Aboveground-bicharger,investment,365630.71,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,109414.87,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,investment,116212.72,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" Gravity-Water-Underground-bicharger,investment,905158.96,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,86358.58,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,investment,91660.14,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)", H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).", @@ -157,14 +157,14 @@ Haber-Bosch,investment,937.36,EUR/kW_NH3,"Danish Energy Agency, /home/max/code/t Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,120699.63,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,investment,133641.07,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,482798.51,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,investment,534564.27,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,84189.35,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,investment,89653.01,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Hydrogen-charger,FOM,0.76,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" Hydrogen-charger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" @@ -201,48 +201,48 @@ LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://pap LOHC unloaded DBT storage,FOM,6.25,%/year,, LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", LOHC unloaded DBT storage,lifetime,30.0,years,, -Lead-Acid-bicharger,FOM,2.46,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,FOM,2.45,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,117631.9,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,investment,123813.63,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lead-Acid-store,FOM,0.26,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,296627.45,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,investment,309850.55,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,460702.13,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,investment,468975.73,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,323471.71,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,investment,329280.83,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,144092.19,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,investment,152307.11,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.15,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,FOM,2.13,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,74011.98,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,investment,78166.38,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,188533.54,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,investment,214947.45,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.15,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,FOM,2.13,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,74011.98,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,investment,78166.38,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,214464.21,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,investment,244824.23,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,141406.81,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,investment,142941.24,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,565627.24,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,investment,571764.97,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,51924.11,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,investment,55293.85,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -258,12 +258,12 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.15,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,FOM,2.13,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,74011.98,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,investment,78166.38,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,226455.46,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,investment,249251.88,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" OCGT,FOM,1.8,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M @@ -276,14 +276,14 @@ PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, f PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,737376.64,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,investment,750821.24,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,517732.53,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,investment,527172.36,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.2,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,932.77,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,FOM,0.17,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,6779.74,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" @@ -303,45 +303,45 @@ SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,139659.91,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,investment,142156.66,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,558639.64,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,investment,568626.64,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,5994.63,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,investment,6383.67,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Vanadium-Redox-Flow-bicharger,FOM,2.46,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,FOM,2.45,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,117774.71,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,investment,123971.11,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,226069.4,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,investment,243699.21,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.15,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,163363.36,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,FOM,0.16,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,169436.53,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,1.93,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,FOM,2.03,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,53203.6,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,investment,68820.76,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,377736.04,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,FOM,0.25,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,396779.99,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.21,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,218982.08,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,FOM,0.22,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,230130.91,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,investment,526904.4,EUR/t_N2/h,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment diff --git a/outputs/costs_2050.csv b/outputs/costs_2050.csv index cd3a9c2..c68b7b9 100644 --- a/outputs/costs_2050.csv +++ b/outputs/costs_2050.csv @@ -66,14 +66,14 @@ Compressed-Air-Adiabatic-store,investment,5448.79,EUR/MWh,"Viswanathan_2022, p.6 Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,117440.06,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,investment,133013.18,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,469760.24,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,investment,532052.71,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.34,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,20755.1,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,22669.78,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -97,19 +97,19 @@ Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" Gravity-Brick-bicharger,investment,415570.52,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,139103.37,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,investment,149743.65,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" Gravity-Water-Aboveground-bicharger,investment,365630.71,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,107740.81,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,investment,115898.83,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" Gravity-Water-Underground-bicharger,investment,905158.96,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,85053.01,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,investment,91415.35,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)", H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).", @@ -157,14 +157,14 @@ Haber-Bosch,investment,813.55,EUR/kW_NH3,"Danish Energy Agency, /home/max/code/t Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,117512.64,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,investment,133043.51,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,470050.57,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,investment,532174.03,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,82843.86,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,investment,89400.73,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Hydrogen-charger,FOM,0.77,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" Hydrogen-charger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" @@ -201,48 +201,48 @@ LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://pap LOHC unloaded DBT storage,FOM,6.25,%/year,, LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", LOHC unloaded DBT storage,lifetime,30.0,years,, -Lead-Acid-bicharger,FOM,2.46,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,FOM,2.45,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,116109.57,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,investment,123528.19,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lead-Acid-store,FOM,0.26,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,293371.11,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,investment,309239.98,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,458664.66,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,investment,468593.71,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,322041.14,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,investment,329012.6,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,142069.17,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,investment,151927.8,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.15,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,FOM,2.13,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,72988.91,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,investment,77974.56,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,182028.79,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,investment,213727.81,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.15,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,FOM,2.13,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,72988.91,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,investment,77974.56,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,206987.69,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,investment,243422.38,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,141028.94,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,investment,142870.39,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,564115.76,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,investment,571481.56,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,51094.28,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,investment,55138.25,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -258,12 +258,12 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.15,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,FOM,2.13,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,72988.91,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,investment,77974.56,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,220841.57,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,investment,248199.27,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" OCGT,FOM,1.8,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M @@ -276,14 +276,14 @@ PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, f PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,734065.74,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,investment,750200.45,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,515407.86,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,investment,526736.48,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.21,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,-507.12,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,FOM,0.18,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,6509.76,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" @@ -303,45 +303,45 @@ SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,139045.05,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,investment,142041.37,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,556180.22,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,investment,568165.5,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,5898.83,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,investment,6365.71,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Vanadium-Redox-Flow-bicharger,FOM,2.46,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,FOM,2.45,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,116248.77,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,investment,123684.99,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,221727.84,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,242885.17,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.15,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,161867.76,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,FOM,0.16,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,169156.11,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,1.9,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,FOM,2.03,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,49357.69,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,investment,68099.65,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,373046.23,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,FOM,0.25,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,395900.65,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.21,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,216236.55,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,FOM,0.22,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,229616.12,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,investment,457307.78,EUR/t_N2/h,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment diff --git a/scripts/compile_cost_assumptions.py b/scripts/compile_cost_assumptions.py index e113a56..a193a85 100644 --- a/scripts/compile_cost_assumptions.py +++ b/scripts/compile_cost_assumptions.py @@ -1717,7 +1717,7 @@ def add_energy_storage_database(costs, data_year): x = df.loc[filter, "year"] # both values 2021+2030 # add new points for linear interpolation # deal with hydrogen separately as extreme changes between 2021 and 2030 - if tech=="Hydrogen-charger" or tech=="Hydrogen-discharger": + if tech=="Hydrogen-charger" or tech=="Hydrogen-discharger" or "Pumped-Heat-store": x = pd.concat([x, pd.Series({"index":2039})], ignore_index=True) x = pd.concat([x, pd.Series({"index":2066})], ignore_index=True) # create every 9 year new points for linear interpolation which 2021-2030 difference is reduced by "factor" From b700abec99d2dab32374280710da37e2034d776d Mon Sep 17 00:00:00 2001 From: Max Parzen Date: Fri, 10 Feb 2023 18:02:57 +0000 Subject: [PATCH 13/24] fix hydrogen efficiency bug and cost assumptions --- inputs/table_inputs.tex | 0 outputs/costs_2020.csv | 6 -- outputs/costs_2025.csv | 6 -- outputs/costs_2030.csv | 6 -- outputs/costs_2035.csv | 112 +++++++++++++--------------- outputs/costs_2040.csv | 112 +++++++++++++--------------- outputs/costs_2045.csv | 112 +++++++++++++--------------- outputs/costs_2050.csv | 112 +++++++++++++--------------- scripts/compile_cost_assumptions.py | 66 +++++++++++----- 9 files changed, 260 insertions(+), 272 deletions(-) create mode 100644 inputs/table_inputs.tex diff --git a/inputs/table_inputs.tex b/inputs/table_inputs.tex new file mode 100644 index 0000000..e69de29 diff --git a/outputs/costs_2020.csv b/outputs/costs_2020.csv index d9dc48e..f0d5ae8 100644 --- a/outputs/costs_2020.csv +++ b/outputs/costs_2020.csv @@ -575,12 +575,6 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.2,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,377.0,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,323.53,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,20.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions diff --git a/outputs/costs_2025.csv b/outputs/costs_2025.csv index 4acdad9..d590ab4 100644 --- a/outputs/costs_2025.csv +++ b/outputs/costs_2025.csv @@ -575,12 +575,6 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.25,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,303.6,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,264.77,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,22.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions diff --git a/outputs/costs_2030.csv b/outputs/costs_2030.csv index 6f7d772..965e847 100644 --- a/outputs/costs_2030.csv +++ b/outputs/costs_2030.csv @@ -575,12 +575,6 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.34,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,228.06,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,202.9,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,25.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions diff --git a/outputs/costs_2035.csv b/outputs/costs_2035.csv index 60534b2..6ef73cb 100644 --- a/outputs/costs_2035.csv +++ b/outputs/costs_2035.csv @@ -66,14 +66,14 @@ Compressed-Air-Adiabatic-store,investment,5448.79,EUR/MWh,"Viswanathan_2022, p.6 Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,138714.0,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,investment,100804.39,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,554856.0,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,investment,403217.55,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,23370.69,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,FOM,0.34,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,18709.77,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -97,19 +97,19 @@ Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" Gravity-Brick-bicharger,investment,415570.52,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,153638.72,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,investment,127737.1,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" Gravity-Water-Aboveground-bicharger,investment,365630.71,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,118885.22,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,investment,99026.17,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" Gravity-Water-Underground-bicharger,investment,905158.96,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,93744.4,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,investment,78256.57,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)", H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).", @@ -157,22 +157,22 @@ Haber-Bosch,investment,1179.3,EUR/kW_NH3,"Danish Energy Agency, /home/max/code/t Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,138728.86,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,investment,100922.1,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,554915.45,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,investment,403688.41,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,91800.99,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,investment,75839.61,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen-charger,FOM,0.74,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,FOM,0.93,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" Hydrogen-charger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-charger,investment,192476.33,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,-592410.93,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.54,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,FOM,0.59,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" Hydrogen-discharger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-discharger,investment,303201.0,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,-463905.11,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Hydrogen-store,investment,4779.95,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" @@ -201,48 +201,48 @@ LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://pap LOHC unloaded DBT storage,FOM,6.25,%/year,, LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", LOHC unloaded DBT storage,lifetime,30.0,years,, -Lead-Acid-bicharger,FOM,2.45,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,FOM,2.48,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,126243.91,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,investment,108184.78,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.26,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,315049.07,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,FOM,0.27,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,276419.49,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,472228.42,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,investment,448058.14,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,331564.63,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,investment,314594.02,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,155536.73,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,FOM,0.31,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,131537.88,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.13,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,FOM,2.17,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,79799.65,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,investment,67663.08,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,225331.82,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,investment,148166.94,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.13,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,FOM,2.17,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,79799.65,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,investment,67663.08,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,256759.96,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,investment,168067.06,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,143544.49,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,investment,139061.85,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,574177.95,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,investment,556247.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,56618.62,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,investment,46774.38,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -258,12 +258,12 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.13,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,FOM,2.17,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,79799.65,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,investment,67663.08,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,258214.06,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,investment,191617.25,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" OCGT,FOM,1.78,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M @@ -276,14 +276,14 @@ PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, f PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,756106.85,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,investment,716830.16,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,530883.53,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,investment,503306.28,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.16,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,9078.42,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,FOM,0.24,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,-8002.76,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" @@ -303,45 +303,45 @@ SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,143138.23,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,investment,135844.29,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,572552.92,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,investment,543377.18,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,6536.62,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,investment,5400.1,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Vanadium-Redox-Flow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,FOM,2.48,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,126407.16,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,investment,108305.17,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,250630.19,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,199126.95,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.16,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,171824.14,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,FOM,0.14,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,154082.13,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.08,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,FOM,1.77,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,74960.49,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,investment,29336.96,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.25,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,404266.93,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,348632.45,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.22,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,234513.95,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,FOM,0.2,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,201944.09,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,investment,662903.6,EUR/t_N2/h,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment @@ -575,12 +575,6 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.42,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,186.57,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,169.68,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,27.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions diff --git a/outputs/costs_2040.csv b/outputs/costs_2040.csv index 0d3fab1..3aa5a10 100644 --- a/outputs/costs_2040.csv +++ b/outputs/costs_2040.csv @@ -66,14 +66,14 @@ Compressed-Air-Adiabatic-store,investment,5448.79,EUR/MWh,"Viswanathan_2022, p.6 Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,134211.55,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,investment,83054.8,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,536846.2,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,investment,332219.2,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,22817.12,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,FOM,0.34,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,16527.49,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -97,19 +97,19 @@ Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" Gravity-Brick-bicharger,investment,415570.52,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,150562.43,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,investment,115609.76,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" Gravity-Water-Aboveground-bicharger,investment,365630.71,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,116526.6,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,investment,89728.01,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" Gravity-Water-Underground-bicharger,investment,905158.96,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,91904.94,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,investment,71005.04,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)", H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).", @@ -157,22 +157,22 @@ Haber-Bosch,investment,1061.17,EUR/kW_NH3,"Danish Energy Agency, /home/max/code/ Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,134238.63,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,investment,83220.67,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,536954.51,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,investment,332882.69,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,89905.29,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,investment,68366.37,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen-charger,FOM,0.76,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,FOM,0.98,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" Hydrogen-charger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-charger,investment,94141.08,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,-775471.53,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.55,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,FOM,0.62,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" Hydrogen-discharger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-discharger,investment,212093.29,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,-823070.41,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Hydrogen-store,investment,4779.95,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" @@ -201,48 +201,48 @@ LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://pap LOHC unloaded DBT storage,FOM,6.25,%/year,, LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", LOHC unloaded DBT storage,lifetime,30.0,years,, -Lead-Acid-bicharger,FOM,2.45,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,FOM,2.49,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,124099.06,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,investment,99729.34,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.26,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,310461.11,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,FOM,0.28,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,258332.81,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,469357.76,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,investment,436741.43,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,329549.06,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,investment,306648.24,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,152686.43,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,FOM,0.31,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,120301.42,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.13,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,FOM,2.19,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,78358.21,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,investment,61980.65,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,216167.09,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,investment,112037.72,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.13,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,FOM,2.19,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,78358.21,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,investment,61980.65,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,246226.07,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,investment,126540.33,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,143012.09,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,investment,136963.04,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,572048.37,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,investment,547852.14,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,55449.44,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,investment,42165.22,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -258,12 +258,12 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.13,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,FOM,2.19,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,78358.21,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,investment,61980.65,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,250304.48,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,investment,160436.08,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" OCGT,FOM,1.79,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M @@ -276,14 +276,14 @@ PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, f PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,751442.03,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,investment,698440.5,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,527608.24,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,investment,490394.39,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.17,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,7049.72,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,FOM,0.28,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,-16000.31,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" @@ -303,45 +303,45 @@ SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,142271.94,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,investment,132429.21,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,569087.78,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,investment,529716.86,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,6401.63,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,investment,4867.97,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Vanadium-Redox-Flow-bicharger,FOM,2.45,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,FOM,2.49,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,124257.22,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,investment,99829.67,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,244513.25,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,175012.71,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.16,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,169716.96,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,FOM,0.13,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,145775.18,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.04,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,FOM,1.62,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,69541.87,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,investment,7975.65,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.25,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,397659.33,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,FOM,0.22,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,322583.94,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.22,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,230645.69,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,FOM,0.19,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,186694.61,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,investment,596501.02,EUR/t_N2/h,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment @@ -575,12 +575,6 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.54,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,144.57,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,136.17,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions diff --git a/outputs/costs_2045.csv b/outputs/costs_2045.csv index c1fd6b3..6c9507a 100644 --- a/outputs/costs_2045.csv +++ b/outputs/costs_2045.csv @@ -66,14 +66,14 @@ Compressed-Air-Adiabatic-store,investment,5448.79,EUR/MWh,"Viswanathan_2022, p.6 Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,133612.36,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,investment,74180.01,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,534449.45,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,investment,296720.02,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,22743.45,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,FOM,0.34,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,15436.35,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -97,19 +97,19 @@ Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" Gravity-Brick-bicharger,investment,415570.52,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,150153.04,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,investment,109546.08,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" Gravity-Water-Aboveground-bicharger,investment,365630.71,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,116212.72,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,investment,85078.92,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" Gravity-Water-Underground-bicharger,investment,905158.96,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,91660.14,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,investment,67379.27,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)", H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).", @@ -157,22 +157,22 @@ Haber-Bosch,investment,937.36,EUR/kW_NH3,"Danish Energy Agency, /home/max/code/t Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,133641.07,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,investment,74369.96,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,534564.27,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,investment,297479.82,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,89653.01,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,investment,64629.74,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen-charger,FOM,0.76,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,FOM,0.99,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" Hydrogen-charger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-charger,investment,81054.64,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,-821236.68,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.55,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,FOM,0.63,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" Hydrogen-discharger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-discharger,investment,199968.69,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,-1002653.05,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Hydrogen-store,investment,4779.95,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" @@ -201,48 +201,48 @@ LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://pap LOHC unloaded DBT storage,FOM,6.25,%/year,, LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", LOHC unloaded DBT storage,lifetime,30.0,years,, -Lead-Acid-bicharger,FOM,2.45,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,FOM,2.5,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,123813.63,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,investment,95501.63,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.26,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,309850.55,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,FOM,0.28,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,249289.47,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,468975.73,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,investment,431083.07,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,329280.83,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,investment,302675.35,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,152307.11,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,FOM,0.31,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,114683.19,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.13,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,FOM,2.2,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,78166.38,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,investment,59139.43,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,214947.45,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,investment,93973.11,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.13,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,FOM,2.2,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,78166.38,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,investment,59139.43,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,244824.23,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,investment,105776.97,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,142941.24,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,investment,135913.63,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,571764.97,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,investment,543654.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,55293.85,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,investment,39860.65,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -258,12 +258,12 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.13,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,FOM,2.2,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,78166.38,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,investment,59139.43,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,249251.88,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,investment,144845.5,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" OCGT,FOM,1.8,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M @@ -276,14 +276,14 @@ PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, f PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,750821.24,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,investment,689245.66,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,527172.36,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,investment,483938.44,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.17,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,6779.74,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,FOM,0.3,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,-19999.09,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" @@ -303,45 +303,45 @@ SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,142156.66,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,investment,130721.67,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,568626.64,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,investment,522886.7,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,6383.67,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,investment,4601.91,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Vanadium-Redox-Flow-bicharger,FOM,2.45,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,FOM,2.5,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,123971.11,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,investment,95591.92,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,243699.21,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,162955.59,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.16,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,169436.53,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,FOM,0.13,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,141621.71,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.03,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,FOM,1.55,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,68820.76,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,investment,-2705.0,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.25,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,396779.99,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,FOM,0.21,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,309559.68,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.22,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,230130.91,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,FOM,0.19,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,179069.87,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,investment,526904.4,EUR/t_N2/h,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment @@ -575,12 +575,6 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.68,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,115.9,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,122.66,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions diff --git a/outputs/costs_2050.csv b/outputs/costs_2050.csv index c68b7b9..be3c4c5 100644 --- a/outputs/costs_2050.csv +++ b/outputs/costs_2050.csv @@ -66,14 +66,14 @@ Compressed-Air-Adiabatic-store,investment,5448.79,EUR/MWh,"Viswanathan_2022, p.6 Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,133013.18,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,investment,69742.61,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,532052.71,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,investment,278970.44,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,22669.78,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,FOM,0.34,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,14890.78,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -97,19 +97,19 @@ Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" Gravity-Brick-bicharger,investment,415570.52,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,149743.65,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,investment,106514.25,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" Gravity-Water-Aboveground-bicharger,investment,365630.71,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,115898.83,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,investment,82754.38,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" Gravity-Water-Underground-bicharger,investment,905158.96,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,91415.35,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,investment,65566.39,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)", H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).", @@ -157,22 +157,22 @@ Haber-Bosch,investment,813.55,EUR/kW_NH3,"Danish Energy Agency, /home/max/code/t Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,133043.51,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,investment,69944.6,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,532174.03,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,investment,279778.39,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,89400.73,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,investment,62761.43,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen-charger,FOM,0.77,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,FOM,0.99,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" Hydrogen-charger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-charger,investment,67968.2,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,-832677.97,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.55,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,FOM,0.64,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" Hydrogen-discharger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-discharger,investment,187844.09,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,-1092444.38,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Hydrogen-store,investment,4779.95,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" @@ -201,48 +201,48 @@ LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://pap LOHC unloaded DBT storage,FOM,6.25,%/year,, LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", LOHC unloaded DBT storage,lifetime,30.0,years,, -Lead-Acid-bicharger,FOM,2.45,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,FOM,2.5,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,123528.19,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,investment,93387.77,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.26,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,309239.98,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,FOM,0.28,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,244767.8,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,468593.71,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,investment,428253.89,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,329012.6,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,investment,300688.9,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,151927.8,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,FOM,0.31,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,111874.08,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.13,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,FOM,2.2,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,77974.56,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,investment,57718.82,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,213727.81,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,investment,84940.81,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.13,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,FOM,2.2,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,77974.56,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,investment,57718.82,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,243422.38,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,investment,95395.28,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,142870.39,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,investment,135388.93,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,571481.56,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,investment,541555.71,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,55138.25,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,investment,38708.36,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -258,12 +258,12 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.13,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,FOM,2.2,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,77974.56,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,investment,57718.82,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,248199.27,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,investment,137050.21,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" OCGT,FOM,1.8,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M @@ -276,14 +276,14 @@ PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, f PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,750200.45,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,investment,684648.25,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,526736.48,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,investment,480710.47,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.18,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,6509.76,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,FOM,0.31,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,-21998.47,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" @@ -303,45 +303,45 @@ SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,142041.37,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,investment,129867.9,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,568165.5,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,investment,519471.62,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,6365.71,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,investment,4468.88,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Vanadium-Redox-Flow-bicharger,FOM,2.45,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,FOM,2.5,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,123684.99,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,investment,93473.05,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,242885.17,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,156927.03,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.16,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,169156.11,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,FOM,0.12,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,139544.97,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.03,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,FOM,1.52,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,68099.65,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,investment,-8045.32,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.25,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,395900.65,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,FOM,0.21,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,303047.55,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.22,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,229616.12,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,FOM,0.18,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,175257.5,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,investment,457307.78,EUR/t_N2/h,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment @@ -575,12 +575,6 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.9,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,87.43,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,108.59,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions diff --git a/scripts/compile_cost_assumptions.py b/scripts/compile_cost_assumptions.py index a193a85..9a1f1ad 100644 --- a/scripts/compile_cost_assumptions.py +++ b/scripts/compile_cost_assumptions.py @@ -1715,24 +1715,54 @@ def add_energy_storage_database(costs, data_year): ynew = y.iloc[1] # assume new value is the same as 2030 elif y.iloc[0]!=y.iloc[1]: x = df.loc[filter, "year"] # both values 2021+2030 - # add new points for linear interpolation - # deal with hydrogen separately as extreme changes between 2021 and 2030 - if tech=="Hydrogen-charger" or tech=="Hydrogen-discharger" or "Pumped-Heat-store": - x = pd.concat([x, pd.Series({"index":2039})], ignore_index=True) - x = pd.concat([x, pd.Series({"index":2066})], ignore_index=True) - # create every 9 year new points for linear interpolation which 2021-2030 difference is reduced by "factor" - factor = 4 # the higher the more cost reduction - y = pd.concat([y, pd.Series({"index": y.iloc[1] - ((y.iloc[0]-y.iloc[1])/factor**1)})], ignore_index=True) - y = pd.concat([y, pd.Series({"index": y.iloc[1] - ((y.iloc[0]-y.iloc[1])/factor**1) - ((y.iloc[0]-y.iloc[1])/factor**2) - ((y.iloc[0]-y.iloc[1])/factor**3) - ((y.iloc[0]-y.iloc[1])/factor**4)})], ignore_index=True) - f = interpolate.interp1d(x, y, kind='linear', fill_value="extrapolate") + first_segment_diff = y.iloc[0]-y.iloc[1] + endp_first_segment = y.iloc[1] + # Below we create linear segments between 2021-2030 + # While the first segment is known, the others are defined by the initial segments with a accumulating quadratic descreasing gradient + other_segments_points = [2034, 2039, 2044, 2049, 2054, 2059] + + def geometric_series(nominator, demoninator=1, number_of_terms=1, start=1): + """ + A geometric series is a series with a constant ratio between successive terms. + When moving to infinity the geometric series converges to a limit. + https://en.wikipedia.org/wiki/Series_(mathematics) + + Example: + -------- + nominator = 1 + demoninator = 2 + number_of_terms = 3 + start = 0 # 0 means it starts at the first term + result = 1/1**0 + 1/2**1 + 1/2**2 = 1 + 1/2 + 1/4 = 1.75 + + If moving to infinity the result converges to 2 + """ + return sum([nominator/demoninator**i for i in range(start, start+number_of_terms)]) + + if tech=="Hydrogen-discharger" or tech=="Pumped-Heat-store": + x1 = pd.concat([x,pd.DataFrame(other_segments_points)], ignore_index=True) + y1 = y + factor = 5 + for i in range(len(other_segments_points)): # -1 because of segments + cost_at_year = endp_first_segment - geometric_series(nominator=first_segment_diff, demoninator=factor, number_of_terms=i+1) + y1 = pd.concat([y1, pd.DataFrame([cost_at_year])], ignore_index=True) + f = interpolate.interp1d(x1.squeeze(), y1.squeeze(), kind='linear', fill_value="extrapolate") + elif tech=="Hydrogen-charger": + x2 = pd.concat([x,pd.DataFrame(other_segments_points)], ignore_index=True) + y2 = y + factor = 6.5 + for i in range(len(other_segments_points)): + cost_at_year = endp_first_segment - geometric_series(nominator=first_segment_diff, demoninator=factor, number_of_terms=i+1) + y2 = pd.concat([y2, pd.DataFrame([cost_at_year])], ignore_index=True) + f = interpolate.interp1d(x2.squeeze(), y2.squeeze(), kind='linear', fill_value="extrapolate") else: - x = pd.concat([x, pd.Series({"index":2039})], ignore_index=True) - x = pd.concat([x, pd.Series({"index":2066})], ignore_index=True) - # create every 9 year new points for linear interpolation which 2021-2030 difference is reduced by "factor" - factor = 2 # the higher the more cost reduction - y = pd.concat([y, pd.Series({"index": y.iloc[1] - ((y.iloc[0]-y.iloc[1])/factor**1)})], ignore_index=True) - y = pd.concat([y, pd.Series({"index": y.iloc[1] - ((y.iloc[0]-y.iloc[1])/factor**1) - ((y.iloc[0]-y.iloc[1])/factor**2) - ((y.iloc[0]-y.iloc[1])/factor**3) - ((y.iloc[0]-y.iloc[1])/factor**4)})], ignore_index=True) - f = interpolate.interp1d(x, y, kind='linear', fill_value="extrapolate") + x3 = pd.concat([x,pd.DataFrame(other_segments_points)], ignore_index=True) + y3 = y + factor = 2 + for i in range(len(other_segments_points)): + cost_at_year = endp_first_segment - geometric_series(nominator=first_segment_diff, demoninator=factor, number_of_terms=i+1) + y3 = pd.concat([y3, pd.DataFrame([cost_at_year])], ignore_index=True) + f = interpolate.interp1d(x3.squeeze(), y3.squeeze(), kind='linear', fill_value="extrapolate") ynew = f(data_year) df_new = pd.DataFrame([{ @@ -1839,7 +1869,7 @@ def add_energy_storage_database(costs, data_year): data = add_manual_input(data) # add costs for home batteries - data = add_home_battery_costs(data) + # data = add_home_battery_costs(data) # add SMR assumptions data = add_SMR_data(data) # add solar rooftop costs by taking the mean of commercial and residential From a47acf01ec14f7c3b4569ff7d2eceb3da4050e5e Mon Sep 17 00:00:00 2001 From: Max Parzen Date: Fri, 10 Feb 2023 18:14:23 +0000 Subject: [PATCH 14/24] add storage to latex conversion --- latex_tables/tables_in_latex.py | 268 +++++++++++++++++++++----------- 1 file changed, 173 insertions(+), 95 deletions(-) diff --git a/latex_tables/tables_in_latex.py b/latex_tables/tables_in_latex.py index e2f932b..f4a9f91 100644 --- a/latex_tables/tables_in_latex.py +++ b/latex_tables/tables_in_latex.py @@ -4,10 +4,10 @@ @author: Marta """ - +#%% import pandas as pd import numpy as np - +import os """ Latex table including FOM, efficiencies and lifetimes @@ -16,92 +16,165 @@ #write latex table # read 2020 costs idx = pd.IndexSlice -costs = pd.read_csv('../outputs/costs_2020.csv',index_col=list(range(2))).sort_index() +root_path = os.getcwd() +costs = pd.read_csv(os.path.join(root_path, 'outputs', 'costs_2060.csv'),index_col=list(range(2))).sort_index() filename='table_inputs.tex' file = open(filename, 'w') -technologies=['onwind', 'offwind', 'solar-utility', 'solar-rooftop', 'OCGT', - 'CCGT', 'coal', 'lignite', 'nuclear', 'hydro', 'ror', 'PHS', - 'central gas CHP', - 'biomass CHP', - #'central coal CHP', - #'biomass HOP', - #'biomass EOP', - 'HVDC overhead', 'HVDC inverter pair', - 'battery storage', - 'battery inverter', - 'home battery storage', - 'home battery inverter', - 'electrolysis', - 'fuel cell', - 'hydrogen storage underground', - 'hydrogen storage tank', - 'direct air capture', - 'methanation', - 'central gas boiler', - 'decentral gas boiler', - 'central resistive heater', - 'decentral resistive heater', - 'central water tank storage', - 'decentral water tank storage', - 'water tank charger', - 'decentral air-sourced heat pump', - 'central air-sourced heat pump', - 'decentral ground-sourced heat pump', - 'biomass CHP capture', - 'Fischer-Tropsch', - 'SMR', - 'SMR CC' - ] +technologies=[ + 'onwind', 'offwind', 'solar-utility', 'solar-rooftop', 'OCGT', + 'CCGT', 'coal', 'lignite', 'nuclear', 'hydro', 'ror', 'PHS', + 'central gas CHP', + 'biomass CHP', + #'central coal CHP', + #'biomass HOP', + #'biomass EOP', + 'HVDC overhead', 'HVDC inverter pair', + 'battery storage', + 'battery inverter', + 'home battery storage', + 'home battery inverter', + 'electrolysis', + 'fuel cell', + 'hydrogen storage underground', + 'hydrogen storage tank', + 'direct air capture', + 'methanation', + 'central gas boiler', + 'decentral gas boiler', + 'central resistive heater', + 'decentral resistive heater', + 'central water tank storage', + 'decentral water tank storage', + 'water tank charger', + 'decentral air-sourced heat pump', + 'central air-sourced heat pump', + 'decentral ground-sourced heat pump', + 'biomass CHP capture', + 'Fischer-Tropsch', + 'SMR', + 'SMR CC', + # 'Compressed-Air-Adiabatic-bicharger', + # 'Compressed-Air-Adiabatic-store', 'Concrete-charger', + # 'Concrete-discharger', 'Concrete-store', 'Gravity-Brick-bicharger', + # 'Gravity-Brick-store', 'Gravity-Water-Aboveground-bicharger', + # 'Gravity-Water-Aboveground-store', + # 'Gravity-Water-Underground-bicharger', + # 'Gravity-Water-Underground-store', 'HighT-Molten-Salt-charger', + # 'HighT-Molten-Salt-discharger', 'HighT-Molten-Salt-store', + # 'Hydrogen-charger', 'Hydrogen-discharger', 'Hydrogen-store', + # 'Lead-Acid-bicharger', 'Lead-Acid-store', 'Liquid-Air-charger', + # 'Liquid-Air-discharger', 'Liquid-Air-store', + # 'Lithium-Ion-LFP-bicharger', 'Lithium-Ion-LFP-store', + # 'Lithium-Ion-NMC-bicharger', 'Lithium-Ion-NMC-store', + # 'LowT-Molten-Salt-charger', 'LowT-Molten-Salt-discharger', + # 'LowT-Molten-Salt-store', 'Ni-Zn-bicharger', 'Ni-Zn-store', + # 'Pumped-Heat-charger', 'Pumped-Heat-discharger', + # 'Pumped-Heat-store', 'Pumped-Storage-Hydro-bicharger', + # 'Pumped-Storage-Hydro-store', 'Sand-charger', 'Sand-discharger', + # 'Sand-store', 'Vanadium-Redox-Flow-bicharger', + # 'Vanadium-Redox-Flow-store', 'Zn-Air-bicharger', 'Zn-Air-store', + # 'Zn-Br-Flow-bicharger', 'Zn-Br-Flow-store', + # 'Zn-Br-Nonflow-bicharger', 'Zn-Br-Nonflow-store' +] -name={'onwind' : 'Onshore Wind', - 'offwind' : 'Offshore Wind', - 'solar-utility' : 'Solar PV (utility-scale)', - 'solar-rooftop' : 'Solar PV (rooftop)', - 'OCGT': 'OCGT', - 'CCGT': 'CCGT', - 'coal': 'Coal power plant', - 'lignite': 'Lignite', - 'nuclear': 'Nuclear', - 'hydro':'Reservoir hydro', - 'ror':'Run of river', - 'PHS':'PHS', - 'battery inverter': 'Battery inverter', - 'battery storage': 'Battery storage', - 'home battery inverter': 'Home battery inverter', - 'home battery storage': 'Home battery storage', - 'hydrogen storage underground': 'H$_2$ storage underground', - 'hydrogen storage tank': 'H$_2$ storage tank', - 'electrolysis': 'Electrolysis', - 'fuel cell': 'Fuel cell', - 'methanation': 'Methanation', - 'direct air capture': 'direct air capture', - 'central gas boiler': 'Central gas boiler', - 'decentral gas boiler': 'Domestic gas boiler', - 'central resistive heater':'Central resistive heater', - 'decentral resistive heater':'Domestic resistive heater', - 'central gas CHP':' Gas CHP', - 'central coal CHP':' Coal CHP', - 'biomass CHP':'Biomass CHP', - 'biomass EOP':'Biomass power plant', - 'biomass HOP':'Biomass central heat plant', - 'central water tank storage': 'Central water tank storage', - 'decentral water tank storage': 'Domestic water tank storage', - 'water tank charger': 'Water tank charger/discharger', - 'HVDC overhead':'HVDC overhead', - 'HVDC inverter pair':'HVDC inverter pair', - #'central heat pump': 'Central heat pump', - #'decentral heat pump': 'Decentral heat pump', - #'central ground-sourced heat pump': 'Central ground-sourced heat pump', - 'central air-sourced heat pump': 'Central air-sourced heat pump', - 'decentral air-sourced heat pump': 'Domestic air-sourced heat pump', - 'decentral ground-sourced heat pump': 'Domestic ground-sourced heat pump', - 'biomass CHP capture':'CO$_2$ capture in CHP', - 'Fischer-Tropsch':'Fischer-Tropsch', - 'SMR': 'Steam Methane Reforming', - 'SMR CC': 'Steam Methane Reforming with CC' - } + +name={ + 'onwind' : 'Onshore Wind', + 'offwind' : 'Offshore Wind', + 'solar-utility' : 'Solar PV (utility-scale)', + 'solar-rooftop' : 'Solar PV (rooftop)', + 'OCGT': 'OCGT', + 'CCGT': 'CCGT', + 'coal': 'Coal power plant', + 'lignite': 'Lignite', + 'nuclear': 'Nuclear', + 'hydro':'Reservoir hydro', + 'ror':'Run of river', + 'PHS':'PHS', + 'battery inverter': 'Battery inverter', + 'battery storage': 'Battery storage', + 'home battery inverter': 'Home battery inverter', + 'home battery storage': 'Home battery storage', + 'hydrogen storage underground': 'H$_2$ storage underground', + 'hydrogen storage tank': 'H$_2$ storage tank', + 'electrolysis': 'Electrolysis', + 'fuel cell': 'Fuel cell', + 'methanation': 'Methanation', + 'direct air capture': 'direct air capture', + 'central gas boiler': 'Central gas boiler', + 'decentral gas boiler': 'Domestic gas boiler', + 'central resistive heater':'Central resistive heater', + 'decentral resistive heater':'Domestic resistive heater', + 'central gas CHP':' Gas CHP', + 'central coal CHP':' Coal CHP', + 'biomass CHP':'Biomass CHP', + 'biomass EOP':'Biomass power plant', + 'biomass HOP':'Biomass central heat plant', + 'central water tank storage': 'Central water tank storage', + 'decentral water tank storage': 'Domestic water tank storage', + 'water tank charger': 'Water tank charger/discharger', + 'HVDC overhead':'HVDC overhead', + 'HVDC inverter pair':'HVDC inverter pair', + #'central heat pump': 'Central heat pump', + #'decentral heat pump': 'Decentral heat pump', + #'central ground-sourced heat pump': 'Central ground-sourced heat pump', + 'central air-sourced heat pump': 'Central air-sourced heat pump', + 'decentral air-sourced heat pump': 'Domestic air-sourced heat pump', + 'decentral ground-sourced heat pump': 'Domestic ground-sourced heat pump', + 'biomass CHP capture':'CO$_2$ capture in CHP', + 'Fischer-Tropsch':'Fischer-Tropsch', + 'SMR': 'Steam Methane Reforming', + 'SMR CC': 'Steam Methane Reforming with CC', + # 'Compressed-Air-Adiabatic-bicharger': 'Compressed-Air-Adiabatic-bicharger', + # 'Compressed-Air-Adiabatic-store': 'Compressed-Air-Adiabatic-store', + # 'Concrete-charger': 'Concrete-charger', + # 'Concrete-discharger': 'Concrete-discharger', + # 'Concrete-store': 'Concrete-store', + # 'Gravity-Brick-bicharger': 'Gravity-Brick-bicharger', + # 'Gravity-Brick-store': 'Gravity-Brick-store', + # 'Gravity-Water-Aboveground-bicharger': 'Gravity-Water-Aboveground-bicharger', + # 'Gravity-Water-Aboveground-store': 'Gravity-Water-Aboveground-store', + # 'Gravity-Water-Underground-bicharger': 'Gravity-Water-Underground-bicharger', + # 'Gravity-Water-Underground-store': 'Gravity-Water-Underground-store', + # 'HighT-Molten-Salt-charger': 'HighT-Molten-Salt-charger', + # 'HighT-Molten-Salt-discharger': 'HighT-Molten-Salt-discharger', + # 'HighT-Molten-Salt-store': 'HighT-Molten-Salt-store', + # 'Hydrogen-charger': 'Hydrogen-charger', + # 'Hydrogen-discharger': 'Hydrogen-discharger', + # 'Hydrogen-store': 'Hydrogen-store', + # 'Lead-Acid-bicharger': 'Lead-Acid-bicharger', + # 'Lead-Acid-store': 'Lead-Acid-store', + # 'Liquid-Air-charger': 'Liquid-Air-charger', + # 'Liquid-Air-discharger': 'Liquid-Air-discharger', + # 'Liquid-Air-store': 'Liquid-Air-store', + # 'Lithium-Ion-LFP-bicharger': 'Lithium-Ion-LFP-bicharger', + # 'Lithium-Ion-LFP-store': 'Lithium-Ion-LFP-store', + # 'Lithium-Ion-NMC-bicharger': 'Lithium-Ion-NMC-bicharger', + # 'Lithium-Ion-NMC-store': 'Lithium-Ion-NMC-store', + # 'LowT-Molten-Salt-charger': 'LowT-Molten-Salt-charger', + # 'LowT-Molten-Salt-discharger': 'LowT-Molten-Salt-discharger', + # 'LowT-Molten-Salt-store': 'LowT-Molten-Salt-store', + # 'Ni-Zn-bicharger': 'Ni-Zn-bicharger', + # 'Ni-Zn-store': 'Ni-Zn-store', + # 'Pumped-Heat-charger': 'Pumped-Heat-charger', + # 'Pumped-Heat-discharger': 'Pumped-Heat-discharger', + # 'Pumped-Heat-store': 'Pumped-Heat-store', + # 'Pumped-Storage-Hydro-bicharger': 'Pumped-Storage-Hydro-bicharger', + # 'Pumped-Storage-Hydro-store': 'Pumped-Storage-Hydro-store', + # 'Sand-charger': 'Sand-charger', + # 'Sand-discharger': 'Sand-discharger', + # 'Sand-store': 'Sand-store', + # 'Vanadium-Redox-Flow-bicharger': 'Vanadium-Redox-Flow-bicharger', + # 'Vanadium-Redox-Flow-store': 'Vanadium-Redox-Flow-store', + # 'Zn-Air-bicharger': 'Zn-Air-bicharger', + # 'Zn-Air-store': 'Zn-Air-store', + # 'Zn-Br-Flow-bicharger': 'Zn-Br-Flow-bicharger', + # 'Zn-Br-Flow-store': 'Zn-Br-Flow-store', + # 'Zn-Br-Nonflow-bicharger': 'Zn-Br-Nonflow-bicharger', + # 'Zn-Br-Nonflow-store': 'Zn-Br-Nonflow-store', +} dic_ref = {'Technology Data for Energy Plants for Electricity and District heating generation':'DEA_2019', 'Impact of weighted average cost of capital, capital expenditure, and other parameters on future utility‐scale PV levelised cost of electricity': 'Vartiainen_2019', @@ -124,6 +197,7 @@ 'Is a 100% renewable European power system feasible by 2050?': 'Zappa_2019, JRC_biomass', 'Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018': 'German_Environment_Agency', 'IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf':'IEA_WEO2017', + 'Danish Energy Agency, technology_data_for_el_and_dh.xlsx':'DEA_2019', 'Danish Energy Agency, technology_data_for_el_and_dh_-_0009.xlsx':'DEA_2019', 'Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx':'DEA_2019', 'Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.':'DEA_2019', @@ -134,7 +208,8 @@ 'Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx' :'Ram_2019, DEA_2019', 'Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.' :'Ram_2019, DEA_2019', 'TODO':'govUK', - + 'Viswanathan_2022': 'Viswanathan_2022', + 'Georgiou_2018': 'Georgiou_2018', } # Solar thermal collector decentral & 270 & m$^{2}$ & 1.3 & 20 & variable & \cite{Henning20141003} \\ @@ -152,6 +227,11 @@ lifetime = str(int(costs.loc[idx[technology,'lifetime'],'value'])) else: lifetime= ' ' + if idx[technology,'investment'] in costs.index: + investment = str(int(int(costs.loc[idx[technology,'investment'],'value']/1000))) + else: + investment= ' ' + investment if idx[technology,'efficiency'] in costs.index and technology not in ['onwind', 'offwind', 'central gas CHP', 'biomass CHP', 'battery storage', 'home battery storage', 'central coal CHP' @@ -171,17 +251,19 @@ else: source = costs.loc[idx[technology,'efficiency'],'source'] if technology == 'water tank charger': - file.write(' ' +name[technology] - + ' & ' + FOM - + ' & ' + lifetime + file.write(' ' + name[technology] + + ' & ' + investment + + ' & ' + FOM + + ' & ' + lifetime + ' & ' + efficiency + ' & ' + ' \\' + ' ') else: - file.write(' ' +name[technology] - + ' & ' + FOM - + ' & ' + lifetime + file.write(' ' + name[technology] + + ' & ' + investment + + ' & ' + FOM + + ' & ' + lifetime + ' & ' + efficiency - + ' & ' + ' \\' + 'cite{' + dic_ref[source]+ '} ') + + ' & ' + ' \\' + 'cite{' + dic_ref[source.split(sep=",")[0]] + '} ') file.write('\\') file.write('\\') @@ -285,7 +367,3 @@ file.write('\\') file.close() - - - - From f54444a258a20ef9cbb15d4aa1f12081dc37fe15 Mon Sep 17 00:00:00 2001 From: Max Parzen Date: Sun, 12 Feb 2023 12:07:56 +0000 Subject: [PATCH 15/24] remove abstract and keywords form bib --- latex_tables/bib_transition.bib | 2 -- 1 file changed, 2 deletions(-) diff --git a/latex_tables/bib_transition.bib b/latex_tables/bib_transition.bib index 40cefb4..1e921ea 100644 --- a/latex_tables/bib_transition.bib +++ b/latex_tables/bib_transition.bib @@ -17,8 +17,6 @@ @article{Georgiou_2018 doi = {https://doi.org/10.1016/j.apenergy.2018.04.128}, url = {https://www.sciencedirect.com/science/article/pii/S0306261918306627}, author = {Solomos Georgiou and Nilay Shah and Christos N. Markides}, - keywords = {Electricity storage, Liquid-air energy storage, Pumped-thermal electricity storage, Thermo-economic analysis}, - abstract = {Efficient and affordable electricity storage systems have a significant potential to support the growth and increasing penetration of intermittent renewable-energy generation into the grid from an energy system planning and management perspective, while differences in the demand and price of peak and off-peak electricity can make its storage of economic interest. Technical (e.g., roundtrip efficiency, energy and power capacity) as well as economic (e.g., capital, operating and maintenance costs) indicators are anticipated to have a significant combined impact on the competitiveness of any electricity storage technology or system under consideration and, ultimately, will crucially determine their uptake and implementation. In this paper, we present thermo-economic models of two recently proposed medium- to large-scale electricity storage systems, namely ‘Pumped-Thermal Electricity Storage’ (PTES) and ‘Liquid-Air Energy Storage’ (LAES), focusing on system efficiency and costs. The LAES thermodynamic model is validated against data from an operational pilot plant in the UK; no such equivalent PTES plant exists, although one is currently under construction. As common with most newly proposed technologies, the absence of cost data results to the economic analysis and comparison being a significant challenge. Therefore, a costing effort for the two electricity storage systems that includes multiple costing approaches based on the module costing technique is presented, with the overriding aim of conducting a preliminary economic feasibility assessment and comparison of the two systems. Based on the results, it appears that PTES has the potential to achieve higher roundtrip efficiencies, although this remains to be demonstrated. LAES performance is found to be significantly enhanced through the integration and utilisation of waste heat (and cold) streams. In terms of economics on the other hand, and at the system size intended for commercial application, LAES (12 MW, 50MWh) is estimated in this work to have a lower capital cost and a lower levelised cost of storage than PTES (2 MW, 11.5 MWh), although it is noted that the prediction of the economic proposition of PTES technology is particularly uncertain if customised components are employed. However, when considering the required sell-to-buy price ratios, PTES appears (by a small margin) economically more competitive above an electricity buy price of ∼0.15 $/kWh, primarily due to its higher roundtrip efficiency. When considering the two systems at the same capacity, the costs are similar with a slight edge to PTES. Finally, it is of interest that the most expensive components in both systems are the compression and expansion devices, which suggests that there is a need to develop affordable high-performance devices for such systems.} } @techreport{govUK, From 33f494a33f883b1f72997cd90a0e92e8a8fd3412 Mon Sep 17 00:00:00 2001 From: Max Parzen Date: Sun, 12 Feb 2023 12:28:56 +0000 Subject: [PATCH 16/24] fix hydrogen data bug, and latex script, update outputs --- inputs/parzen-energy-storage-database.xlsx | Bin 32632 -> 298796 bytes latex_tables/tables_in_latex.py | 140 ++--- outputs/costs_2020.csv | 430 ++++++------- outputs/costs_2025.csv | 430 ++++++------- outputs/costs_2030.csv | 444 +++++++------ outputs/costs_2035.csv | 542 ++++++++-------- outputs/costs_2040.csv | 524 ++++++++-------- outputs/costs_2045.csv | 522 ++++++++-------- outputs/costs_2050.csv | 522 ++++++++-------- outputs/costs_2060.csv | 696 +++++++++++++++++++++ 10 files changed, 2459 insertions(+), 1791 deletions(-) create mode 100644 outputs/costs_2060.csv diff --git a/inputs/parzen-energy-storage-database.xlsx b/inputs/parzen-energy-storage-database.xlsx index d5a2fb568a369b5fbeb64dbded803addd4d04c5b..65ef54676fd55fe34ca22463c029105b3b97a38e 100644 GIT binary patch literal 298796 zcmeF)-H#+$n&Z+Y#_hMU~ zk)D|`6%iie5t&srS7;WY6)TW{1uYjyTp;ZQ0#@2Z%*FDbAZ}(~fJK^rfn)BO;pS$a z=NymB>Slo*X}Y|ke!u4&v*+u_%$~>0{L82R(x3Y`e)R7D{@Z`yKlqdX>0kWOkLv&b zx6&WKJOB9CtHt^C$KNhj-#l9`zv+K>ao(^0^0U8`KK0%#R@Z0C%TMlA{lUH7;_`I) z{Ot1OC-?sH*Pq=#yw|(FnO{DipD!;LpWOR?aeePEefsDB)t~)paX!CErt4Q{SJ%B1 zT6Z$-R1)tp9ZV@%kTCy>IS)?8yv&$jRKKowV3aWc{xnum3kYhtUr?hwGc~&r?Qk z_r~VmbGu;tgAQNk;)})2{Q3N5zMaLz+rPY<$HzOcefs4N?1O*pZ+!E={o6nKQT_k_ z`Udv)u6%#W=RaM?+VK6;`92grU(LTw-=2%}4S*N(v&(zE%lSn@_?K%ydta{;|LM=( z27h#(IJmsIuK#d)zWS>E@+@{7>8mmS>GN-@`XATdUmu;XdT-|EiQTiy=gV)uUVN8$ zKA&ITr2p{Ay}|nbYJxw$HJ#rC-iGh9_5Z!~y)``lX1E@6_43*6pw(yN*}=ox_-n!W zO;`8m(W9eB)or}BV19aX3X(tht-33F&m=I$8PMS!DKMr)i>ggI&+>qc<^8{ zdpnm+(6wmuaoo`#4yNOu4|nuy(MCV%=*JI!esnb5(XT}t{j{V1>|iz>@9Nj0SLbJ! z-*nV8gi#vAn#ASi6}2!E*Ik64b(ajlS&N zq(%6}{4`N~G{1PZI-A!6%zwI=H~!1!Pp8+NKh;2h3_`84l$AAA%|M-9Y)4%@L|MZXl$4#sq(kP<9q1qZ4}bF?{xAQzh3Ol#75?M@^6&nWzyEjt@!$SW{*V9eZ$bX^ z)%;mg{`J|#;=1>X#kaj*Eiclxt#{1s%oopAcXNFGYJRrkn7>M~5&F^1s~zDlzMr2< z_h7NR^L}rY77q!JU;n|*T)%p?dVO<-k)OW0*b#oQT%JEzuDAo9)?+pH@Yk;|UwZJ> z>!$8k^Z6T%eKfz^N$sQ8S83IJ2j$MbKYF#;ndX=0^UIrb3Uax)>DB*j`ORX1t@|ry zXFL1#i?h?!@_PB=ruSFQdJpDj+$CS1J=+0kYkGWkk@E7rwmGGGXWxABd%XwCb8Yp* z#hYDa`a;atCo7w;^X*sc>&5xbZakj9zL{Sr6n%XDV-y}rmy)T#PWTX2f{bITM4XOV<NCmhx=~&T{_@$&ohfYr zssGFC6{dB(Snlxq)%WKw=8N?zla}pQUwsGr~V#wm-S|^K=l?m*;V7 zv5s{AFI=J@&R<`Cxk%rNF8%*}h5qL&^u7Pjuh7wV`G;SZw@YzarRx)t&AIma%=;od z@qTf3e*RT`P5$}y`rP|E9e|#Hmi}1#)@7B&?S*bT3!)wWqgQ-u(XA z&8x3o&Fcb6wZ4pedHpu@%j@3NGSzGb>pwGgJ!m@jzu8=EPU`EB&B}2-zxiVMeDmi~ z{pWX=8@FNBvwFF{rhPZis1C62V55V#LDROq&tO$Osl7+5)>B(AiaVp-ZgRbg*VpA~ zm)~w$`s3~1OlLN|bUu{!@-&sU>Y>xg*!+BvidgTif#0R2-mC9E|G+7FyVaWwc{P8& z*raIZ&yBrVt#kJdq0aWzo3~-)ZhP}~uce(lY6ttaB{DAI=}kl-ivgln?7D#rKDZg=YsR|m#HXvdb8S4Tl_ArzogqOo|&pD z6)%D>%+A;NYIS|{aDM%2lf(6YdYh{A%X*~E{D+fq4cia10a#4-o5kobA@cv&ED|HT zsa?Eyu{gbHCcE*Mdf#pS_3cWye0{T6ef8@3x4mcQuUEgCr}U?NT5r$uv+Go_Sbw4G ze@WG~dT+1))9%{(cBN_7wAQ-K-{*k1FeZ_O!xX~Gwo-KH;ePH>oss%ufg|vuM+C()#U9mu-3Kt+x_>q-=JqN z>vNRm_ibk-yFGMnz5~DQ6PL}GIc-$yT%zXp-TuFw;(BlGp15rMYx}!nWOGC6|FAtv z8o&Ei>>T`Nv$sRN=M?ri05^`cn-#0G#ly+F$)zlIw>bUr_I&0l)q#5T|D@yJ+3NIs zvBtPQpnkplRa#qnsr|6of4xNY{d!eP1l0@V=F_uu-n04R2BtdHX4k$wIj#5FyMy%) zd=_*&Zfj@PGutQMcih>xCsDh@?R*!1$esOm5AW>j&ELXZoif}0il#rkcy}GLPRzQ| z)$BzrpZ!5f^utv3e|^5`PF-K6e_MYKuD)EY>3X(&{{7pJ=hvG9?uNSh8m3mBU;b+G zqIdTEyLZP~t-iKyj+VFPVcC4^SdW~R>|67? zpr!z+KlXOvt}pG9ezVAKwz~duz1vggmmjjr_L#hP8Lxcy-DR5##cZP9W0&20m)~V? z_f*<>UGP$eb2U$wUSF-(-*nK~kiJH?)ee5~zy9sd|CN9FM?b3n|IcsQ!Po01cil{W z|3>gS##eQ_djESJuCG>$`SbN%1-sqg_1zLbeUlc>_q(a#`SSG3)$;24_r6X|x$DH| zRziYP}SyNj7;nSa8|IubGsn#9a)8+Yc z)mx+S_S(B{zHbyqsRQx02L2-TL(ae7{CVx$@V@!O=6hd5wi#jlk9q=WS-PD-{pGCx z@afOe!7W`uTz;1Rr9NiXpXd$f z-J|m^zxAeX{`Be3&KEE0Z$mm+d{zJRW_gwV_u2C1W_gi5JU^SiTwc!4)5nkBIo^Iq zVNVxtPul*y7dx@Pd(q$~9oFleP$N`-OcQ$haT9OzFLnH8v`y?r*m`H(J#6p07jFlf zUtOJl|BKfb&lagKUEfahHn%%5-||+PY&q(BThiFm^Tqn?`F51FtDkR{QczK_VY$HUK6!l!CEWk|K5A@;)`GXxgXX4|8H(qOx_gr{)^{rxF2loOea6@ zw{*5|IeVUZ_m}m}Z@tyxMd}GvKmB|%Sl=nKUbj<+@7t8I+t0mschJ@UVVm9C|Nc(< zFx}6TzLd*v>r>+T>v~#$_<6dSEmd68|0aA>12z5q&8Ihu(^r>i&3gI$&pv)re~sRX zA5ff@m0j79WT*4h>TI#vRX&vRYQ9RVV_LCxwduy4?o7X5%v-Y0Bulp@y>3nNSi0Aj zXE(c}K9=ly`FeHQiuXjq%jHc=b|P8I^J10macpUy2HIa=pZ(F|*I)ep?o2o}6*{KeI->Y-F;mv0u=H}ySfyW&R@4+o>cuIw|(s==&3p6m*bCH!|j{^s|$ z`)|GRkEQ#)v+Hl?m-XEWm%knkhQr;^Ph@#`lx}5BH>kW^q(a~F^qXDFi7Z$B;kfsc ztNwWU(XRTb)KzOwd@j*&d>d(pj{2l+Lr1#9v$IO%>5wB&ha6oxqzdVf7<5o}(4QRK z?w0jlIF?RuNLPSEmIfRTe)-kzTux+&(U7`>hC~q><6AV+`ScypkRy*q^uqfB5?Bs=GR#$Pq&#bq5lO zB1k5;kfiIVJ3=By9+JorK_Yz!iNt_JvPu8oa5wqKl7SJ)3XI5dl&+Ol%XA@_o|)(! zEiW$8Y0l~TDTm!@oyZ*HB6SBBi6UI4x45Lbz#VasBae$5-NTJkAtVw563IrBel^=o z$FX!e+(=izM3%3O>u7HOukG?$Goxq7yF%MFAc#tUK;qaD+`hl?aHEjOu zRE|6ka&&o+D&#?8@F3Y_&_Ael({U`Fc#y8ZgDk1sTQ_5R=??I8%eBrvC`%7ewl8v}!|8`)1yE!;UY$M9993kADUrHE zi9``4Ro$1`T;!&YcjbhZJSenuR}#uT`{ftAU;0Os0S)Q~{i-^gOxgib?b=+($xw|P>;3{R4Gd6FvRXU94e2?k z-M#dP7NMfqwCaw>45rf)3iE`V&=Vg-DDUP|n-%7BTPv+pM=PukvSjml#8GNXxIS=< z`tk3x)Ou)jdLA*na<8a^{;Zmf#s`yG>&)XZ!{(Fwgr1)t-T(PfFWvL;cKW^fO|O3Z z@49Z+r;6BleOB5V^bg0A;a?l{Tk|+!%nUHv$}TWcg}`hpsFiAJ1z=<;025h4U}QKy zd$G7l4a)XXA+2zcuIe07q{2G>n0qdd(+NG9)N3x?)Jqknep?rA>pzh;gW?Hp`3c^bG9xY zKBKOh9`uK;Rrr`no)c)I`LsV_@J35b{Z@K1sAyVURHO<~*;Y9#6~hXs$WlN>7N8vK}9;EB4G&?dAj{t?%NC-irQsEs*sIs)pMxoT7eB&3T(&%HYAJLkXmd= zH<|Sh+Vu|Z3&Np@B{<|MH*Yzo3@jR@3yV}CEZdUmP?fa;EV2|}i7e3x3#S!hqwvCp zx^e%ob)kLC;c>=7U5Oe^qR`3ZI2mL#L>C#ULS(i@)uAeK1!QC?AR`Ob7sO78wAHWCDh|bjM-Uz6#>T)wqxrg)Pw{&j&SgIpqvbnn0H)sY0H%_1&S0eT8L5 zmMl*XIZD2nON&s^Y=-@52Ndae&LUwRk`qogb0pCa-IPidrgU3}9jY!@NU1E@lpb-E z>=MB-ZX2SzWv)jIukgNs)4`zdL`%bdQ44Y5x6MFXU=ME<`^m7?A1B|w^3yf4D zFx!IcP-VFSFtQYYi7eqUMTVfC%S{k2irH!JF`C+Y6y|X{p(m4i&bW2A%I6FkrhZ#l z9jdBUNWCnD)XRdiPRiWR<;0b6#q1_rDkfaQQo`lQBwX_DcU`I|;iGLiG=0pUKmOv2 z)@}0-Xvrs>mdlIwV{ep&*P~RUg-=~Iob^YY=OeW36DC}N2ec^ag2`?;J>h7%3Y zmq#{{?6IlwJM3(yr7ClqTX~o1SyoixbkJWPcnwZ@a-N)3GfYBuK{ag-{ zAx0x~iIFNKW?LQ|sYX^HMwS9GktHNXhL{+sMT~TK#+Expz$jh`7%6-A3k|LIvk*CK>9Ewu$WGNsc3)UCOy8SuMS%fHD{dDg5ps{D(zJyBJ_1dBq9cNHNMI&Syx*Q{65;Sxv z?_#1!GsBbk7aj!)-uf7G~;7KJU*BF_gkbUEb= zPntlNC#fQy#@hmK`gqp@FD+S~9@3I;=+XjIsB85*jw#X!3x#m;IT&k6OZEXB>F2m-N`-GmoySaWkmoYQIXe+zGNEHIJ zEys>klq&!uO97b35&|Pb(9Pv02p7eyM!OZ(V@6YRkHS1oC-h`e&l$H?x6c_gO#Qa5 zI#x}ska}4Psh6dD%E`$@30FuZT)J+;rDDP*EG1l?Ou{Aae%GZ66TU5mj#U^dBwUt4 z!ev3iB?~V`IdwGfsjFt`fvEP^T*LE}K*D_1pKun97M+^8^khiUw7R576_Tn5S%w`A)@4VkkezLfbgZITfgM>2 z?8t(nl4LP4Qi~Yr#s~dT=cpthk4h4jn31R0%w>8qtZ0xfD^i85Yzw7h6~qdx$WmZM z7O)~&%!<@vMY_qff7pJ#2=@h9QN$7}@^qWIoI?f(t4o~NDc$~6OSE5FfC^U09P6inb(M3k85SeXJb)vdm0U22e$jE~AMY3*h zj&l|v3Rgd!JDQH#Kk>kr>$OGgIjT#jcsAjymN`bkBxvSR-o-?d2r=0fU?-~M6)=&d zfJtNtR~8unjAR0aIz64s{ZZpWS`@ZKi##9H%;l6bJZS=5o}>zS+SYd`s`eFlk|oR2 zLynSf=F%cmG#fmf%XmCzQNTPTCk&oBl4yu-N~H=@x-G;`RG2HIRF-T?k2p$g36}_t z5%qH!Ug=lV_~~4R%_sK>J$v_a{d6v4W`NOFc7c&91ZG>2t$%bn`^JavV_38lfYB&f zU}Ol|dz_DOQOwR=?~JDQ9))?FPUy*`o-=Oua~U*D{kF6^QCY39R>)FFy(~EElq^cP zv`V;i-GocUgiBaTxICGJOWysiOBE)3TMwP6Hum{q{`~&WPtTt3HX9yLTu8OzpQre{ zp&v4Id?~7^=-xBxup0I!?Z+*tgCdNm5R9QA9R_tf6#^UE+v|L zNXfPmI#H10(Nx7A4Y+M%@>nayJkXMJz!gPXm%}8<*3`Aff@fh)5M7 zGTqig(?^^%1Pckpc|=0X{hAX!j!Q=f3)O&yx~e+pzW;~HnwH(A?=f`+Sm?>OaA}EY zp}a#2RUs|gg6LFLv1mb|xIl~I*Or(TIbvF*7A?}H8${YwE^eY&QM?i>^6cHc<;*hJ zXs|9eQia%Ti=tCi$wF)-E?^@IjzgSB42z-)7U@RA{;2&FE{E4~h{6&snnkg3%aJme zXpk-@QiYgoi=tB%zd}qTE?^>yFp)0CL~3CoUApUR-0saWVle& zE*DaTTx^S*Q&rGHE+j5+A&a<>F6KgNaUtC}anZi-gS&xTC}N2VdCKit&MCu*M(J`Q zRmjPkCPr!zLmeKwGJvUBQa41~;WYl;t8}DAi95d#6MN!+0>JlZMP1vO67^%n> zG-)aC5~4|jglwy-Qx)ezLL@E_5?SK)L=LbbnOKo-)SnF7KW}-=T~U)lP!zTViaa0G zpXHP@C}{#+l%xt#+SY5Qs^EnvNt{LLA>-#ev$O~j%_h}i2c6YKLY|*UnCIh!v&|ej zG(Qia*v)>Wq}wuRZ0IGfEQ#;+~$!oWeIt}Np#^@^H)diHQs9Zb`UlXnj%j~OF#jY^d5*KnUi*hYpc&W)*qwj9raMGW(JF!&i=ucrj<4@>mG}+XN zr6)s)_FtD0sX|J&rOgACzCubQE>I$iD3LCvL~2nYT`FO9jsVh;5eZ9-$kSk?+lXaS zGK6S=E+JBdglvnP2P%4ngh*TRt2z(4ad*_Hw9YxHE0LlpFAoR3b}^iX1U2QVSL7@C+^Yhgea(5-alT-G$}MGT3Oa zE;dqy*lY`)2P%Vw*hpN!Miw1|q>EvZTChkrN>9DD%M{!VJP0Xb2^V>aU06;jgNX*| zVj@+D$+qfwpb}SziNpm=WDzFP#h6GfOr%Rcf!z7kZ0-hPqKG9-_5knoGm*o!8>4^fCfRU%rh2?xQv}lMfEmB3a9BvDw z>Er$dQi}7m(1KNkx^8EUGQdGy>cSpW2b~iVYS$}@nrl=SD4{3w-ecgRo6qYLdOoNJ%ZM3Lw2fU-qzXydR#p#H zW(!G?xIju|i4P!h1bsQqUYsaqr!U87>dR4>=jeoEX=yZ zg{;eR-tED19#O6pQ@NI|n`^0I$-Cchslr@uE1QQZb^YG_a{m16^~L>P zEuJsGyZ_nw^4s0s!2{X~S=UH!-j1{z{vpGMmz`9j|4v<%eygeTa1xa~7tluK^Z$gw z8{IZ_Wa+s|4?xt<#!koWXJaYvGNZ|d%xue?hbn{Z!HjGLW@L$&kv3*VYB59IVShB) zMfR9Gg~%vk2^o1B$aEXDoK6N94bTNfst}lM{qs=uuswj0tpH49x&MwDJvYnw#pq}Z zp(7oio8|a5JG+cMrmlpJW|8mMa+nM|8llUMR3SUtn&_dbV|%b8TY;U(l4nP*m>sFb zj&zgmOG>$SM2_N>$dPC7{w-&gfk=aOA(ASBXtphtrjOlHX&EBg@(|JTZtdCqIzOZ~ zM2BjiW8JKO(7vUJLLIRvEWkrgv71X*3=QQSXs8OI*;Y?yDwgd5jcf&IWQm}WHikxO zK_lI0+_?>n`-IFWV2K%dx~*N#Ap?n`b|H}}gk)P8ov8-52PCo;Adw}4MA{e)a`%L=j7r$Ww0ga!wg)G)k8msX}VD71){TaeGiBTY;L$l0B*6{9=AIhWMeb z>JO{k1LHA=$5{<^C44lALfe<)WZ2OVU3R1j+1b`)XR7_}!H#SNc4UcG9BI3aJx*Sz zDBPewJvbcCTF*`$Gv<1=QFo8(5;LAn_$V&NhG)tScTCLQS}(Cxv1Yy}2n zdE<5>XBA~$ag}-Lx|x@XnU}DXd3iFKm%RJ!mnzD9HQ3fz>(B2~WVJ7!e0zfITO3}^ zT8>)@EUXS^{loVA$1K&^gOzy@p4imr52~eXQ;d)G9eyl}0ovAEtAT28<;BCk5WObvdz{bkQ6M~{X8J(9)rYzwi~K()Ai=#j5P zPvps-fOv`-jx-86lCb+=u*a_{+Qsd$g++)oi+rcq1LY{v7@$b9n4)cAwi>7^w+}_~ zl_-il1&UP5)NKRrT98bG!wx#51pi1OE@W@w! zC-M}QAlZbGbi_zPJkac&QzK-86t+l^Odr&~_N;S^X$oLWvXHT=QL|2;->YU#UzV|l z6+QVbwmkxe!H2_s=XK-`$ul6v%u{pX@R?%}2kEAmvN*+!s&b`@;vUNgec2QrRiP)p zjMx@+v^@%;(5A;dZ3oUL{E1B;)YW##97EbpFeF*bP@}e7sh+qGL-LgviaZ5|WD9zn z6}N{3DQc(7>3C{$TA4>IttpyCjtA+%gJdxejVf`aa^OBZ$XDV)o;PlESDaW#fg+Ov z2|Q83%^U{aaN4>A-&(0UUapxVEPdy&6 z(X?W08ui>tbve69Y$PW(6m~k=+zX~g0gKeg)Sw0(ZO(|yw0@m3F{9DI zjASu0jf!riLY|qCvcyc}xnF~$C#EY-C_|4%AUzUJ$Ng#h=|#_=255KjeQaToAI+oC z%;r960(3pUSoG%Cz0c3?fBxB*yYoyCX-GgMSqxF5rdz3wXNaUMK@@p15Xq8(NOD3X zVfqc?PAi*xgbXQSks+D(Z)J0Gcfd)b11HI1oEpX5N|in1BxMOFd3YR?Fawd~gh;|s zm7YP`{o)>1+z~#MDP|EPnaX`^&gu^MXjI@MS&UDkyj!VgXMChA;Uf?6kuZagl*IrwD#1h5{|u0nC4eGNeE!1;Wl+)x zM2SND%5lXR=mdzuB1xJ@sfo>z?t+m91xAv^7&VH)LzNAUk(4Ej@t2c{#pB}$nTwmXuUCeJ5y}Na@d%F}R>@eu3X{oC2Plmm-%Urb?a3@E942gBa|EVeano-=?C$Z$o^n2| zPi*?hPX_6SjP9rA_`ydX4?n7(weDRk=9j%U^Yhn>`XI8JU%p)Q7PlMMJG<^(E^m6j z`ub7t+3TC$_1Wdi)Kd6%{(UcXzprnWt3~g0dHH6sx=u^L?#vTg+QJ-L(t|C@VzwF; z=Ap`pW=qNvTahQjmMl>#ld~sTiduDU?qoc+GO5fXn6j@~7w_2o0T2dpg?4)M!MqeN9t?m2LaF^-N4U3DJ1KMzR>2M%{L(0-mvv zvV@I1#74plHj)z?2}j*iPsvP;ltpS}YEXmrHStqKCqRQGd|d=f@S5H9)&(ijOTU@x$na_BB0Cfb#W!+Pe@@7DLo1 z-;PwVsZquq zskUdFq%7eikB(!UMg}6qB}5XYU+W!rZi3(pcqpT?h><2zZeMe(JK&>HfsbS{K8*tJ zNM$+WBV`F6d5DjM8GIxsJ`#@8tBrOKPw6-&q3MybNRLeDUUM3Ez(vCV7s+B=8nxJw zihjmL$`UT}5EltExJXW1B%GwzXm)x5+!5wQF^jy&v`6!r)4Bsc8W#LW7W306{f<=F zGe1(6_=!B3lOI_!BuP$^D8z3=SKK8$`%%auNHUdr*PPNFDAJgqNV1rsMv-@<0--6A zvP6+QT!kb=FOt(GGzyq%`QwB3tK}=kT(3WDMp9m6N7D&f*Bl_%x~2h;Xbv$Xjau+X z6-7fLWeJkVlUZtH5iZgZ7Yh5;tXmZ3&Zu!QEec$u1*YG4>zdn@R;vA4*K~tHY}uzV zgN@qsNaaa0C}ozxhZUn2TG#XtE={OYKV&$c1}R>isS|Hu<3O}~7XQ?GBvf;W6WXX6 zk5oH!LZ!?m^r&L=+LKvSILvK#cXtOp@(4`7;-*8VktvQK?C`;^7mZonOU%=mFx3V$Mf*Fj(06jS`Q~vkFGc z=l_YrH@cGSWpktkG}~Tw>p_R79uNE|MKM2(BJNoAybM2*m-vw<NGI@U#kz2_B6GcqEJAX_R!wD&}S2k-P*?SUnPo82 zD8xuYKAg=N)FkbmS3j;OEP|wY6uR3Ss6o>1#1cLl1NcZ5?ddFaSrg7@S6-cdYVU1{}#t;K&n#BXI^C z$q9~xd=#5|#Na4q5geJ&%;q$5q$n;(kt`;qQH~v}?w27&@)9ZXgrrEEAw_bMA|ao_ z<{mLAidiH@raju&oK}t;jRSHdi^*x!eaEWiWyq1dL{8)>oaM-tVMuZ^M4=wO=Dy)+ zjzSg@lBv|d=9F^$Xb|utS;)_%QPWMIyEWaIAIb~-&=ajZ6r&eOop7PBs(X>0)-|Q; zHHXbe%1hMH6tu3X&9$y+=+Z)2OiQB%JW(YvLyP1kS|U$=wc*Ufjlz=~3H|sr$F8|C zHVRzC2BzP551ZSS7OVYw*mMI%Y+2mHo-~Tn>GPeIF3GbnKCC!Ip^;4w3Dbl+HA9Bu zi4c`}uui;%nFA6BK~}YG@e&p{ewMtt$6jdY#-1@}{Wm9eP|b9($cs=7CHLk7hw6TJHl)M9A9SfX^+9iD;CL zC#n@@h>*NQggoI%vBV(<5|aZ7+q*GwAelLkvdDo&lEoY}D!&tz{xTd$ zUgAKWkOPV1OKMJEcRx@#8n;@02?dSsa}g=?D5PVQOpX2}+ut;apQ`gHH?81D(~9|N z6o4lx2xj<^yu^<@AwLpl_>r9aNZ5TFFn5RXQNSWTGBxl)` zcp5d~iE4rwcqA{u6L|`!C9-8OlAIVxSXBr8X>0GNl}OSWrQK#(I$4&mNRmv2{x=6| zptL)&#E-@RKa$1#G%CXr)dVyANM7P6@)Y=yEyIuGyGPqN5naF+P+F9}CknmK}bm zz@fei4rMVojcV~!rM-9sqPzr-h6urtI0KI41V_SA=Z%!d6}QmbC}fcvnb7{`G;*LQ zEDDs4$NSpyha)Kh^Xx1OKE=>|CQkoPgi=@c3NBf)8%8{dS zK#pWFIgM)ZR8_wWIg*#ii9Gp}9L_AmkVYXx6juFVr=7_e=q!iAB0`!+sr}87a{Ooz z@FQ8wPowrbRVgvUkK`qO(QWNdp;dD(pu`$0uVA^-H$`QL^8 zp@YZQ&Wx)&9wVz` z16BSuYe$5S93_0@AwCjj@R6MOP}n*_N%Tl&dZaAUBU6JOw7EGWveUZd}XOk zJB`}!fogwwcH}6r6M5EWAbiN16U$Jf5lE4Q?s9VqHA%Y**5iu8B1oD@q07yI8YJyb zEa9UufRAJ`K8*tKfl7aQeB>zM6L~WD$dbWFa^fSQn%vwoghvsJ@W`}(lbe&vairnE zkz_GPjY9B&ih_BLKrcTKDu*~A`I9HsWe zi;OK{f17e*py}5y5kEYvX5(?|IQ7_5&!_nbOj_fI-HynaZ}Xpo2(g+9Zo9qJf>wwvuFU(t`k#_ zWk+FS3L16dLsbUz6v$DcKpve3b2?$}6_vS{5V@DkxtFq-dzo^%mmay7EY5wSwtJ}R zUOxA7lyWZ*b1z|h;mq0V-UbS*_6=0W6?H!2&`k5`PlqCz8vRLjw`poHb9(^kKE+Kd z@X@qld>SR*Llyn<_{dShM;_uMVFn+`i4TRH-=pN-Fg*%bq(`O(J?L(8Mr5bes!t~$ z8V&477PHeR`yQ(9muE+g5<8J6bG9o>h9b#Hk%aDUbKle??VcQ@Gh)Rof+SO+yUl?b zB<)Tt;iEBtk7O}EjpFa2>VA2A_tK zG)nD>PjEO)1|f|=geX*Zn={ZE4uwU6G>=kun+YiO8Cgb zbw@(KWW#|k1NJpuQ+T}QeK2c(+S$!93a=;rU9^M4lyi^67Wm~#5^o= zlwgTGnYBh1VIv)}kIZCZbGy<~wO@OiZm@_gi`(0?MoBt- zzUv8-99b40ruHI6DYUogA!G{PX>T)}PlOaN&(?{zFn2`KAV{oa@gmbG7SB{F%r7!> zWD|Q-ag^GVS!6g&*xu#{#6WRVdwZI0!J3Q*t%uPbd+PZ#Ke4H9WdG2QZ*#L7Jl*yo z+6UmLo+HrG{)*9R)RJc^Bj(YPql8xE$)F`m)Xd~o5G+OQHZvKI%}gru-K#mdx^6->b!Z7y|GxriA_mVmHQWkSBQ!e+?BlnWUxo?zl zXDZ~S-2eQn^$7KYiqcZj75A(E*95n9=t(cKZ!z(7c{2%+I%Tkfqt z^XjF$4q2KEH#m@EfO7P6mhX^qqFIl^NL3pCl3?`PW+AHb~dfMZz< z&bHh;9H`RAwa3yDI0|2Ta^T350Y`FzBOyB3-cVwrh(&B<+PjnO$>j*ra3Dysn4oRN zH=Qi*zw}62B1j$`y*!Z&HwsK{C`1q2GtlA7$|55D8T5lCQcF^@Qqqd{vMP4)?H>*8Brde$RIMEzpPPS#<;Xp;gfD=heoJ5}7 z0wa%zk&eVj$TqciM-7a5QQ#skF#V?6)ZVVNKJC?}wi^^;%fdGGaIh^n*Pr(;^hlbe z@S(%!`_uN2E={Q2pLRH(@F-p$suPFL9e*?kGAdcTu57En!-0x^!MY-8Hls%lUwd-v z3de~$(;k8VC~p1m^XOnW8O>V1xs%Fr(&rQW#HRYi;-eq-#o`>u%Toid+df10ceNR? z`{1=@A!=2lN}N9LyLeDqKrQrSP@^a4Rt_l^Xco2}Ham7abt|pRlXzlNgN5BH^i%7* zON}>fdt1lHtL3+!{w)1ZZ}rK&Vbv)1rq6rlU(!9F=ClY2|VVQLbyIGgaS(mby zb(wNmmmXP{EdJIv3bd69bw0pQTFSb@JL^)$*TbAls%EyjhMx^7oNd1lr}Y;hecLrW zPb{d+=lzMpH=2v;P}|gi<@RvVX-nG*ZnV`gH;poFrSe_Cjie=R zc9-SEjb!FV$|5&1HMr?Er9GoPsnKYlMzWZiM(MUv1uvjR(h@b1CwGn^Plg}K$&ZBY zM02my4DG`9ct~LpAx)&viRM5JhIS{GPEIriz>zElr%}MIRKW|tk+cL(=e)Fd#;G4hxgDKo@KPGTffCz^Z0z$j!9 z7@5$C<}`AIC@u(*EGDE;Z>?0<3kZ?4M2I{lM9K^yl9Lb#*@@<^Fd~XsL`0@NI?K14n}Z z9LYj(hK=%U`n+#>j?w}+^l+`A5`9JL#0iC|n>%Q~Z1s3Z>3Wr6W0CR_E;I#=Xliqf zXd1ehP!?m-sNxP)3H16xX$cdBuRWRdh2sbq#U?Nkx)IH>YhcWa0vCCK$(^1b?s@4U zw<|4A`!%BJ28GzNxDh>URF%``y%#GtgCWfq zi_=&0%d^w@`K~-2S2WgD_Yr9ePo2K|nyF7Hq|8&0jyEzL&EG6m zm%XoUmaF;8#qPdK%Y`gg{pq-VK>Bd{(XRff_0?d|I(Pcq!Wf-KNp`4G-QMWPoIywO z^(jfs51(q~^fC}>1VSWXHJElGlCXwoH&^MLMZzLOGJXAe_3Z3&(R-JL<*N7KmtXc$ z`L_4P{4!y6vADe19X_F@NVzphdZHy^j8>zTJ5)*U-9{BxC7Cm5NzPSCLR~sbN0KBQ z^asP~@St^vWm=LXUN1?$dX~J%luS{zMcQVyr8n-UmrwMo-e+guEuQy&`4{FFSHJs3 zFRfX_^_n&Au2~96uq2GZYE*oOD*5dVmdqKjBrmL4vIsHhh?s=4{$Up{32VGem(+Q> z(mEqk;}DiWdHH&^NZeGdJHpc8OkScPVTi`4QPWMIyJeDn(V#g-gYrBYwuBehl#37w z(*<_A9kohtA#0r=KORz_PyG{{etvZS=SRK8?I!f*H@%zH{POz6a&@s-_0AV>7U#V| ze=_`Q>3`ZsEzToz)S_MlQ5X}{DEE$3qT8DwnKJ}QULZ)8=(>vALVgr=+B(fV9x@)U ztEkKacH;0k8Z>LtAYn{HqwG3Td2eqTWX{kaxz1rYsgMChB?A(I0m;mOltl()$}u24 z8IUk$pi!tDsT#L812ShAkem!i7+)B18&qMTP*>L!^6Hw(JO}AuqwULIUDMJyHQ7D* zJoOMnM{|kMX_R9}D&*~rj?5W!BrhCHWXV7zIU$lzSJ&J>y1J&Y$dIP-URT!~KDR1q zWTGWuj8>!4J5sf9Z?t62pd~q1B?)oq!^x8*1&pq)88yDTro70MCKOy!1;c%)k3-e}02K|}Ha8noPAn(iL|9}T%RBt&s@SJ%?#Q=d+FWct9XYlX}mwWKFO z62=5IYQiHG{q`nE<_tlS7YLFiyt0y*{78r^E6IFiC1oD4w6@5Uqd|JoAYn{HqmVmN zoo{a%WX{kaInQAv3>lD^3`htDBr^k278#H!$AI)?K*ErLaie0JK6fj&U%tM$N*$uN zZPfdZzkj}3?k?XChBU_cr~K;G^={aQ4jW$+F|5if6i!<;@?#Ir%W4M91MtM*f3>(? ztllioR;lH9d402beR^}YyzH%eJ-sKFFIMx-A5&d_cW<3IUOHh}zw&!F=yZoT>F%u% zl*KqT%C}>c`u4&}#tcr9Zw@Z6uGz}w%ranU0D>jqbl7PQaeQ5CQ&dXd zF$j%f?pU?Hy+DvL1A^pv5am3$d9$(LNomo9UqBDspQ+)mWy6mNarxqGUS4k}XS)1MA1GJQyGPVsU$Ne`SP z3vrq>O1sWJyl4Bt&hF8%VMgut=6nk4m*U&MAkFMgcyO#rQNzyAxIQ z_QFTT3_gJ*tI#vT%RMc%0hXO8BHgs&2fNSZH@-eqB+F0G%C3hRrU6wMaB#* zlIIs2ImC^0UE6KBzXwh`9rfW&m;|i^*wJbtkIo?M04^8FD1glOsn| zp5bPY8%6DwXBdy=87lK&r3FN@$YCHoFpw<9pi!cosH(RY1~O(akX+{-(uK*Fn8}wA z$(PK@m$I0AnR3aO9?6$1PJW{>J5g2dcr|}>cJuxH2dlHwZ+44P4~BGPvaSJMZU)#5 z{m`K^mnjOZx-6$$jSu_ncZMB%3hNWk-N`<-GN1o+RMC_-yF0y9XL&h4?;Xvr&Ti5_ zfAZCX-$}nB(Yp67tse?;)jz1}Hz~}K*S-0( zcyy+AUP)ja*Zce6}?X#Z%-QxC2?IXTOi$VRnz zqQYRFNI5b@O1?fEy~UFE-EmqOHZ=&@lyE$4^>`DQ(((FP!XlS46@H6?Gr9|igAd?P z^CgE8h8#{CW#;s`TV~F3NJq>esg3EQT=ZFZ(C@x;hDt7sRF(jwseV^c zx~r;(_lfsP?}=u>^m?p8y-cRJS$x!Z2LO&COVywBt`@7)^fs*C@{w%#nYg!$)ULNx}yEO5!!`Tp_I=%YO=sRB0B4%YP1(Fj~Kbcs6Zd)Vf(ZVWi=Rk%TcujiUBc712CKa%3=)JX({a z&A=l$;gN8p^AriaC`nnwN2U+Dcvrx^FWzM)T@uE0HLB)Q)nM~<$&sN;^70}jmoDC= zBVZEp;$6b{;$7+@WHR05;$8l988y1%i+9OM zoP?Q+cgc$+$@GC2?+Ur+3A(IgNWzezgGMPkeZFHUn~sry07}A}ALW8}9;@kOd@P`f_ zpEh$Ys_IZ!4G#OQKG3me!1HFt%#-oN;Wzt!--~&Uo8bDb+zr6NiKp@&57Ug>! zj_8Xaqg;?th)M%>sx(koVvMFjrGcIV)gHGY&?=}XjG=0j*$-8h-Fv;FI|G#l3)d?K z&!D8>L`g#3l)wpa!J@JVljiXubpp;}-#P)!WKGkKS!-1C4^?E{pEbENtVzDl0wy2o z1l$>@-cXg8vUW_sQZH_cLqGk_W_T- zuui~jB7cgTsS_}85iAYz!_^5mr~S_PX(e9Tgcz?zvHeh$)BW+1JA;?x``{&CbVTb_@U~X`{N;Z1`o+!Ms)&CErdd$35A4! zLNY@kWf2OQ_Jl%KLLp%cMWb|msH)^H6o2_Lz3a($HPD@bLW8}7;&uD31_sZZcPqHc zM~r(g>$fV^$3qHz-mS6oU_5d7&92|KP{0``wtg!&HE?j!sl5}^*{FOUswlcYopNXB zlziui_L?^}aFQ8LH4HhGuo`q5dz=7k4T@OARHjm`L7uyC`2lw|aBmPxO)|!^QE@+1 zS$2Oc<<4L!dAw*!oq zY;tE{lYE~wP(D>Fq$6(2 zmHza(RO!#09MT=5NBJJ;*%#I;C>MbgX6hBxm%yUwhpSgG{C?LSvt5iUjTUYar`Doex^F>{&>ip z!9()!EQ?bMp-^Z-At9iU%uq;KghHkQ6d$ja-+ubD^gq4TC-;W4M#(#U{*Xh6+?gaw z9w$-i_*9u&qOuc(v(7IMQ^xaTD)VW4QYRtW@%vU67$T9d$889-a(U1+}I?VhO+ zy8rSZcZMv<_c?mVmtjnDGA5yF1Kdlh4NzEwOw%aT1~^cnYLEL6XeCveS4>r-NIp{~ zb$_bl&QK+Jyk1G2VM%hbB%$s@;J)#SrI1CKWcrXRd(L;?D|?#Bnx-AI)~LPDR2SW! zHMujaNxshtCLgZsxiQ2|0exl9nBkQ@)kWwyoBiK($U)O;_90jHj7jt~`53)MVST3B z=lPsz~mShuj%F zB!Bt#PJ~X=nNtg)P-sFSA)t`VP)J#XLZ&^Tkd;tK7(p=_Y>UnH=k5jTu(jCWuND_)r}Oh&&yhW^hNts4i`At%yLN(KTE8cJG->_*!c#li&*Xn@Sxn5femokev=|a2afz77 zbN?MSyNo^blrqF<01_kNXfoIx|JdV`7zHd6Bh#bJx9t(*&Pj3mvJ3Y^Vh5-kX#T;xaqoaX}W+4X>XE{h!4tc`M z4~e_Y9S0>X3OMKwhUp;Pei4JC*2KKhuTWcF>467q`*anWQrJ)c9b4xm|tJNzDU0pntnO$YWeMAwf+Us7nzVrOgulk zj<8S&U?EwIMWd=(skRnkA#n+d$P+IWbVPR#jJO4)LvaWF>1;Y|6-gdDXffX!;8CW^ zuBrFFyEy;p_0{}z@yWfqXtr3rS={@yKKETe8(NJ*?=qD!9qq9ez4 zNA2#SMWM35Il08z7v~v)}`I=PCBR2yg`6uF#(NYZKXP2NPxs8 z0wPa*@RB1WKw=UgAqbGn1V~vVK&Ctaa)1EIVgefV+Ddi3kN}BG1jzGl4cG<#;fS*d zlds53zJy4=WKO=6#pKJBPre*TzGQLo8>QJw#k?^25|@%M&%5ONl17fWn9D7|eP|;J ztI@D~5YPnb%bHzQ(;0|_c?h1^6rX`;h#Hyj&Ld6=$S81(OrwfhseTtCBXJ3t$P*ti zRzF61DSpWET&(k@ZKZNC7*xANB$*?^WP|z4pj*Y^Dl8J|MFz=FFErsVS35Z z?%6>4`b)?BOIXamO#9z@#L4A>(0~9!vKWX)fpe(BSO|o~B_QO<03kVnkg%Hd4_kef zgoKntLc$^vGL`N<;*|0rXc&MXSqws>&N)i-Mb;Lz8j_y5T z)S4LIdqjDW8%-#sN`rWwVsHL9{h73V_OBrd@gdEyISIfR;Y zL`}kJy3wR+-RzY}lQbqx>LO_}={}R-CKFB(NNAWCiAL3RsLET2gv2Ez z5)z6`BqR)wkTga@>LL;{35odDBkmzkp^;)L8dcSyYHJ}C5|^lmJn=$7$L(D-yB9Q% zM%)6zp}4`VM+{obw+48Wsj_R7-{##R8XvbFQ5MoQYSdrT=l$!i6c^~CC%fj*5#M@5 zx#*%Wy!D9c5??fhjX$Y>n{a7-z(rXMSEEonQjsrOx+pHer2+DA$r0Uqz$pwJmJBMQwj-CcoHBX z2$0MKNLeI6raS?1fB?y20vhGok?MLO0TP!8kmubRunYXd5oZ%7Uy+%736XrsoO~&Z z$(Jdgd^wPO$>QWUO0y%?^1gh1akY4U|M6mevzwj=BkFHnEmjxZ*Bw!N^=fgw8#Luy zlZeZ=l*tCe z{PL^aQPW{V`{$}Z8?Ik`RE;|?KB56H%W~u-yq&?$d$mWSMlCme?w*(C$dNuGN7_Oe zj`PVtq#+2Agw=S`DUfgiHAS~ObN%|m1d$>ZA%e-LqOG?d_jZR*G$B%YE+a#e45TR# z-p-&!Q=_swQkgDClk^cy($>eU`&^8q&Tu3-Ig;>jGR6K;K=&f*~{0fMQ>I=R(ksl?X8xtU%op3zIRwZEBK;! zI=?!*nV+X8POooz^CaIqfVx_orzZ-Z_r?c5{`j3TDX!O&)#49dpRLk=P0s-J&d>hv z_2R`my?-M;dH9oc`S0xVWp~}v3`uGryxrs$sg1JmNY%p}snSQJN?Sw9(jRA%AyvUi zs)Uo-tbcIOX@zqRBvnE4q{`7I_2IiG4sSEJdB^OC6C(;5CUXdEl!Heq8Rk%so+zYq zB55)7uEnmsc0*%>=i3cy|br zFH3?9Bq0#q&R~~>aic<;KHup~nEHSOYGV>87YP)mcRb97w;R0P<;No`NdlE65@;&j z+Cozf0~&-uB)r`#Eesm9)Uis8nFWD*VsJE~R%fpiq8&&bLD5#Fds?d5LF?Qyp(5=X z72b_Nd65^5ak;$dU9FaH&Yq|9#q{Fk)7P65%lY;C?C}-f;e6uxrh3d^^IXrc`$l0- znH*`FNf>d|sK}00$;)vheZ-Npx2NrXw+`ncq!gP-NjU8fC&TXIBWX>Pfs(oiluYjn zlw#$9l7m16!U(8Ffp@IxU=AqhBcP-WudO)~p`@rpNy1UT8cwU*9rNxuCTWb4)J2qJ z(#;CN{VUu(gh2ykR+mP>cdS}s4hHEX7^Dp^UpW)Ops0jF!T<(IV;H0^!XT4ii0@qC z9wHAKE5k#hj5}7%F2{rP5f9SFiv!i+Ju93zu~6LlqGxx7csydnVwx3wQ$K6HCitlb zU_KQzlg~yWb*#!(E}zmz`II*PeoGzSCBlg_pNgCAL2A7qJmpiuVm@X1)z^>Gi-)Ge zx9`yF&1OGdpIC0z@pao~S?{y;A8)_UyL_e7O@*${4i46RoZ+lf&!mIED0BvxMm=+^ z`d1DZ=_6pIjTZo^qt-8{O!QNSFl z{FTeS^il4mjTZ~4!`w^E+)IeuOXl25S~X_w4tm$I04neu6ugJ}SWQNq;uI%PQ*^sC-$A5^MTlT}zZ*U{&n!(CI^A~Ms9vr&?DG*L zC*kc5XwlTDa!ypw${c>Ek7!ct@U)YWGaM;6Ig)TTNVW4$7oAfeNs5{6qBC^6i@v#D zz0KM>yC)-B|CzeqgEJ(k+HV<98`aZ^YHc}CrH??BHath>OfsMmLoxWlJIcE*qPiaG;=E<-(bKQ_?$>Fi-$9r zg8Mxm_-s~D&6nF zIb|`>D8wKTMi?{-rxVrPau`TY430*O%`0gIMH7ty35o))-(k}2&NJv56}IOoFY==K zyk~o!6R0aP;r$+TkRweq2_udgMc9dIcsY)wk2sRHbX_fvkdlr_NjU9K4i7rF9dcjP zL>VXrE&?Uf`vRp{d7$JVP=PQ4s!`dUs5+PfO8N*WY2!<4sfChsL`lL?e>fX;k7JU? zC`nyJNhY=UgZn+0D8itD;?-r^sQ0GNcdFV^AHYCuc=<{-V4zMgP-qw^4Pl_V1OrWi z;kG~Axj%p*#6u(u7Kdr0ikm*)jR)x?9;6Ky2hJqEKY(&#p;-)YzXu~0)2!&5@AvKA zU)Rr`ju@ZmRLsoRyHQ4+s<4$=>#2{@so3$?Tk1?YC1*M%OgCe+Zt#0N;-(eTspxNS z_xP~8Jvg0g`;QLtqDg0XX;d?(Du3m8kv`%@+W6})b=3Ohv`LGib|3U-JhpzR%u{tT zqA8zy&6~Logtv>&ZUt-Fs9&bfcU$_Uk8&?k}3axm?IFiLx)R5?|7 z>+|$5_1W|LKR;`ofIb*e9%Wsj&*$x+4;?fvX>ty_%ZI}Bvy!*FWqlfU?D5xCs$FF| zgU}}B6aU1f%`WbxU7UHX2Zu{l&BM*@po7lspfr#eZAcQ{ZgA@$(Wq)pRmjQ^BY8xO zw1r|6r;~w4Ll7PbXM;`^f#cWk-0sRXWr-aHEV2XB``zQg;j=7ZXx`(&$QhOzmCdPY zSQ(Zik64m+eXhwRNa_qll9M6{C!Vh|`N2oFcp#;K)Tsim;CeM=BbW_(*tr zsNOy6IcQWx)8{)SUh*jM(qWMQ zs;gzb{*p%&NSmQRa#A2+RrNbpLEJWTppZolWGda(!8v6i&?tl;5JnI*Dx?Q0uw@{S zoDdw17+UA66rxo|9Wl`?2mQ%G)p`o{*ppm?!X7-QP^3lEdCwj^CverP2II|T^t5vs zO$RB`G?Or*s8MS@P^m6Mk>n9Y(iSeGIUNC|*aS+#QGYfVcOJIk*fmh*Nr8(z$@IQF zDOR2*ImlBWjCg9)Zx2)h%EIN}f(FX0Esdh?fvS5M79@{YkT$$r<37oBc*;M+bsmHEU!8PT-a#f5t`=**QUX&^D$!$BqIP*@5Z(?$O{pvn*j~ z-lM_D8I~G_%0tzpGOLf|5lhmBXPTTyh9U(gMG{V?Re#z!-{cesl453i-wfUEefu5_ zTK}24M}sruny3Ai;j~czJyg9c!>QyEr_#o!#ZqTDm7JVPIGT<7I8Bn2oJyGIRE{>M z;XN8m5<$=~84w!P&qGzpG9XA!5FU;gI+I$3W@;tu+-k_teGa5}#p9Sv!95zBO7=*l z;7oiVyggL6&UzYk&O_DTGKrTwO1!k0#7oY^OW3_Nom=M2D_}A6GVO7X2B(#!Km(D2 zKp0WbD5V~%sFtBX@`wUyGZaWp3MAA$8r(K>ppZolWGdaG!8v6i&?tl;5JnI*%AMjObh3V~4-Cx1w*fB{8TqH>*_2q+mG&n`F zpn)=LOQWbeQ*|%Hg5(hk(uS9-oQPOZRI)&!S&%elLFyt4GKq!w9u4jx;-IlII5aA@ zGgb03I7lAhAZ@%fP#xZ*!FiJk#U0=t4Mr?xS<&ko0Or@%uP@TC55L#%ad0Zxb`Tvz zMH9}T(kRHzR3povB6)<0wDHOzb$qV~=S@@;H{B~TY}I2Qr{Wh*(DJOD*p$zzhGA9% zVRUZLC|}N0@XBOW@+hm)#tVSdQGb`SW=<8gTexIA_IIf)re3qir(O=GJ`hH!Zxk$N zDtTp6FL{)DY2z<6)xixNoHbLgs7SqJPQ8@H)XS7ly&Oz^AdFJqC|S-_=gOpB@+kGv zs!qW`oW08DBlWt z-3j{8LE|bW=b&47D4g`WzXD9*x;VAF{pt9wZOZ5TiA`TUSpNvygI|7?ey8nl(p$dh z)ztRh%+Fu9?o~@?2pYDgX0Ul;XxMpThz?St(8KK`F}vN3S)-(xK6i^zghs*$8fi;q zD0wpcNKSqvJRBV2T?yP5H9;MK6tf7BOzjqDx^yW~q%e7k7Mih+)+mdGec`u4A zG)2~~PcX6mSRL|XIry=#s_)}yKf-7!_^~k8AGf0o5AWl!wNa|*-MpIL^fooC-r03p zzW2f`0vzz&O?{s;6b6x-8YWZ#YrODIf#ntk1ahd-1V!7&FFD|doo}DjJkj3gE z$**sgtNF|A+PAavj0fAYW&L?iW+aT5k+#M~@4fI8GR!DAnUQchp7uL$p7s>TjAG`Q zk)zE_a8JdFCziqH@HdIgw!%3cs2YX?mW9OTp|u$hGzWqpVbwnvZ4b@sbFyR4KxZ#j z77ji(y}b*ghn{?|(4Td{On=q}9EB{5k3!pO=Xjv%7txTAXdF2x4?qgqt#~^i;ZeZ) zClSVno&JZTuK7_b&GI5dn$Y{T(ma7&E6ol9q-n+gZEK+8feLK|NWuspY4az;o`_gd zY_cR_dSBSVbkw5R; zK_nd^lCVCS9aiaXk==`=bVQRnrby}{MKU$cQT}3YQlFJvzCF8by?6Afr$`PoP|U%$ z3OgRCiboD4j5v_CJ|_7rS88z}9XXIN=0NJ01F4G~$RrNJZmjb}6f{ae%w8IuUbO}(|&>!2PxVllmn{-JGHPbF8xwS$ak!Z9P;8t!+kvQ>HEVmgNEr=RHj=(q+2ql zTgqa(Wy+^p4yIeeINgoHW~Evo(=B0?ZfTir3F8VVCyR#tn8Inl{S=yY>-yC$n2)W@ zXZ(px+wSe|7$=t3fK;1S?Wo~YMhlyTBJzAh$3m@GYP3P{76oI zB&-ew{oyVc$7AjU5~PsXt{X$QyKe5((%L9v{5CtaRil=fKJR(*DPe?+wDpmRH7rgc zgN%X`840I{>1Lh|GEx#53G>Lv(MBe0)NH-35mwhm_h3WW%rw$ z7*bHw!>J=Y3RpL4XN|q_w$IO?Ykt^Vqr3=_=JTG-HBO-BC%S3TyO;cEnvFfSd+Siu zsFJ47doC>!M*K)yIun*hC`m_@Bpju82F+Tf^mGm*X-$$rlDY_zOz#VlVr9Fu+(3e) z&@o7jQfj4w92X)9BaozxPllxyLedc-39J6$aMpSA)R@~JGo;8xhGc4-o|JmDoFXaE zKp_RgMsYQL-fuafFra|i@cfo)P(Yn1pfI3-+K>XOOBB!~3gQkeLkI*4V-Ok@*P)7c zS`H|TKv2*a1gYZ=Ehj=A6gPEfTkrUIJZ8jVdKLYHyKkIIeeQ9vslv@VRX94xh$b8} z(kRmoRlg%65=M+j8y+$^g$yGKPDUhDhn5p4GNR}o&WNJs8IgmGNEkEHsMHQs#v>yV zMvO=suOm`N?HkUQgeYpaeZzQc-%yz+>10e(KIfV@b1q?=^G02Ds7fJoE@6~&Y2$T4 z>M-XLGv^W_=aM<+QWkSAQ$FW%Fy|7+Id2q3hbr7L=MqLam$v?%x9b=jJxsTvGTjm) z-I6)oQWn!KQ$F2tFx?Wy>26dshbnkIK70A<>-%3U&uLZ#^C}a53*1^^VG;e zY9x%QX%v`8DkPSvkt?D`+QO0}OVqC77LXZ5?Y65JkL@Zd^K6}rY06Wed6NPOV+tBY z;gM>ZWeVhqD3G?WcE}P^ATcSB5EMve3ZyJjAXAOhw_k$hOPs<1v+a2%gxq?OE@RabkJRO!%lVXC-DRjG1YaWydPM6&DS< zB4#u~p@hcx8FDlP$&s*1kMHc}>Uhiv)a2|66F7=k1P7+~d+?aU=b6ITeDIi|W2PEq z*|7?5Wv1kcn36VsI>Je1kkSZ5%EC$axl+!6OetixxyaD%=Hma|+qwKkl2v)w4aGx^ z5YqxAgoKpxVl)hLX4;N?SuUf(?yg5y52dc6c?m%{GhCHj`641+b`2o)AQmiGu^Ndj zi`lY3nm=OJGn)}B2F+&vfRR{mZiFM_M#OjSwKKb_O70G4{?554;(T%M&2t=OZc(GD zRa$wSE$YCk!OHPEiy2vI5RrDZm|>+2gK|JbBOpX1?CfA1*Wrk)kfReRc)qd<0e3rzF&+*FYTQbj_YDy!rhP?^wA6J5uGaX?4^o~tlf>THH{%67c`L0g;fL&sBq}#f~+(yNV{6Uc*9I4#0BY)3lu6` zkXGk{)Lt&gh`7)j)0j6zgT~U)uqwj=l@$GGkd=l8X+3C=iQbsTb3j7KuWWPnuKt$S zB&pz#-kWza+PKAtp*X9`Xo2uhz$!c)tEw!=YkYu0D+M0Zy4M>vQ5(}JCwNdujcFA6 zs6nHRsX?z!YS4nHL7`5KRafp%nbAAtpp`}qjo_Yg(7o1?LNPK!fz)>?=np$msC2XS zAV4EG1r#?@Kti1Ys}kIyN~WIzveGCZt!M5a6O{rIBLyS`3P{EjkkU&58M!GS3#5RA zIt5lKw?l4xAw z8x@V|YdlPi!@8azLIb3TQl(R56=*wDi1SiJMjAz=^;FX^CiS|np%aH*V(4-Sk+iLu75iAGDJoiL!`}@Hmtc}NDhW*0Az@S z{2VogfDDmOH$!AmWk~H(V_*)9US*fMV-;`Zcnyrm2r-g9FKHc6kQ|{P;clnd-W}B1 z)EEQrddRDHr6QwE+SC}YbIqa%aLpp2zGhja+z!?8yz>niAt=WI4v^0`-rwGS&aS`#bu<-`gt2rCroSXl+&E)@-Z6BQb1SkVB^ z%{6)_sK_%yMMCvCSsY%cihO&iA|q>i<7-o6h{y#Eq;p}Fgu7Hm^m0K)8W*I^7ckr~ zV@SjWc}6ZssB=MToeNTXxgaCrLT^*!MM5-aEFBH2PTZveqZbV_($FBS8x6A1o78v) zNC^2gzeahG{Vi{_?gi-Bn{^sw<8~v4;;b;E1)@U%>*!b&<}Otgz37mUh7M`ns|{MH zEowXiM2GxJ0j}~4i!eh%FEeDcIWy$d%?w!}GbGfRvFgcPDja&5AtQ|$(z>S`vd}tH z7(Wt2UhADH^oN}(RJzG}5TKEp0g4+LAfe8HRRZo(4b#g28EFiV);({Kg~|YlkpU6{ z10-VxNalK`Vp(@&l;{Un6+lZ?|( zN^knf$en(&!1R+)Prp@q?NTkyn|?CV(ob47{Up}wv=}`7bOH)H{bps?a5q31@^~Pgq*f)wcb$L8lKxjNekNW&HS|B~-TBpaV$9Adi=B0;>GL}0Yu^V2xIn<*F@pPxq8DpNhHA}hx? zugId2!W3$qn-a9pi9$IMg~Hu#w>hZ&CTElqQYdux6w#vEQ{=uhnp%~W*V&iuS>;zb zUV|Yr(ikFbzN%rF4MTD;L<1m0B5(s)V?$Z=D_Gx_N9AP zwN{STz=(_xqmuv!a6mz>5egFS3KO+w5-|eY@SxJSR-w^VSGv3yKH!VtT#e8>?Ql@2 zuSQl?wns%d-wp?j5P{ZmP%vsUo3Hl~v5`Q3=pX6&Yz%k=DIuCJSPUbjTD5rL8!Se`>EhPu>mi zdgx4%XD?G^WbIje&1MV{si1*$Dy;HukBWj`D#%Eqg0%VC#k*j#ASy_QRFF`kg0wmn zr1nxlMnr|)YR0S~7&Mj+hE?hfJ;?r+XO4RT zI`(Fr2HCi6h@m*^#b|-(P{2AmR=v1KwL&jCWTc@(TK7tW7HX>*&j8UOztn0*k6vcT z`{vA$S2r_cfy|IlXU3`$_o!&-WrmD2W=QLvZpcFGGhzHl40)~hnb05hnNaB_OFldNuWODSliFo0U;ynz-P11Kg2P*`UGWyk<3eGH(HlL53K22iLo zU{z)NR3!Ax18Af%Km+9SKzXG<3DB{ce)5dzCn2PtWSo9ddecuv?(~xdrk{j*`mJhe zpNf*l^Vu+tmQgu7-wIHyrJWoP(XphR#CpjU<@7TKim=%W%BOahBS`CLW#v6qx^sV@ zjf%eVH6DM)Q*k}{g9Zo>U3?uLs}9?zikk`#i8Xjg>#3JvFb;-j2xN$a{Ma*wU?8e7 zL_WO?kx{jsBU@q5W6v0*6C@fJK_a0Jl2w51Q;|&tiNqR6q)j&<>QqD)4va{S7?F@4 zcgCxM7?DqBOAuXG8RE7wnp#zq*V$I?TV+-`u5V&hc1WzTL)si0ETmy54t8h&WQTF;3*#ixU~Gixc^B<3tvS6A5*ktnzK2ihe3iB-U^ut$W8z z76cRN5GE3;&#K~;&}kyyUYf|r+PnDL$`~T@Km(~f46IVF9AAGMgJOjT)aL6H?t;+* zct9QTfI^iARI5Co+Q$PL5f6Gp8C?((DAbX#D!T(J3TjgXiZvw2u^S1p&>P7Z43a^9 zUuMhirS0@jhSs=)&)1**u9SVM-i&Q%3NaUeqj zATlJBs#)d7m4p=%dRZZ(%~>I@ZdS+wSs|g$idFm_P_<8Gg~S>wq;*d(WTAD9Fm5D; zywa7DR1FE?vv6g$%=J$PhB|ix;3N`KI8PiTeNIS_m?WFXk zos8URCksqF3H7vFbIM5h|6!rOIv_MkGwN8pvG96HjOeKZH8Y!gpRJt%22QV}Q0z*Rc zYn$s29%BdwnQ}IT81m^Q28`Bw@EC`8!vtgFgU9Gvhsi3N4yZz=!bD;XCepfh8f4)> ziR6e93p?<@F;PVPQ!<}|fQZ>id#)rj-&k1W)7+4N4 zu(0}QAFF5w!%EM3#76vZF>75b4qL$Xg@xLR(`grFQ*(TSw38Uqe$0;ZS);rc5Jt#x zy@<{_go7NmWveKKuJYh_*=dRhb?8{`<%Hr{uS3THxH@!ffgDkoI!8q}@ODL3oVSm3{{rt^?>nxFHFH2-(?MFP_UJemypn-H6iu!A( zP1QS<1`=yDkTzeVXlKiz5DnxRX+WVu18H>{NbRM8jEDxc*UOg(fuON;Ac~@Fr%iP| z6$lb*K#8#f`Zqp`QDq^xA1t z4N=WKiM8C5);&*!9vzOK&gOA6 zdOMEiaZ>)aF*~20M)BjN5!^|hM3>9k+omY;Qz<#z-oCSY@X+L`b#&OOcxheCRLo@i3kz z^Rs1hIG?uWX15a69PRd6@p$;moYTtLC|uju=;bVwal<$cUv3}0*=VfJ^~uXclr)C( z^I4h~^IqlMhM3A#`rgBnJCEMqZcN9s$LEX1JYGhl4^|ghPTkbIhx5hDG`)*3Sw?pz zlj55X!pV6g7gcgUjpC=`(NM6MjF<0><0OM3o?jf#Cy$?v&$91_lPHYe$*y;*PhU8m zPp8prnfVHnM7YV`oJa96^E-?tllO!P^Li^i-xVV138yceoiESh$jHoPuAFA|ikv>r zE{$9qLHJ>^%)iZEXq?C6+uJ`o9i5)`hoj-nS-2bRNPj)r3HzPi&i-)!Y`;B}{_b%9 z7ij{_Wj22fFGu0QReJ82^gN1%vv@g{tel->X-m)UOs>o%TqKbY)y_`p%0o*6%A+|n z->jlLY-M2|w#w(4o_>Cf(vx?bZai#c*?3_MTzIzK9KCtCy3UoG_8zfb4$=bPQMxtEXarj2WN8Ql2UZF@2wo*NXiJ3o#l;Zo+D9o{f|5UY)p^_0qXR=FIf}R}4loxj|m;Br<1)Poo`^pwlpk>e zmgdq@KvH?TZa`jA%pDueM$yO}Qn*;SA`&7#zKF^(7uQEt+8pXUmX>{ak_vQx{L7!e ze=NY6ufG%MR@e9HWY#ConkBEjSeMT#qYtlr>ha)(0O8*OkkkA$KSwIlO9hN$ud4NlS?+K$aZ*nkiD25+FJW~92}V<*z!OQ%0lyE7Kpr24)Mu&If;^Q zpFIlWB}6PZ77?d0WbtOuN`0Bge&!1Qi;Iiq#eN!w?DKY8-+S-j<8)8FGoG1^ z^e~cnvb;zCxBvR^qc4AUYs-9nQ4;Y(`S2&R-15iiE%BqxQjz*tbGebviYAU7b0w1e zB3>r4&iGEY5Z~y^937rSXW_a09+XMkVxxFnjVm?K*%)7GifZeJ2 zY@yn{n2nm#WGA|mJy|oI1DawG#xI-GP(E|KJqu4Kkx0xZ6!!nZ8JF>2-V5zy)1ORu z={~3__9t<8Av2jWK=y&gc?Rwgrm~Zod?R(kr*Jx5R4&nYYBn3@b+%YYwB?JMS(w+^ z;_3JdEzIj|5lz|Ra>u;GHW#Xmd53L2T=2PkxQMiqN#COLci1eI3m~s+k)?0ZFbNZ6!grA#i*(Kb!qZMxsEFAse@>aD5S~ad#Ukc;1pQpz51*{rZO9zGVUw(1RE+kY9s~`Ug!ykThtM*~A xYF*vS7uNsrOUpXn*;mc0JJ7=XJHNU``_V`5e(KXk^rrm%nLzQo-`tY#{str#Qh)#e literal 32632 zcmaHScRXBC+btq`lo3KipCQ3$2_htV)F8SUy#-_R-g}8e)X__ji0Hj{qDAk$6JgY7 z(e5Gdd++zp{rtw6glp3 zQw*bXmz+YDXU_9_&^^;&0=IcnubSS4-B@C3B5s*CWbusaJ6)6`RS}GrvAvrK3FNgk z>-M%re{lNhL4n-w96jDJd&wy5q*Ks7)t3v0rCs!{lPk;P;sqr=OWFY@p&ttaL;3$Z zO(Z}GS1T?T8+(M2jSYg+6>0TRwcC1zo3!DC9edsss%J@qx}#Yci7`i-)14UoniBE; zewUq9&aWmH$tjEX$Abaj{#F4SvouP9oY(FH2Kj?*hC>V{bl=3|#nGT+G~;2;&$2G{ z?k^gV#ZR@I%RH-|Tb2z}%zHTMPX&&JqJ{CS-b%EgMXNF%t5}TKf=9NoW*#nnDZng_ z5_=RJld&XTLT6}wg)5;M_t>ByT;dLa2kD(?=8~!kb10mXjd7{OrfUUxo+uzGv{q`+ zau9c{xw2M2Nk9Felw8Bk!tY_h(Z2i@EkSlfb?i@eLGfpV(i5>F49`?p;uzm;xZbxd zZ(2#+B(vMM{{B-3F-!-|ABF7{@qf9@8L?WF zy}y&Ze=bEUduNPQ7u5cKkaK?msk_Z5v)b-X8vGWQkoCfR$ct+@I;r2MTmJp5DA(g0 z=sN8OnaNKlF|N^ytR?hCnV;#Ul1r`)pFcdGV(B%H-h7d2DkA%i*hx`odZfzyS58fc zrN>v@boai3%)VTV8vCDEayttV2Da)w2M=yg)Q@yI#Rm`+eCK~d(Y=2ta&UCBGIhAY z5L#=v*Mg>&w?3mqbS1g6Q)&lT}?@KEp?BVS2(l_#~ z2S(?A(>zEz8y6?*bk^<*8!_U)d-W)_n$&=DKcRRu#N}}BQV?5(k&?NG`q(fGQcpDR zrV@95!HkMMgPD7?O(AzVV5RGEn_x6+eY3&ANucUZo=omO4A@AzBIFW$DY z|GD2dsp|o?Fw=KtwH>k?9gHYWPpV++qr8L9kKk48VjMx(Yk{b7^Uu^Em0sg4^%`U_ z((M@E_5R*>p5J70@FT^~eAs$^v910=?ijzX>N(1<6n5!oz8;(hxv(hyfis?AiQe& zRyklsqjp~R9ep}*S!+Ia+4@$FpLX8TqkDanKD56=>AWPNC4wSh>jk|xUsZB>)~u22 zH>RHvDe=CDw2g23^lv#v70}^HhVi|)bF0qjY!ZdJfz#PqS?U- zmnjk>tobFjeY6Bqc&W7j!xh22*&ZzmoHnb#_V`Qrzip3)|F*|JIr^Ve`%jvp-XLzJ z>5}60Nrx=1@rUOPAH<3-PceVIT^?-bj~=hM_U5F46PRuf#tcpzHp(3Re)jQqXuAXv z&i730pq372yavC^9rO~lMqlRqqB-PKF+C`+o_x~xfh-rS?C`lZr%`L9kZyLjoMP@o zcWnUrEm!Y>>_`e`ABAcG{7$(wyKvgg5#64pDERS^Vu6y`>_HZpi;CKllGb9Oj1hrY5S6_7>LfZuz4F2Dh2126>A#85yKJ0w-5MyHQ*o(HtNF z3qtUlL6fTHS5~6(<$bDQqtUUt8x!e_rZ)9+Mm*1kj~RUnenvW+t+SjUyBkL0%r%j?q;#Yq26csWRD@k@eHI8qqVz6T z;^w#a@)rXNo6*`A-#2tsE&A=t7H3gX0%4hARVLz<45}67IR*2NsVg&3%b${zlB8v0 z%lj2SJQvzOxiDcvEgiW=F1dHZ-=W?S<`VGfr#qsjWGAAo$j@q*!L1)Gpw%ox8VY66 zaHgZArw^B+Dfr%KJxhd;JyhTN;QUn$_4?b{2Lv`@;@_cA)+^UTKS>|AlW&O>zwN}B znkbzaf0tfrbRQp$(T0UQ5H5oW&c6RZ0Zud0i24<%V{a_aX>oPtas&*U|yrVcA()N9X{!x&gy`6{Bu_(=(X=nPbU?#HpT#5rxyCc5`n+zTy|agZOH>!Ockw@(npZusJ`R}+qvy><9+m#2C?>YAz$a{^(5JP)DqTNscgJO2Gt6^+^FLRcU&I+|>-rti_V$V_wZS z(IpJ5x9>)kVivL#<>al5eiS^m=uWXFF3p#H!O~lsyuC0tm?@1a$6iqdfksq^`HuO~ zhYG9DgqZor&KlCBz2zjlW8_mgOuBRXsUx}y&nOV8JD!JW8^2Z0zbmsF4UFuOy%|wT zvB0^+7_qW(bvqqg|&yyJoWI&9-=XWTImb>l}OyQ?jNfl=jOhTmRR=fNt7>cK`ev&|#@)}$hL`*D=!C|k7nF_`OwPqeRF`5>epAOyb}pd;=)%oWE!8}o zRW2UU(OIjz^%AAtn^l8F`)DCZH=RR2fdh1|U~%z^_EPSsZx4R9t}|$L38sz$d60-i z5@j(LU&I7GAvVt2sF##qqFGq}V#qUduGa|p9mM-}0o&(!Y8_YbMt>*zP^b8bV%0Nw zlrWrIcK%FF%}RmlJHt}rls_r*<(@o>%&vRcPxbE7`sZ;~MnS7LU!UpB&bO@1VOtlo zra2t27`nJiD`cl;lefj42Br?7eYCVMPjHm!7m_}O7Mw*~xenKlW1`tBL`V|+cYl|P z%OHg(z03M5GB-;y`r39caUsuYB_8H&eLXuI52&*Ls(na$Ppl$cN!obXJG*6|b#Q6r zfd!#D&6PNlK0jijnZdD6kmtm@ak)G^ZC^6kqN|R8H$@LodEfaX)SrPD{ILIw9wk7!$7(k;)giEalEd%v5MU8E$DR$qN|XJPWe{K>s8 zu|Ol@hJ=+3=WOY4bCWkOw`@b=UYL-089pR&*0Oj!_4*RmOt6wgwL((i8*JE_B-vN1 zWRVJ15*V#2}crokFH|O5S)odimqz6viCEV=P zA2UD4=L$tzutr>deZCWv|Gvs7Xms1?QqpsZ*72{yJ2@twEtb2#;U_274g6V+L)Y>l z9`4UKKSr=N><^LbxW$jhU7f)$qORyfY&%2!k49ExMSe7O;ZF!fl+Xni^7{nd-|ff@ z{g{wO4*dhU(n*M9eq^wMQ{2GJA)x(s<5ByMJgrARvfjAVBu6>h$K~KPv1N;`m)mdP z-GObI)w;G(7l<0ev*dqA%2AxXrqJ44N~56sN`z~U>vYnZ{CAkHtd@R%IpO(=*D+h# zdd-B+W{vWZF^FvD^FUFet4y#0fpHV*{0}aJu|%%-d>=9c2F}@=$L+|!COx1c6#Nr{ zI|u!Oh!+l9e;l#JtGl3Gy&%x1H4;kqH?(ElQiP^)I`~nIO)6OqOVzjBa@hMv9X~cX z@@Os-_T@Ol<l!W zFGb2)zxSEyE_I12zgp|NPjxj=C;a|j*3X!ZN#_??|e)gaj=36sxfOD{;2z}VVaB~yzaOGFY2 z7bCx$O}pp*p!JK-m0N+Kg-^Dz1T98swu6c5mgF6fe5%DaE%bNR}r-K3`oQNc`EpzOe^3OQ(`^xEL6gT>qPKA_MG!iH)(cy^XB{ zm$8k#=}m0mrJ}3U3d9yCnjBsWwZw1DE2A=69>^-Rn|tQXnW|M4S`Y^K*i@DH$$8do zq>VT^mFy%Ftf-s8Va+{;{I&|LZS-1|z zVIl8Q4N%KU)W{9~fJyQ2d)|RO^;4CRE@ao`-OA`MF}es}^UdO}Z-Ho`czSJ(f9181 z(L$fT()wP&2@CjO{5S*K;vNfT3v0n$-K205*t&u?frql~+v%79cbj&G{H+(?qzgum zl=fy0_G@Uz9+YZR;Ku&weEoQ$nZqRQX@+i1nj7uhToL8tkFAdn@b|l2rC4GWHcyXV z{%D#P2-elvEH_kY?x3bB3@Y6Trafa`vTZSGbRtv|`%7}D!JD0=O8Im0i_l+~D8I<_ zPlPp%SqBN{KG{+9mCRC%9}6v>zof|(FlR?hhOO^@8LBRLvG^5Pc6o|zU6+WnXvA)X zsas2O?b-E*=4PR4zogAtVq##-{;xic^nWgtp{?!BI;BRoShxNs<+41T9a|yw_}=t0 zbYMB{i*k4zgww<_=CSNsxAVJ$zE59GT@?%*D@}|Hvf|q6QR`+2_A6t-sB-@lzSi&a zsFe&O(UG60xySdyUm9^NDUw>U=#P~y>3_^O9b%vv=voru=kdstHm<+gFGQ=BmPa=S zyPledIO9%tSw5Ki?jXp-vPjgCv5NU5@Px6t<0%;T4e=#x^b-i=l3jF0*k{&*%)eR|Sk zz0Y!1>71EtxU9?E{K}{{{I2OB0>)GHH#7HcY-{uan3q&w_Wu6~81nx)bH+{%jyA~K z$?Gp606-qJG?#-nHKT?bHC!J4TuALCa=sGN!KUj?xR(dB|4u{*{VTA zcjLz^f);vWPtIO>d>%7RtZ>j?32XLf;?iSCMw+DNx4ihQ9>L=J0i>+p@VVzv0|(tO z;#qP;X~(#)ym*nl;P-j~fxzb)e%Zu`J8WtMNXU^PLf+^xd>GWV=ISYxpg|X_Fije)^LfpVaZY!|1N@eQLvTB{Shg)vcei$0g=-YOppqwAuuu3U1Gr+J;{h*r2SEnSeDH3JmVT{_S#=D(@oMdoY;oEl7jJj~4XlCjQsMw-QKn1*hreV+WI2oW zOLDwOP?TowzV z?jjqEWH{406}f9hf`fE!dnR2U7g5oteMNDN{I*EUTTTgg?|$2-aK zTnj$V=8H#l`d(Lk=O+u-moconjepnITm}}<^PblSM@#9Rm+NTYPx`B4bb4C-`4zf% zgG=#x*k$3>=E?b4x66Qj!_`G&P?Jw``TqJ=k-pc_!De#N)x})z#O^MQ+xfxF#x6;l z&q-h2?!wFR<6W-IW4(H>tBE!>`X7fwr0Mh5G4#`0ugg#7@`~mg-A>lGPU?#0Jx>hH zQ`U}6gpxO0^dWc7cg|*f&JR!YA3eOf;;!-WIzs22T-!Zd*=V|2%iZ^JKcAW?YV^83 zKwoXmI z!2+M+}&-OCV-OJ*KU6&dPQDx{-#g6?o1X*N3FGqyu8v})?cVUt6HI_otdK-`98uC z5q@!bxZ>mW>cjHkKpOqkA1BE_wm8Pa^O%aci>(p1MHj(osRU!V1eIM^rb8naB z^*uiyt*|z>i{88kyG>_f8(Y?T@tYx#7oH6Ijl!HKhV7R-rzBU0d$Ph8Lm?GD4ozLa z1jNTL&|L+M7`(bFlh`_O@US00EAnyE8g$9I_RyKON%y(lIbHHH|C1-u0 z?b_&ewA|4K^`^XA)K8HEjuXxeU44PcJaA$ilt_IU1{$v zCw;BXcGe@8E!JQ5mxF7+%XG$@yy9mmG=_A?L!PR*M!rOrj>?2b5HC};}>Xwd2gBrfTXziKaafj-L5p4I&lB0F?F#1C83wrTZpNke_wGyD>3Ii^ASQjtQ!_0 zDfbGjg2faSO-f@g7OLRoC>}f>NR(nA8!9O$4pspHcOn@XCB=KK*$V z{OPbwlVyi6JmSHKl2yl`hTq}U!~M^l)Q#M76)avBU+!mspQbuYCHfZX`Q#28W|YSJ zM3EQ`Inn1v7)(!#FnB9)OlpaN=ZI2aG7QV%cg11=QRZbu_1;3atK2ISVF>-OoSm*G zOF^usZS$f8i{6s4bzi4vDoI$Zr%ZNzn@skqvEr$Ld4ls=h&^jVoC{T0tS|TQ17mNX zimz=uhNPJurisP9E_+&1;Eqi8ZRh2&@Fa|zw!)RJ72Vk}qh#>$m`$Yzvg1Ic5mdfi zKiPfr3ox~d?l47x{!_{14Thol^e$@I+ZlMsO*4T}jiJK-V2~lvRXP@5umhQK7OXPB(r7_37DYkZx&&AH*WY^o5&6|$VA?)|doOQYyYLufj} zM7T}473_ekaFTen;@lI@yhX@uw-YEko`a+6AUhLgf~_#YhgR(-TARxa=g7}KhTQe@ zuTVI%GNOKdDq1q#ZkcZD&^>(@HO5=56B^mR=AUTD`6N^!FZ;NzU?$iuvC=NF)2WS> zPDY)E;TvB0ccM>ft40+FYmGY50vL`Ow!J!U8%%|4Q(ZRhx}&LVz7iC-<$jcC>MLfT zgf!zLN;)6mB>jfM#EEXndh)cLA^KZ16V5OVceVA~bZs0e?C4Q5jkb&$7WB@&xegfe zL8wYEMu2FX^SWH`R?jYYtgp8)Ho;|_*_zIetAgnLUq7A-yF2l-iOzjrEFNg7_F}|0 zC&O^669gfg3il4J*~1;i8O`xmb4`?+E1X5;7nP8hmgUa`zUgKtL+`-a`Ip}^7k^8& zP#bO?W>zniVb9H!+RL z;YU?*Heq1V z5;uB`Hvi;f)jUH~LoFO&clC~k**i$SkaDeo#TOnrA8+ zZeoih6N78)xyKY`e^H2|sJAwha)rg?Ytr+Sn@UZ7#YxLfEoHJwEDdEHVO6T>Kqtdz zUlmuQFqK+fYxVlFmQ}CjD){A8JjOq%vu5XVa^Yo&4MZMfY`$_R0b6!g$Gg#M26Y+@`8*AM-u~cOB6Tm9GhFEO{nsw3vxu+e zJ>D~MGoCy7(w=Wrc~8^6n)Fn`dKZ(Ec&$CvRW&k#+(C}3@hNakWbP5FnP;#~0ce@(n>*`G7FukEHF;S$moSz{Y z1GW0oSEq=$@94MahO`z|gC%#z}2;Yv2tA7Qt9W%krW}&!&5W~OC5}$J? zmCgd#Llt*m{>IoiF*yMK?dIYpJ_>D-mSfwi@jfPm3jq+zs>I-fCG`&Z*+-UR3z-(s z4uZC0X%#Y}DZhR-4YASG4#|K_J_gnz=;oG|2Hf`{v=6$)U_@4qjT)P7F_tfW>&)FN z2LnSENKwRRv!F>$1TNR0pI4k=3~IKKxDUN0S|tO+ItMyF%@kb8v2xE$UsgV`^(0W} zEOW0qcHpZEFE};``FBxv`blpq>ItD6uh&5=V)k>*58B61x>Ymm3TSn_Oyt>I-$$^D z5(po43j~>pJ|>)56&vwdH`1Q`i}l9uUgh2Iv>lZ;-jp=7EauTfJ+0AV+NT_<5Gj>4 zfgq&l8u>@lo*ataMKB+6h;(lEEou4*;b3X<3fm}6W8OVj`&-H){2EJBWuozkRZR1y zJFloRStyK}F1JexJ*hJq;rA_$C>Kw%z(kqo5%XL2Tzg5Eakw^7c_L;&bMv&Tub8z# z=Q@rv5mCNLs9(A2s}#9lDoGp-m3C40J2(@UTTcO2Y%ZAoX-QQs5_P1vrkjudsXH;> z4_@KCmraV)jZ>?F)|G;-XqV@sQhu@}9()`JNI)=!&n3^;q3Q*WwK{J$#5ND$gfRZE za+V3sgoQLfWg>I3Di|v8W_haBZ11aGQG zcoENjCrU0~wRW=F(dcY0kP9xywjKjuIYg`>+x;Nui%2Wzn>r#V_Q5!@0siRsz9t-b zhl&?Cmg>BL5M`hRgE0O|IZGYqFF$I_ZqU~bpbvD5KE+$^eUM|!pa_wGWdnUm5#xS+ zt`FhstD_Kk#X#$i68#{D12IJ4mSY=@Qf3^JW1o+gD>w#ZNbz1!U|Hm3cTBhJl7(RGeXT(ND+W>>SSbHzp z2oqW(EC-;Eb@p8~Z*W+rQPIycj>sa)*%leq_tg~NhWAVk)^orAZ|Z7tYnzT`l@K*Z zu9e?w4~&k581}|W2`9dC>w)f!&MqtZb;J?55gZT61q(}U+-JC(whq+!|8irFK^6cI z5DMt7D%c&`VM8#Ju%}G^hzvnJ>yH(J$SU;eLi-r8+g3*}K_sRz@eVHkma+*;5&su= zK1ZgYFL{8FNgb5IYVuN(>ZYIARzx#W_~peB_4ui-T0(;E9Rt84E>B!qCY8~mA>r(=+D*6S+5%EMi?|HIy;$Z~HwEmY9{ckz(7r=@40@mG~YOCDdsV|kZGYsZMKk@NC z$*l+o2{PaK{)M>r>Cy((ohD1_Sz&NM6-?W&rX8R%{;G$ZeV4z%diSfby@9#r^wUqx z{Fod45NF&vUt$n+s@|Q!VMT}m!)mf5R6fTa@It`MEX4+ysIT7Vl&f<5RYl-7tvqpm z>)oX)XB!wPOW!jS2L(v9}(f zjp9bj;d^yO0At?BcFr>@exGLGk;y*yQ0v}Klw1T_z+=&|E=&mAV##EH6aUm5ygBQC z(LR8Ud#uKL@!3EdV-Pf{db=~wn;hfh<=Drg0N7ieU^|rKYN)i8v+Eb_+ze#$ZFdIe z?LdTpfn6qV1={^vRJ z%MzppLFO6=+)vOJjj5?;>=se6p6XgJRvqLs^b1lC?oCr-lwFvn@0}`@4D5#{ zm{4_PSHwtZgg~-41Zw&{f8`DP?^d|LPSrtPD=!#$#4R^&0o=%b%Z(nhH8q{79Zmi@ z%_~6Vzg=I|_U_ZF`Kon~)N}oAZL|I@ppzt{R}Y^fCGOG?^W z)CRMd*A@n(%i%aJ392+izxe6-X-m$)9U8!jYF?g>+0)hdx6!;T7d$~^fjdET z7VM=>mBt(%K6=Jy+yo!Lc4~M^5qWdDl6q} zPRzy0kyqc6t(J+`hN@TJCG_om%eCiJ2#P(Z%iOP^hL-27q1h*J!bZ$r~Jv0|fe7-T_gIJ+205!=xl&q)@*;V9CB|vu>?` zaOa^gq4uva_0sR0v$e56YrJ%mW+ouTz&t?xyl%X*<7>Y!s~+vcjOlQ!BS4_hg33j_ zR>RSG6HW_BDD`$D*>Drl@CsEuI5^<%y!KZ)LKRaln@w#lz1q7<`~Wn8nSdybD{6C9 zDrhgoYzDBxGaoAT(e6BauG1ZvV-Qnd(xvM79#dt}LbAb?{baGnRvB8E8}Q})XNP6U z(Onc4nN_cio7%aBcl{kC`NkX%H0M9aV z`?Ueo8HiZ5g#___KGHzpBh9L%KQupvnN5;D5>x~Bv13vLqZ$C}tusBUeb0l< z>E|9tWQRYx^$_V9H`+d8cq88lfC+P!xB=fG0KVo@G`y|!EiM*iHwI<*qM`{pwm8M~ zd$E?~3={$#H*{kyRRC66nWysZV~Z%m0Lo<8N7TBW6FEHr46BHZdKmObuUN{%7{d2q za?R`#6D67=hjZ6BS;PRpJ@?if*wuy!U~{w(!@5aP2DoT5`?%t+rMomF6;;46i~Tfs zA5+a>`JzOdr*Ea(Kp-kO143FH-J%)}aBF58A;%b6Zo!_FcDbYj=PoQe_2BL;Qy%|g zO0T(gs6VQ?5uhW=srN9-Q~t8sAm?tQ)9V&jy>UBsAAE)2K>w0A^un@2rY)1arcp{? zmD21#*6~eLC(Fp~-8a|i-uum5r{1FKSbu}ZH;o1ycf`9VSxAz0o<5NOG5)}uz^WLk z{PF8LziZ4~R>o%SJ#RMZ*bh}*f8@Rk)pIY^f7orB%tGb z5|3C4sSg@1N=@peKo4?DO@x&;AS;)%CnKdF5KRTD+Psx#OQj5l>>Vkl7z&Ga$a|K} z&rYi0i*^tR1FTPgiV#$Ft;i8nh;J3-Qvi|99Nxukq~q<3*m+mgJOEH)XnK2D-XjGJ zA|?^`Cq@hnm;qbP$BBJJRM_idW*RLSGrMpH+usLsahdxPznJhTu?VJB&Ys!Pecz!k z)~d3us~81OTbxOL{(Qih`T1Z@^Fbz98dpCvi}0;!PEF`bCpR>c5u+iiZOJrfD$KbC zW~Jrq+BxtjwdC=>JLMjT z95Ez&WRdIXIHu0<+%J7h{hR;D>|k1LJ+b1VITXBzjXD-~#C-GvrR(-M_~`K>cA5s9 zO+B;_s|8=JpirD5Wxe#KX;ozh&sJP;1WczFJ~Q z*5cAyVs*zPk15soi6Q)-`9avJi`apOgLfUNXikKpnRTO60A0n4d#8&NO-`ky8_Xuy zN4uTdyS0k#VGjkbV%OOZNId8=v`VQNQaJ~|X!)T-_?f6+OVkmoAa6@qDyL==m=fAl zQ8Y}3&e5N?cH=YQFPRUsUH!0E8`zeb@MU>71{dUF>zhKCIxmMNkKYF`1pJmNB6aLd zIuY73!X&zjUq8fsX}4~YM!KWdy*ZmW4BEu)V48l8vht>GFbPwsAq}x#Jq31EHiaLR zboFxBNjoW{^P;VyAi6^(1RtUbul{N#BV`_|Z4pG~pAUAZR5(kQVv!W|sxjxy2(ad5 z@jrm}Ds71Ei`W;NOIf}}1Vw|x?HoGuTtFBT?tN9I+ z6Vh4TdRl%?@jm$GdPTW^vgB{)A!42Iz7^|rq>LKJYRbJ2zhvY+Gvk~leHDQUwBLV~ z$JeH6$z;aJ=pw>?fmN!)E4N`*)6jZt2yEhqlzlej7a1HUI>uZV4&Vk|Va>{mS_Q)< zV9R}M&;6Hx>3j4e*jnJwn;3<>49vj++_t91ag*dx1_xvVM*G1@0e*F}-N9 zBf3EjH-CQVVas3ei?G-@(ya+l(upW*RB0tKpW|OI2S@j)C{bx~$xay7i*eAPAmP|h z)Z}yY`oSa|P5w&@@0U#I5dxo#mRe}2#OYh+h~Dn8(UUO6OqT+P@NX?(1HSk!W_%Fd zH_n>wWMv>J4Qmar3B*oqKcB|V`&E9@*f6P(8RM#t2-BpUG6-ifwwc!)d}92V*E!3x z;bGIfRe%xZ%($-=&$BFF(X&!GwKVJ%#kiCk@KY@t0t&)KC{8{>DIO2U>+B^5bD_iG1cd5k)szu%p= z`Cl3}!Q<0KHhsL0Us|bUS_RiDaI4WZpDIXzSxY)AiPY_(kAP){k4es-w zbn^M0KN?4fyWiM)2Lxea(1p$B+;>Q&U`AkqIan9fRD9 zo18@Vq<^j*d1cpBN;*XL=HrC<4MbgaZXx<|C(>01AOFQLXh^o-kE--zGl)ij4%-l* z&Gr$wP(I`h{9R$U@PCPpbcNyL3wC=OBEnWpaK&V-rkx4zHyz13M$@)|jNZ(Q`~3os zPu%u+O9(uE+hebr9@AnQ@|>w#Y^l;YfzSx(Qp4;`(P>RqEs30lV_FcJol#60wyZ8) zIhVQfJmHwav4_fX`m(3U^b_F}i0?yEWdY{Dcc+k~%6z|KrvMSU>GKuFePGQiqjfug zV`&x>DLZ1i?W+Fk+-~j1VC~>`pc+Ous12wdq&$M6AT6~X9F*|5_Yzze0Re6XYK_qG zwsG*diqqVu_w!%zg|;UJ5XrvUrWxHI)T1Q{dx477d7TZ>d%bFMXS6&-ftHzt551!` zqW5-0ugZES{!9Atc@6kLK9#eGnknooo0-ulHo*iQ^YHabqu}c-S0w{5qmc;|lNrAx z$&K>6F_>o_kuRb46zN@EDibO*ncy3E%Z(DkEWujh{(}8m7NntrxfI9G7<*LR&f{gs&;uqtUL^{)$TW$UJ$j~h@5FqP51GhoI+Ct)N6QdsyQ^GJP@m@;PI|{*m1=z2c1Wh z3IHTGeY4n^UeY6t{=~+|1;|a6F4_E|3ZO9baW`-Vm556@9(TE~Bx?`aVh2~4@#1CN|=LD3^)oWO;b2hjo2XJ>A=NT03Y18yXAZ)i%nFTqJ{jdA;4 z%+!pVw#VdvgHLtjA9&Ty1KTJ(lVotweb90o6IoX!NZoasaP#b4)d6X^oW$gs8E2i8zp?IwS`};$Hw1`l+l@J z9dPuPWa4SOCCiVyjy4or6BRk_r#EEzVK)|i7&pm%Aogs(fpQrwCGP5lB5kUMGC#1j z-fK|xSP+6VYKmhiE_)O}{9};Iaa8gOH*yXzsMbW~nxrlqhjSL7)tuu}7dhZ!AWc+* zCx@&F(C$i{)&#Wfz&1l@E4HWq^=s#B$o)#BtXr9!RS{G&F7>$51vm=~Ol=2<*o1Xv zpS{GQ%1A!Y5#Y*FfGZ7WC}VHVP@iA-*V`!ebGU<6WkP|M3p)aTH6`fxs+QGE99N~w zG^@21CDsd&k>QNS{a;;^VG(bN0V0kUV&w#o9#O568T04?&%0zl2>*wFHnV+94*16w zxN>w%^*_GUMWJ#$ zA?aAU!o)F-?wL(J>XxRZp&E)p?HO6K%Q=E}5#;%qBlG9|VJC5s8O(aIfRww3Pp??r zO8Ga0($nA5D?RZp)c3chD{)NZHOQTiTf|OC?K_5BIDW!a54s$fA|YTah)_6iG{u!; z&={}Cskq=l=WdX&_C^Bp52$!4>YIi(-WZ!UCgTtntQe2JS{9=PRi64D%)IV}9x3my|*oy^U|tnc)$CT&0|bqM z8WA>Ya_$0Ik3(+84*x@@S|y}CIqqKC_Us~1y3vJ9UfvnBfPhA&wx4iLDe8x5o5E}F z+utQ=g1h4#pu4h;pc4diUzT-Bpg!T8!VwI# zym_PHyTH{BVL?{$e>@p~JnupVm%o80bpJcEhs|3rouB6fFHDKz(53?mQ}c(xES6M3 zNH|s|gI0&hYCANj*Q(u148Lp+D8Fy+7*iy(;ihOyg1DKSZa7I4;ex<1lht&*0 zBnQvW$5wE>j(>Q(*RYcuQ=yU^&4FK13}vLO91wRh2jetZ1+F zx{s06HN4Oxcj92wdz}x_c@1uFJxvF|>POvIjirq|pn+BI z@b?L4`0f220?@iMGxK~U4Iq#$Xa)f#OR?H5>?q!tc>xv(+lnLYodzvGs5D({?Ymd# zg4}hVXg`vZsg6ROYDHJi^UXA}^Kc>LbDlZ#^OiD0Kj%Yl^tN<@GP6g~W2%m&R8zcF zkqIE*(ir5QxP-WhFY=76b`9g8p6MG0J%Q*|hU7GC>5@;d1E9RQ(cOJ~3j5hJJdkdZbVFr&+sNNUSftMm0$ zt3R<|X>l+R;Rud{x_}6$J1PNHQJ|Dz%$UKDKD7SFhd1b>v3ct;`wxAlXeUW+kHl(LU7U{ETMH@hp|;W~ zr1qbM6rBge5PBnqmC;_e7V-vqThm)9qZOty06hcHd;9Yn0*(g|=q(jCRGbXLOLzZE zh0q%+)SbDd!bQMPK-ug%`5S(R%+1r(AMJRvc=*&*Qnb?HC)Tm|U!2PuWE$XPJ1sEkY@YuJOzGxaF*-Jq&= zLV20UNYrT;JFX~c*iS-vg~&+auy!Z*i=X2Dl1!dRZ*}lA;R0HZ&0A-J6M1e!C$1T3 zV7?|H&E#1H{1>@VM~vkHt&2e+y){p-kYo|`gN&nk;E9!z_L*}n z4`ckRkG1EEpGi8l+r{6tBgB8q${=WJwzCMSuD2CjMe;g&FSUh!l8{g+M6ncSD4eCmQlu4^1Gsqts z>jJTTU)(;BL;8i?qXl1%Q7oPV%3{)n$%@VXjg?Lnr9#NB!Rvrjlql5}5PCm*@B?T# ziyY4wc@uheHPpX3E^oto zLFZ*UkT}!KNUMP8#hYkyExqqgH^^5LKlf55t781jRLCw`DybMxVRtW%!VZqf$SyE> z*;vzZGoATcIOn-R%48xWy1v0BrA&nZ%TJYU7mI^d=_nFRQ}vG8tgTVN^jsI;Da(iM z^D^Z;jiuNJl4neu$!nL^bp340z5E=P&#c-8X|GhzMrL2g>OC=u_AH1-kJqbU<7jJU z;wV+w5GzT~$-06iUGpK$%#5)j0}@WI9Kk{#oU~9PPTtjNGNBXX)Z|gcewtC{T)}mc zM7OxL4T*|mhzc_dC;P9Zss}%*{Y*0bYBP3GkXdIr^+ZtI97K2**QbL${$@ z)3tc3EKv=WctDbKx?UsWqzlmrGAm>Az2e_i1J*n0!)Bm`g@ z$8SudQNr8tO49f0rC8$Q_a4^T6n#E7St$wB8b<+gWE?JlCX?2(Z=PFBBK`|tHv+3b3H@Kl(DFd72E z+2<;A&PBIsH^-vssJ9Yj(lzK>QX;!71sAVR>;~VX zhljJhLObm;M59i*!KX5zr{I~O5UaZ4cC&B5w}^JtLCbtn;#fg$Fu!FSRiSc$ihu-| zcuS-xBct$=j7&yXL}+A!DA|Q?N)Yz@_Klu|`|oK!>zeX0DG;68}yez)}^ zOa*cVx7R6@GP`yK7PfCY z!E0ByDsLxuzZUR0JClP!sWd-#2j?${ml55>60JZAd@kxug)8kt-otPzy{ZsK&pDLg zz7t%$HU8AF-g-s_c!q}9S*;i|37YSKq0XyYGcyX>j!?CiX^%wHyx#sgfuzRQuY!P; z#CYxMt$R~qQ8ev9hUgJV*mG3mV00*uxZHBCRHrJrUfyzEjzC6x&MD58D5&h$w9t|O zVNoOy7U91FF}-54I5UewKR_kaYs-dsmdO$OMn;N8;p-^e+YijA*6$PXSLg*qOp#}(5K)ND5 zGyw%fKtkxf_bNygNNCbTl%j&tn{)^rL_})nRi%Scq}{>u{ogtNx%Y0KCkZ?6%%1H1 z&f062vz67}mb_1mmDA0EXOq_;{98NT5+V}B5+?lr+WT?G%zh}EQsuSoxa z@J4-`q&MpY6B!LdOzl`ORQRs;24`L#n-{6c>A@kEY8uf{&U{$q&<2$fyXzmNql@Ai z&$V0CwkT-$&7?Sn$x=8`>l#xfkD(XY=Pk|o>gYA{x+F1^Hb*4v-5~Y2>fZVIb=<}& zQkgOx#U+G=2zx>lrPHCbp7a^{j^YB%%5lCoWTV(eRObtm(xI~5A54v+0i8Iux#trP z*f9q3dswy}T29NG2)=_Pq34Y*SBFLgsEReqMCo4)EGyS5Q10fad~6#{N0H%wVC35w zn})_iZxZVx(HyAJdhP8IA21$(h&95ck>( z8pxU3ogmo?ml0iC#DT#Zz*Mtzd;^g#HH?f>#W1lu^62X%W>iJ;gC;w1uPlibp*|d_ ztHM!BOyx|i5Grm+ubnv;^&i;&W#s&Bu5zOuuB18c6NRjn?qlT+ zO;3BKcWV`1ExPlea0O2&ojt59F>B?9(6-MPaGh!%XR-Rf$nVme4+ZMizi~{fH-z?m zzPz1H{PsAD9pHdDd*T3lcTh3fqWkIzT*1FDWIjq+M~`2(%A8*4cRhT^N0|G!bOy^d zW+uArF52UAHkaKE=cyYpK&$aqLjh+nwHs-Y0Wp-eFpB2Lm(}{6J5WBiAc|Na%C=g7 z(usRdzin8_f(+QPx>EX>s1B}ZEc=AV^y0#ue)@<7n&{bMwtUj(Wq1c$s;KY#Pprf!#Rb;1<-;b$I19_HpNq8yldVQye?x}_>p>vf?%a0TwZkexf6=z86% z@A}A#;CeW$g+c#`8Y0OaT~}2^`fz+rUftHy^_S}56F@GhM(w(L*BG;Gh)&for%-%l zzkJCk(u>vTf-LS~w7rE_sZ(_#BPl*$={H6(aJmzqunhEZr>pMxP0~TGm*d# zdW6u;g(#(}l&!XFA0@|h_^9;XIBs?AHcIG~8*1I=fXQ2EY-227w>@az-L)vS=oIKN z%&y@vBs%_fJ?D~WcyUknH?kWUD4Lgh!aicZRD&TI_8Qyo*kO$x1LL2N*q*{K6-?op z`_4ldUQ2hUvz~!fwPK>J7Q3AbN%;?&lbIyVR`tRQ8ysF}#6mtOh#To%OwGI)qQ5VJ z^Npo9nOZ6L+JA5QwAQH8LGoB2ka)O5E7TstNQBWl96~i!8}i%{Ct9g(aDJgdmG}~S z%Scx~VeCQuoBnY^RMfL6@+A^rm2Jg*LHq|h3bmp&#$Jf3sBSMm)WV>_2~m6Dk6{a6 zv3DxPCdDpln=#6CCnO}Gv-r&ti!g)JbOX9O*W|cb4dj)Sc4FMzIAb|Rwq>S#7pYv3 zF&_ny>5UxVv3FNM$wxK<2De$ zsK5!SZ{wZ=m~8AFBVE^Ds-K`Q`tOj+=`;QGKM8mw2Hg#izV}%&NS4766iExM@_5%e zY;tD+9h#EVOarr4?LP9ZGG{0~n>g}*mEnQ$XGu+xHnM6Qr+uyTxy(uPGt@Q-Uo{%v zP?udr$A49lbeI_PyurgT)qAyUaA5+;ieYUN7PiOS7oLb&TM$sNvHcFjF%ESK^GlYu@Q1KV_z%MB`UbUZShab=u!|L06ztOy8r2hHE`_2%SxC@GNv3xtNZ!l=Ovlm z&fW*xw5EY$USiCR?YOT*sl>LjT81P}+kdsr*GAwC-OyXmx~~(|b86%@2I|_Rk5aGJ z9E=a_)mdZ(x_IYa3p&j`J3M4OX=EI+SRe6tQMGe(Ucf^b+ie-^!+UISthM}f2n6x%(HEU@Janf#zJ{I6@e@UDmy_9)(TvdwaSr{g(Ql*eMdVji}B5x z!{_=RrQ&^5e(LyhOkVH1jZ>QbZhkITY2O4jzibLrCe0${dGhFc#G?Q{1%LJ2h4x3f z-a@G@ymI0--zpnoOf+sJW@8oYbnAb28B%)-nf5D^%8fqy`LXFYl7C??rdH#bbDBj* zB07Hy$xr&yd2066=pMiCvqu%V_#e6y5zzw6g|*fpt3BKFXW?{i8CP7&82%jNGYBQr z6gL3J2sdFPg~M99)1jK(6|_9ChKNiqu{^_EZjz zM+Un7gpf1@f7wYtgo;1+t}8mzw}^_JE{(1V_MjFh6r+YFefrL5;C6c~nfK~yY>(gC zZH-JG5W{V`WCe_Sj!9Uz&AGWjqu|(TPmS#c-b8Gb`u(a2#QZRpYg~=JRP_GNmYyyO z?2in2za6p8xP$FOcj5fYaN`f>arF+KN?FF1AM~bPJ|EqS_7QbZdk1MR(%6npzFt#m z89k1CU{x*aW2h!}(@4c+1>Qb-*r$kNFT7CcHCPy>doiiT+D?rh;d+6M8J3jA1r6CW6jaV-C+a-~QHkkDiOIK(V;UCoBv-I+8S-WRIR!HzC#B;SKb5 zDJS2aw>0mxP#TSXgwmPFH&}YrkTl)Lo*1K`W~b|Y1(W2Ac1TEh?##-BiCG;vOw)3H z8<4Wjv?azaFlRI$%z?_bC}Z*Iy?M3eyvaML4Dl1F45b@xgqu zK7H!Az2=WXW{U){xwP;{#v@IID?q8%6j# zfVb6$=ood9zsT5X#2)?^8A%`nfQ)24f05B;>QHtUkhX7mf|~cy6`)D+YZ|8%FE0sv zKVD|_2!wIhY-w-n04HE+Xxrz_J3~IP`S0z%*t%r$!uqL$E4`__TFLEdj8cJ&w?}hG zwA{S>en3RPg#ATnS{`w8o9HctjS*y1NT{Q@G^pX0CH}|vb0gxIq-9L_(}3g= z{)cn1inODLYfNfY`wfwL=|Hh`SHEs9^gvYx#5~dTD+0YLm;@0LeH$-3f?vC3?BPgu z(cK&ul>rnogK1ORlgVB+eks4W^5K|fT546NhN$m- zmEP%ejliW+qCj5I=4eGX2frV}&8<4k(6M1Z=8wVQDt(5`@X+--Nq!_Ne7n0fCBy)~ zDWzalyZu#dAgKAV8B99$VWfa)i)uSi`L-TOygk^`(LSaA*(f(T-23{Xz4n2Sbr#Du zl1Ps5J^a~{C6N(+3vYEzTVriIC_iffo8`zs7t6GaOarB=p5JNxWE@?*;PmWjQ%%I$ zW?WF&S^MDE>zZiQPOn2BVpE(SNwwbP+Rjlp~U2R#==NiH@;&!kIN9n z@r&F@9MC}+ku~W|S78Bfl=tdf#)p`CgCkS=$*c{nu`=4rO1AcR@4kWn5@S@jD1j|s zSWHrGSb84`+g{=u;y_ug6(w8to0=~`9~0iq4(`&&-#Z0^uzdKoe-;Bm~}#u?=rn%Cj_I;CIdptgm`YyFus9fO%h2n*@9 z2~DPm3s43IlHEAT^)pY9$FZyRzm`ZxQzb7!P(uo$Lpt)>$Z!Xtclee6XJ#d$CMZiLT2y__5SA<^YGyhu)%VmZk-S+p4_`SE>qX#h7z>VDrOmvlcV=^ zYU)xG^~H2OM)S6uWUx{yuj1;g1&Z6rWiT-cOt_kZV>8{wUFF3%hppTdLa)h6uTJB| zI8g#$KCG06^Hv*Zsti&;!nL?J%LDe4-O`|-Yo7&yexX2yJ7;?F(>fJ0JCdIUkzTp8 z`19bx`_h-M>y2{7C_FZkkdLptgk2uf%f+RSJhipgY`PUo2$q;Px$x-7UI zOG7|`FB}3gV*JgobrlA6bzdqIYWdo;zWZ50*BHR=FG|3VA!}@S`)E#{+={zN!iI^2 zChFbrp_x>2zKSB$-GSkqUIpF90Csm#0v=3OUBlalIr5LVW&(4STcFz&wDW;H#)L>T zh?a@qpd)G|amzoc9XbT55ez^EnWwH>=%SG>PRK`yh z=HFHw5GG#C=%K3HCM^cED<#jB(cnwQ#CW(?h21znA2wJy7(n zyF;J5k$b$=en-2S0ZuQ_BNSt?l~i8B=#6r==L<6OzZwv*b2I&gUrf zb8I%lkGe?hNIs8gj_(v6r9iBO1!BjvLX@hgsL~a#tsa+VspWHio_zV_Xiu^x-n}IM z!n1I1t3-{OG4dfRNuZ{D@#JBY>n>4!mH8Ov_!MnOA}3BiXEu|W-Ll4UFsRoZ|5Q5` zLwyLQkq+;yHPvMGSY8NqPv^FJ7>(a8t(pK=N`ATbz&o<2B>%Q{1(|`)Bvc5sVSr2u z8)5w*E9PmBE}^Ja>3SI!%~-Vcd79)Znr4LhO$kLYZ%b(-uuXb`oO<}3zkiIWhQBq} z`7hJGBXdE8;o&cR*g5o2KMaua;qEFtA2JrKu0ePpFng*Zok0_ltNV^S_EPtK?BxR~~EpNvsfSd!e$r^9fVi z?O;B|VD)Io%f;D4?i(QmxK>qwy83&K@8|Lnlb*TjK0* z+)07n$(Jx&tAJA^Is8;yJC^yj)mSb)zB$q)Rkk^9F?z`-<#w@DXPaz@PMKDYLd*f@XsBXP zRt$9cYi44#WNQj5C*b&=6S%n+v26?!!s8`$oI?8f0Sym*IXr8GBRdFET?jXO{Y(?> zRs5}QMy;qr$&XlijMli!3|5A=-)HLEBw^Io3Z?Hby-q2aB2dSob!8?}tBh?-9;>YR zan`t-Hsq%Q*Cl-I|@2psdHp3`hn|pS@yv4=(;}Me6A5s0X1`-FArWEEAoJnw-Uy zN3hv08!CLRdpOA;dmQ>L>{hkPYH33SGn>tOSg84zbp7k&Cb947%sJn4c>24vb-p;T zChZ@i3jLTRS67El*?{v&h8zmiI>W!BX>1RQj58oU(N%SLU_O$(F6%-PW zaw`qD^p8@~t@lQ8j+=`{Ph>0#34`%~;vl)XYAHt6lG6~m#I&F(wfJl4H|;#2yRfj< zTIn^0b(w8?AEX94)|#<2H!QY~6QSNk6v&|2sVUsYkr>+t@hehN@>;9x!S?ZdcxvPc&&xELAyWP? zx17Fk@Q#Y{Lr_mT39oCQU-oVJ7Aa}_wMi*H)z@Y3x+1`AU3uPJ=#`2-;#v7}yEz`6 z#3@hqz6>ip`kXvPDJeI(ax?ryyzC0eI2_|;E8tV0vSS;akhX{|FRdczDm&?nO#a~b zqw&_O18oKRk5fv`m_)d2*atjIx3)dTw9Hp-G0RyKcGIvg_385HN4mjKsakoYuWR_P z?#^t5FSdxWpx17T{k*!h%!Mt3CQF*=o?+@a6;E0%P8))_-pjhjYX@t`F>H5PHk-bC z=^AR*4Bey529r&ZM^5gPDq5CdG7nxCG*G^PvK7I;B(Cwi==((?qd$;!5cwja?vuOs zo0e%JMw;)cdL>~sXG(M-KT(`x=Ayn68M83qmh^d%XL$!dk~2kx(uiq0_%~s)LLDdK zC(Too!aN&IVAv-#)IP?P16zwru+Z*uMEB_Wy_HtfG1Lv~%N1rte9C{W&O?eC1@9kS z&-yF)$DZ)qMP}hFm0Q)N5(N?H5_L^*^$q+aWE5Q=>azD~I?Wyh?Ie07cH6M7?I^9V zg<9dbf4~1Z3v_}O-tqaO-IWsow^8Q8V3Ey?Cn6bE1h>*J-b$I5YRDz}WcY@h94Uu) zo#ARr>07+(S#r_L!lIWt%|)Fjq*f(dN7A9UmWy24(bVF|zO?d`=j%!1aPns|bdn zbhw<7lz<*bMG-S}7x#{jsXl#+!k|@=@xxu#0#Pd}5W8rU0mVI zFMsc_M)(;{?(Mi4Y~_Z==XPyQdG%tb>VkF^qX824!l|~qmQsxGBFemTgV7=Sf<@q{ zxoGgj(bTve8(#GBhdkPgN!RayIJT#hg&U0$ja8GWZ=ag!r-S+EBtcJ>k7W|_E1kH^ zypkiOlsl|-irb&oX*TVRY>5qXz2TL!T=Et0+bQdEN<}w4c6Zt-+b`d*j;-5y~h~{wBNY)0ScG@aenxym11?1dF=Q{G>bKS}r ztI2$lSz>YjgOrw_pf{D1|cvv|#fFlJ9KGeor{Q-}{+BkX{2e22FPP z^Vx`%UixJFk~~IP-BBr8Jzz_b^nZySGa`2BjIC0*DeSXadhOc!(mGNWW390B0N1)& zm1`jMNPU{*cB&WN+1i189Fxe<7c)fmm1ssw`#^<0T09&>1xzo`f+nfd=;qcJlS=}Y zV%-M0A@Fu_S5;#3@wXI_+lKr8ZG9!Uy(RJ|Qj8GNAu%b4Wv^;$5e$;@9Th)JWLKO> zCz8v~_oX{!p0_SHtYqzg2&>kbvi&;XYNvp(b7yv}@|M~jyHO;gCCZlM6THgD#wmkN zq!gd4tUqPmt|k{hvrmj|Pq$e$a8I*<(0T0wc@pdoG6f*hQoDqW)S89rdU)g3zPEph z;wbNnOvY@zHl~_Xe!bAXlG*(@epq&8PuM#ORg$;pCdSZ58n#xn1iqNPS~@|Vw%{ZW zZ@P7yeY&C*{n|F)=4{aP#*Oi@Le?Z&_Yj}quA<^j+nbfujR;f#oa1KNuciBJ5+2Cz zqGD`MHuJ|JavuU!&8*MuP=>UxzYM}-J!Udvhut~5N~pU_sEb7~PzG>=W`M9UjIefn zE=@&!Lxx;oNJ7t@-!I;8Tr)IA5HpO>UU_zY!#Gh>?@|fW{nVi;Y#++bHuRCX5ItzJ z`eEO3yXQfg=tP4ZjFk=DWLM>R0jcDx(}f<{$NAF5p_ z%c}FfK6u^(-1Lz~hSwU)nGG$f%qVX#O1-eEgk4NZGmam=VC&>L+O-DY!e*+$m<8yF z{SyJ?@O$CaC%CL-NBwE74SVg@v4C$qnuJ*_PHri!4;Tyy!`EnQ>#9=g?AX2F90_T7 zORrsA*RZy(`Zwx0y+-F^*rKntKXI7szNE9`=EWjEdZE15tT0wxbFfx%^TYbDjcebH z5v5!2VYks)oUB4?+h0o;M6|F)RamZU>%@}SM=dpqGXS@K?Yj|zn7(^&W*A!(%o>5W zkU=2noq%3DO{S>sIVb;a!#Vk<_dlRFE0coJ_N&JIizM_&F^j@jau#d$y$AA>Jg?!D z&(x=Vi=Ha^`P3=xjOgrKM>=eKNJ%7{iTdzfFg`h~t?Yb|<^ziew0biCfFXm0vRtuQ ziO_-Mm$e~*#TqSH{d$H-RoXbdc?#4#WuCD%w`CkI2TyxEV(@Ybm=! z`6aWDnK#rkE}E4QDn0MC4XYgOHp)$ebA+W~ILx}WzB=S5hL`lp-Sbk|dd+n8#8Ga$ zy3Im5RKIL!3^bHYSJ&CGwBN`NSFe~63Fnx7Zqfd~*zfj-{Y6*)%YHkjwCaDbf4QAD z8eZN9DVGtF6!c%CymSYr!g$sb)VOY=Fpq2QG z>c_F?R6qVhb;5J1zse3tyaQvXR+)O=@O5gVe|}sk%>s{MkkbT_EEjzG6?c(goYMpw zt)E&d6FKXc?HH-6H|vp}y`a5qoIc4Im>V)Yv*#3&hPzXUfWblFF2Ix&-0;7)hLAo>|0PZg6|;1>mXzdNh>-t8CtE`VOJh#Wl{}B(xugMp*&zR~kcWtqWsPJ}hm594 zWB0UoUa8BrdtWVrHC|aZyx(aV({cU{#%RvQ;0bUF`iFk71(HgqHn14Ril_^-%ToWg z%oVlzGNIe`KC9gaZ_vsFj%a;d@7q;Lw`rNqn&~(7m$t7i2w(N~s=kxsyJ$y%#ay~k z4};PkB8`i9ko_J&FuPEyKnLcwFi&<_zz?ISD^olu`E6yoVEVK&qu1%n^mqb($t)2O zS6<-2b;_q)N5bBAOX!F@panokDG3PZ_*-$RmiRHHx-L879wj24N z1OOlX#(Ns;FB^s0FTJp!C3C(?i(kM_8LbdvLdu zP_!i6VW0=oA@u80&UCeAz$T5*hQ;OL$M%sS)SHROW41~!#V(c*F(!qw>K26#noxMT zJ_rj&uT2jFt7N^%4-9vykN$(&O6BKBCjUcjWKQz2!MkJHs%OSPL#Fmx*KnarLn4Uf zzzUCP+Jh*u?T7a5;u%HC50c$ko3&i^!t%qi)i2`I^bTzVLh4j58mS$ilcd2dQV}c( z-Ev#cjXd3qOOUZnS=zcB%zKM%p4B}M^;TqIxckA|2OS#|QaFCssuT#cZ+w1933ril zkk+)L1ZH(O}tSqX2`WiNx1a^b}Zr(25sgzVk~xJXg#@5(-nmfAZ6`$x;OKl5+n#pMyjvTF@eOa0cq_7= zIlji!#rvt`75nWMm}pyHSLazLTcr1VCVNop1PwB7g9Q=aOV+*pl*D(f% zaUvUXr>A=p>sunKUXnM6P^8SE(j8}Q@iCKTKup=%n&_I7sXTnL||883x=Z8x|e1v+~za`5Pa3FQJVDzUf z@7dq(`$jr5o3c%0yr0ACp_z4U^I6qmC3tqH$=)8Pb(8|TAG~rqlSL4McgsbKhZ`gIn7st|NjUl1C#v&%w2t`n&MGL|3S@#F9m$^h zDjrTHNHI~oFyRY3is7e{ju8t#iYW@7GPTdK-A~PF=w#|^fMj+pJdD2Di9zB$?y5S5 zKHb@mD&F1M7j*P{t$r*_GApL2V@Xb@B{V_Zqh3a#HcpoBW$om9xx74=Pq-mvUZgBH ztZa>*1nb?~(};yXLB8!?R>rCmPzl*ZM_ROw(H2G<_?byRU*tfd1*@o8k~labEh6sS zcmNgq*)8s3p>oln?DDugUuf?dbrxgN&Sw+Y)%=hs&Dl-scg!VD zdryT<&GBHPq;Z&}xXMaSgFCam7T;i0Zh0O)lS?zV898SbK~^s=VZYAB-&LhwPFnKW z%Go7p%mV98tksr^cCR$eD@OcZpG~x{R!yZ)D27hxxUOQT7>Vw2zM}!e;EJd_KP>fB@edt}7G-~oY8=Zq zAb8y%zzj9DhvBj9w4bxj6tM5EBs=}6IOGqJ9Vo#ZXp6Pevxu&1z)KgjQy)ysBoso8 z7$7eyxn2u|>R86A3-L$Gk7M^kchr3Rskzhy`4j~!-a}%`wF73tuvIpf zZx$iAQKWN*Soveu>ijJ-9)@~66yhGin+ADiws6pfu0SfX0VsG(LQmC21c*2kSO5`+ zyqaSC7lG(eUFUI+SlcoJg!KSrvCSM60q3}&8a=>wj^D#$vlQJZ_2YI~=L$^Lf6C@O z74acS#KW>)dOUhmZPMH?O-e}^_&8zRk4$thyU-5%eF5ZH*>Hf%;y?2!| z_wzKvB<4!k*LV~|QYqu{`q=bL9J;A8NzjsOcE>UK`bFvVCYp{9j)EIK*;C9%E_jc- zS)0YAE?P3D1{><)^OZML>D_Ohz)cI4HKahA`}TIo(=zV~rLWU8^E(O2LcI4Dx&uas z*1Ll7i&60)$aXxX7IsT~Y__z4jG2uQoa#<{!D9997OL0dkMUL}TBs;*b(d0!iHDkV zIo&4dnWWBSwBH_^rj19#&rRsMPzp5y^LiYZ&>iN5Ha4BJMX!a5vu*U-KSD#Nl6B<3 zG}qnL6G%b!UP@y@e>HRA$Yyhm=4xtjnJb~J;;j>9{%M<23o-8Q@(pPMOpODXk zQGTsFu&(OIHTtSTI<81-qYG@fVPH=;M2fBCa1Aq2Kg;p%@EJvF@zBbX-O)XmPbvxq zlfMQpCSsPlQG(mi*s?tClM483^7^sj8khgNQAZmjnJnEsEjMC&C|^ZCKgl5r#9Qh2 zBswf`7^8JYsyIILa8pDEreD!v^8Dm-)rM1qng_=)M zQGgiW(nAznKVg#`4i$^)vo(Nr?aUvzZbZng&PNF@*7Rrf`qAilUB4!&v_uZ7kQpE` z_)m<>nqaqV;#tm|_bYG<(e4G8=7$hSM>w{uMy&k^vFrt6!1h!30=h4?^I9g8X=XAJ} zmZy@IcM!`5)A6Kzr~8!N$#8tM(L$T=&iHZg^YF;$Vgy(e%@rXd;DWA)Z`)&1BNbZ> zaIH_ua`8*oj!CdvDNS09b-Z^W&6xgfTBOS(;7v}xOj_Af^ARIccZcQ`In0GT)Ctw} zkmqxvoOi0cDs9x2bI;am~dabspb z`2as#|Kg|M3pTTJenL9V`DylFe*WbTtTX*Fqs7lwR2Tt2OR66GvU5B}P5iN+vF=I zcpqC>2iBQ(u1la0#JBe{>?-`aC4k1JY=B%9+|YKz$Qrtpg`jUR$}}E0z*xC=+p1_q zLsJ6WLTM?J*}HVuRdB6$W2){$+-cuYg+0GtyRsg^vtQ5al|4P~tuh+%IXOCClZ=iV zaldd9;g?;fAUmoP8de!jcin+h1;rRl`6LO~cq?>Qd+9~$RP4|N)a_OUIw3Q+yU946 zVV?ajCSUo{Z-5&*nciBEwf;jugLtRB`1%llM&XEeSBfVOKc{O8NmemrO(-H8h@QsVsU9AoUrq`_wRP5%QR`&wG z=4;=@SZH@RYS$qA!s`@BMs-@BXJy1#JwDgC#%UtAJ?}rLDe!;?5v_mfz(O$^@nLDb z9A+cb#J#b_@9!s<>~(lW#TMs<3EIUBbams=#xR%yQCD_>Ep+96j|1Oue-@d_mYUc# zqsS$Pv<$GWjnZU-agIZ{H3i~a1eaCiD$wDx3?s<2E6`DxWw+89n3>ctb{b_0@t zUxV0A^0t02{L;bpIz;9@0{N&J2jZxsER+k$kLqyxh9|YMdxd; z@V&fmgbno-qrHd^fsTsfPBDZDixVy7HE5ea zbL?SvIwt1Bxg=hBcZZc>4c?WJM`^h#l!k+m4i%2t?r{;gLl-T3;yukHdRi537nMr{ zW+cd;Vu_x55DD6^U1*cXze{NGcCGZnp2aA;kehx>MfI5_DKMv#ECEQm_zWSVh6CcQXtc zn!mLUGrW+uN?2ZBCEi;&{`d<`ngwF;H<+j6#hu2CX&r1-$3}?qFy8!Lwk!4cxB~Vi zS;E4ofX8?}YsXeI&0SH`P$!`FhE@aobFu@eQs2AzRp;%x88O>09xNYq@P^-Rk63d- zN8ioc`4QKr*Kk14_$hi#%2|52i;(duQ)~}zT+-hKe`VgQ$zcqIjDB8HyZzKMLg(vw ziKe>re^^tKb8EWKa=(4W*fcQKOY*vG9sBf%{PA+NSbH79(#zp|K)>hdCCY}dht>gW z+I>p`;oZLntm(Uhs1LjE4g#k>CMQI>D;Z8&s&uKZ?oa}2x~@6`ROmaWAJ&&PZCg_k z6n92-c7iiArRvj4A)hqB} z+A(DXi;MU%!>H05o`?7`Y)`tYz5Y0+665kkv40#>_nj&rS6h@aKJ*i6NkY4 z{#vymB?BpC+P5V0v}CB;6PM`;#ud2mrxXYZJJsXCC9&k)8(WS&D6waPWG^O}lM>UX z@%=HB0x{Jpw7^hCqDsLiU7Z$;(!m0Pj$c#l12=)qJ$mX8eP3{bcLA;g24aFmaBpT+ zP*ynQc`!PY+RU7beo&QCn44hXX+VpSA4orU)Xkf>4W9r(<#=qRy+&06W5@;aVW(9H z;kh*xdZHf87ruGFdlp23UfCI$zTt$vQ6 z6`4TBVtNeRmZU>7qgWpK^^+~yLm(^2BLkP-a!B|gd&MrZS#oSFj8n)R&x!Jlhzc|5iL<@OcZWlig+dgo2SPO?-ig z-e(UdF3(pnSakPz|1M0_>myK&S|J5?Fj;)N=rF|izyWR~(wig3 zJ-BW?IbRByHhTqmE;dgBh>^&$U3a(o7BjizfPQgX5Ksh%*^=bRRipa z_X)4_ocL6*ek@e%JgP}{Sdk^SOtUeOb}74Rx3j+0_~_cN|9sh)duSsS)Wpw6Y_t}5GBy0MgU6u!67nXN&I7=7oQU;YxRd4@iSJ@V*m9p4bAEEP~ z?`XdLRn7x6X_a}GWK?FE=7V1!@1y{-d@>T4&q0>QkM-+p4(J^vqf3RXEer-IYzbqtnClI=6>| z8jpupIyaq}Bm;dOEiN=|{Wy_pI!x6Um=4-4T&T@1XbLcBZku7rIOwb{7%{CsTwM)1 zU0zxZl8!wodFN!x^z`(&Mz-nq@sYUGOjE$=j}tS!8QHTRGp9$ZbZ0yLh5G_Q&(~wB z2bxZ|FCG3^ss_KO-wR}`IBEOc5V-r>{_Tsvvmg4|S37fLiU#9@c7`)HO_@gPr9N#0 zf&d_mgL1m!#?#*=am6!d8^bs+IsXfC$KT}|y|=Fh9a1KNGut0SXZqsw#Pn=)py}xJ z>|p)-+3D%(&{^i`ZqV6MB8y1pL4Y#kte_1N;Q9MWkmQLJOK8*a?^~D%!WWq*Q{SDK zU9~=)Z7kR@o$eJoO`qb3dri;&Bu9JLqLAZdb>V_;Ha^I(gm;np!rwX0|C!eNJjeO} z-u{vC{NDxtnaTM)>-XOq7swOzuN>h2F8t3tx97>8|K1!xVrWqK@6^x#F8a?zu;+Q|CI(x8$kdr(}fEp;4c{DfSdO}|L^|*wK)aI diff --git a/latex_tables/tables_in_latex.py b/latex_tables/tables_in_latex.py index fa2ee2b..c257e85 100644 --- a/latex_tables/tables_in_latex.py +++ b/latex_tables/tables_in_latex.py @@ -55,28 +55,28 @@ 'Fischer-Tropsch', 'SMR', 'SMR CC', - # 'Compressed-Air-Adiabatic-bicharger', - # 'Compressed-Air-Adiabatic-store', 'Concrete-charger', - # 'Concrete-discharger', 'Concrete-store', 'Gravity-Brick-bicharger', - # 'Gravity-Brick-store', 'Gravity-Water-Aboveground-bicharger', - # 'Gravity-Water-Aboveground-store', - # 'Gravity-Water-Underground-bicharger', - # 'Gravity-Water-Underground-store', 'HighT-Molten-Salt-charger', - # 'HighT-Molten-Salt-discharger', 'HighT-Molten-Salt-store', - # 'Hydrogen-charger', 'Hydrogen-discharger', 'Hydrogen-store', - # 'Lead-Acid-bicharger', 'Lead-Acid-store', 'Liquid-Air-charger', - # 'Liquid-Air-discharger', 'Liquid-Air-store', - # 'Lithium-Ion-LFP-bicharger', 'Lithium-Ion-LFP-store', - # 'Lithium-Ion-NMC-bicharger', 'Lithium-Ion-NMC-store', - # 'LowT-Molten-Salt-charger', 'LowT-Molten-Salt-discharger', - # 'LowT-Molten-Salt-store', 'Ni-Zn-bicharger', 'Ni-Zn-store', - # 'Pumped-Heat-charger', 'Pumped-Heat-discharger', - # 'Pumped-Heat-store', 'Pumped-Storage-Hydro-bicharger', - # 'Pumped-Storage-Hydro-store', 'Sand-charger', 'Sand-discharger', - # 'Sand-store', 'Vanadium-Redox-Flow-bicharger', - # 'Vanadium-Redox-Flow-store', 'Zn-Air-bicharger', 'Zn-Air-store', - # 'Zn-Br-Flow-bicharger', 'Zn-Br-Flow-store', - # 'Zn-Br-Nonflow-bicharger', 'Zn-Br-Nonflow-store' + 'Compressed-Air-Adiabatic-bicharger', + 'Compressed-Air-Adiabatic-store', 'Concrete-charger', + 'Concrete-discharger', 'Concrete-store', 'Gravity-Brick-bicharger', + 'Gravity-Brick-store', 'Gravity-Water-Aboveground-bicharger', + 'Gravity-Water-Aboveground-store', + 'Gravity-Water-Underground-bicharger', + 'Gravity-Water-Underground-store', 'HighT-Molten-Salt-charger', + 'HighT-Molten-Salt-discharger', 'HighT-Molten-Salt-store', + 'Hydrogen-charger', 'Hydrogen-discharger', 'Hydrogen-store', + 'Lead-Acid-bicharger', 'Lead-Acid-store', 'Liquid-Air-charger', + 'Liquid-Air-discharger', 'Liquid-Air-store', + 'Lithium-Ion-LFP-bicharger', 'Lithium-Ion-LFP-store', + 'Lithium-Ion-NMC-bicharger', 'Lithium-Ion-NMC-store', + 'LowT-Molten-Salt-charger', 'LowT-Molten-Salt-discharger', + 'LowT-Molten-Salt-store', 'Ni-Zn-bicharger', 'Ni-Zn-store', + 'Pumped-Heat-charger', 'Pumped-Heat-discharger', + 'Pumped-Heat-store', 'Pumped-Storage-Hydro-bicharger', + 'Pumped-Storage-Hydro-store', 'Sand-charger', 'Sand-discharger', + 'Sand-store', 'Vanadium-Redox-Flow-bicharger', + 'Vanadium-Redox-Flow-store', 'Zn-Air-bicharger', 'Zn-Air-store', + 'Zn-Br-Flow-bicharger', 'Zn-Br-Flow-store', + 'Zn-Br-Nonflow-bicharger', 'Zn-Br-Nonflow-store' ] @@ -127,53 +127,53 @@ 'Fischer-Tropsch':'Fischer-Tropsch', 'SMR': 'Steam Methane Reforming', 'SMR CC': 'Steam Methane Reforming with CC', - # 'Compressed-Air-Adiabatic-bicharger': 'Compressed-Air-Adiabatic-bicharger', - # 'Compressed-Air-Adiabatic-store': 'Compressed-Air-Adiabatic-store', - # 'Concrete-charger': 'Concrete-charger', - # 'Concrete-discharger': 'Concrete-discharger', - # 'Concrete-store': 'Concrete-store', - # 'Gravity-Brick-bicharger': 'Gravity-Brick-bicharger', - # 'Gravity-Brick-store': 'Gravity-Brick-store', - # 'Gravity-Water-Aboveground-bicharger': 'Gravity-Water-Aboveground-bicharger', - # 'Gravity-Water-Aboveground-store': 'Gravity-Water-Aboveground-store', - # 'Gravity-Water-Underground-bicharger': 'Gravity-Water-Underground-bicharger', - # 'Gravity-Water-Underground-store': 'Gravity-Water-Underground-store', - # 'HighT-Molten-Salt-charger': 'HighT-Molten-Salt-charger', - # 'HighT-Molten-Salt-discharger': 'HighT-Molten-Salt-discharger', - # 'HighT-Molten-Salt-store': 'HighT-Molten-Salt-store', - # 'Hydrogen-charger': 'Hydrogen-charger', - # 'Hydrogen-discharger': 'Hydrogen-discharger', - # 'Hydrogen-store': 'Hydrogen-store', - # 'Lead-Acid-bicharger': 'Lead-Acid-bicharger', - # 'Lead-Acid-store': 'Lead-Acid-store', - # 'Liquid-Air-charger': 'Liquid-Air-charger', - # 'Liquid-Air-discharger': 'Liquid-Air-discharger', - # 'Liquid-Air-store': 'Liquid-Air-store', - # 'Lithium-Ion-LFP-bicharger': 'Lithium-Ion-LFP-bicharger', - # 'Lithium-Ion-LFP-store': 'Lithium-Ion-LFP-store', - # 'Lithium-Ion-NMC-bicharger': 'Lithium-Ion-NMC-bicharger', - # 'Lithium-Ion-NMC-store': 'Lithium-Ion-NMC-store', - # 'LowT-Molten-Salt-charger': 'LowT-Molten-Salt-charger', - # 'LowT-Molten-Salt-discharger': 'LowT-Molten-Salt-discharger', - # 'LowT-Molten-Salt-store': 'LowT-Molten-Salt-store', - # 'Ni-Zn-bicharger': 'Ni-Zn-bicharger', - # 'Ni-Zn-store': 'Ni-Zn-store', - # 'Pumped-Heat-charger': 'Pumped-Heat-charger', - # 'Pumped-Heat-discharger': 'Pumped-Heat-discharger', - # 'Pumped-Heat-store': 'Pumped-Heat-store', - # 'Pumped-Storage-Hydro-bicharger': 'Pumped-Storage-Hydro-bicharger', - # 'Pumped-Storage-Hydro-store': 'Pumped-Storage-Hydro-store', - # 'Sand-charger': 'Sand-charger', - # 'Sand-discharger': 'Sand-discharger', - # 'Sand-store': 'Sand-store', - # 'Vanadium-Redox-Flow-bicharger': 'Vanadium-Redox-Flow-bicharger', - # 'Vanadium-Redox-Flow-store': 'Vanadium-Redox-Flow-store', - # 'Zn-Air-bicharger': 'Zn-Air-bicharger', - # 'Zn-Air-store': 'Zn-Air-store', - # 'Zn-Br-Flow-bicharger': 'Zn-Br-Flow-bicharger', - # 'Zn-Br-Flow-store': 'Zn-Br-Flow-store', - # 'Zn-Br-Nonflow-bicharger': 'Zn-Br-Nonflow-bicharger', - # 'Zn-Br-Nonflow-store': 'Zn-Br-Nonflow-store', + 'Compressed-Air-Adiabatic-bicharger': 'Compressed-Air-Adiabatic-bicharger', + 'Compressed-Air-Adiabatic-store': 'Compressed-Air-Adiabatic-store', + 'Concrete-charger': 'Concrete-charger', + 'Concrete-discharger': 'Concrete-discharger', + 'Concrete-store': 'Concrete-store', + 'Gravity-Brick-bicharger': 'Gravity-Brick-bicharger', + 'Gravity-Brick-store': 'Gravity-Brick-store', + 'Gravity-Water-Aboveground-bicharger': 'Gravity-Water-Aboveground-bicharger', + 'Gravity-Water-Aboveground-store': 'Gravity-Water-Aboveground-store', + 'Gravity-Water-Underground-bicharger': 'Gravity-Water-Underground-bicharger', + 'Gravity-Water-Underground-store': 'Gravity-Water-Underground-store', + 'HighT-Molten-Salt-charger': 'HighT-Molten-Salt-charger', + 'HighT-Molten-Salt-discharger': 'HighT-Molten-Salt-discharger', + 'HighT-Molten-Salt-store': 'HighT-Molten-Salt-store', + 'Hydrogen-charger': 'Hydrogen-charger', + 'Hydrogen-discharger': 'Hydrogen-discharger', + 'Hydrogen-store': 'Hydrogen-store', + 'Lead-Acid-bicharger': 'Lead-Acid-bicharger', + 'Lead-Acid-store': 'Lead-Acid-store', + 'Liquid-Air-charger': 'Liquid-Air-charger', + 'Liquid-Air-discharger': 'Liquid-Air-discharger', + 'Liquid-Air-store': 'Liquid-Air-store', + 'Lithium-Ion-LFP-bicharger': 'Lithium-Ion-LFP-bicharger', + 'Lithium-Ion-LFP-store': 'Lithium-Ion-LFP-store', + 'Lithium-Ion-NMC-bicharger': 'Lithium-Ion-NMC-bicharger', + 'Lithium-Ion-NMC-store': 'Lithium-Ion-NMC-store', + 'LowT-Molten-Salt-charger': 'LowT-Molten-Salt-charger', + 'LowT-Molten-Salt-discharger': 'LowT-Molten-Salt-discharger', + 'LowT-Molten-Salt-store': 'LowT-Molten-Salt-store', + 'Ni-Zn-bicharger': 'Ni-Zn-bicharger', + 'Ni-Zn-store': 'Ni-Zn-store', + 'Pumped-Heat-charger': 'Pumped-Heat-charger', + 'Pumped-Heat-discharger': 'Pumped-Heat-discharger', + 'Pumped-Heat-store': 'Pumped-Heat-store', + 'Pumped-Storage-Hydro-bicharger': 'Pumped-Storage-Hydro-bicharger', + 'Pumped-Storage-Hydro-store': 'Pumped-Storage-Hydro-store', + 'Sand-charger': 'Sand-charger', + 'Sand-discharger': 'Sand-discharger', + 'Sand-store': 'Sand-store', + 'Vanadium-Redox-Flow-bicharger': 'Vanadium-Redox-Flow-bicharger', + 'Vanadium-Redox-Flow-store': 'Vanadium-Redox-Flow-store', + 'Zn-Air-bicharger': 'Zn-Air-bicharger', + 'Zn-Air-store': 'Zn-Air-store', + 'Zn-Br-Flow-bicharger': 'Zn-Br-Flow-bicharger', + 'Zn-Br-Flow-store': 'Zn-Br-Flow-store', + 'Zn-Br-Nonflow-bicharger': 'Zn-Br-Nonflow-bicharger', + 'Zn-Br-Nonflow-store': 'Zn-Br-Nonflow-store', } dic_ref = {'Technology Data for Energy Plants for Electricity and District heating generation':'DEA_2019', @@ -228,7 +228,7 @@ else: lifetime= ' ' if idx[technology,'investment'] in costs.index: - investment = str(int(int(costs.loc[idx[technology,'investment'],'value']/1000))) + investment = str(int(costs.loc[idx[technology,'investment'],'value']/1000)) else: investment= ' ' investment diff --git a/outputs/costs_2020.csv b/outputs/costs_2020.csv index d2efc58..21c6487 100644 --- a/outputs/costs_2020.csv +++ b/outputs/costs_2020.csv @@ -5,28 +5,28 @@ Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene. BioSNG,C in fuel,0.32,per unit,Stoichiometric calculation, BioSNG,C stored,0.68,per unit,Stoichiometric calculation, BioSNG,CO2 stored,0.25,tCO2/MWh_th,Stoichiometric calculation, -BioSNG,FOM,1.61,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,2.7,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.61,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,2.7,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.6,per unit,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,2500.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.6,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" +BioSNG,investment,2500.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.25,per unit,Stoichiometric calculation, BtL,C stored,0.75,per unit,Stoichiometric calculation, BtL,CO2 stored,0.28,tCO2/MWh_th,Stoichiometric calculation, -BtL,FOM,2.4,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.4,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.35,per unit,doi:10.1016/j.enpol.2017.05.013, BtL,investment,3500.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.33,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.4,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,1.8,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.56,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,880.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.33,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,1.8,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.56,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,880.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station., CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.", CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station., @@ -151,10 +151,10 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., HVDC submarine,investment,471.16,EUR/MW/km,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,investment,1586.29,EUR/kW_NH3,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,investment,1586.29,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" HighT-Molten-Salt-charger,investment,187899.51,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" @@ -166,13 +166,13 @@ HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129 HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" HighT-Molten-Salt-store,investment,112560.01,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen-charger,FOM,0.47,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-charger,investment,1269303.37,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,FOM,0.46,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,1304350.41,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.47,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-discharger,investment,1300882.37,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,FOM,0.48,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,1265835.33,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Hydrogen-store,investment,4779.95,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" @@ -265,11 +265,11 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.22,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Ni-Zn-store,investment,344828.41,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.78,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.4,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,453.96,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.78,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,453.96,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -343,127 +343,127 @@ Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'c Zn-Br-Nonflow-store,FOM,0.25,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Nonflow-store,investment,276873.61,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,investment,891679.11,EUR/t_N2/h,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.2,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,270.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,232.0,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,investment,891679.11,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.2,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,270.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,232.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.09,tCO2/MWh_th,Stoichiometric calculation, -biogas,FOM,11.38,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,FOM,11.38,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" biogas,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1710.69,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,907.2,EUR/kW_CH4,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.51,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.69,EUR/MWh input,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,423.0,EUR/kW input,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" +biogas,investment,1710.69,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,investment,907.2,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,2.51,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.69,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,investment,423.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" biomass,FOM,4.53,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.47,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.61,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.11,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.45,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3381.27,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.83,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.83,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,3300000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.61,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.11,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.45,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3381.27,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.8,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.11,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,1.03,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,875.42,EUR/kW_th - heat output,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.39,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.82,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,682.67,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.83,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.21,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,951.39,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.9,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.48,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1900.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.31,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.4,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,0.96,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass CHP,FOM,3.61,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.11,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.45,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3381.27,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.83,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.83,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,3300000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.61,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.11,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.45,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3381.27,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.11,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,875.42,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.39,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.82,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,682.67,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.83,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.21,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,951.39,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.9,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.48,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1900.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.31,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,590.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,590.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas boiler,FOM,3.25,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.1,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.35,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,0.98,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,564.0,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central resistive heater,FOM,1.53,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,0.9,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,70.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas boiler,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.1,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.35,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,0.98,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,564.0,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central resistive heater,FOM,1.53,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,0.9,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,70.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.89,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.6,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.35,50°C/100°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3534.65,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.89,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.6,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3534.65,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central water tank storage,FOM,0.52,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.58,EUR/kWhCapacity,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central water tank storage,FOM,0.52,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.58,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.63,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -487,23 +487,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,2.96,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,2.96,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,940.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.56,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,940.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.56,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.97,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,312.08,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,195.05,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.85,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.97,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,312.08,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,195.05,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.85,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1500.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1500.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.01,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -526,41 +526,41 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.35,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-input,2.5,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -electric boiler steam,FOM,1.34,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.86,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,80.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.35,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,heat-input,2.5,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +electric boiler steam,FOM,1.34,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.86,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,80.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.66,per unit,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,investment,650.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1300.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M +electrolysis,efficiency,0.66,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,investment,650.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1300.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.2,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,20.1,EUR/MWh_th,BP 2019, -gas boiler steam,FOM,3.67,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.1,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,54.55,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,3.67,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.1,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,54.55,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.59,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.03,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -623,21 +623,21 @@ methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", methanolisation,investment,757401.0,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.67,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.6,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,10045.31,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.67,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.6,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,10045.31,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.36,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.36,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1916.48,"EUR/kW_e, 2020","Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020]" -offwind,lifetime,27.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1916.48,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020]" +offwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -645,16 +645,16 @@ offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions oil,CO2 intensity,0.26,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.57,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.57,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,343.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.25,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.5,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1118.77,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,27.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1118.77,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -663,34 +663,34 @@ seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", seawater desalination,investment,40219.78,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -solar,FOM,1.58,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,FOM,1.58,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,733.47,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar,lifetime,35.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop,FOM,1.15,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,investment,733.47,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop,FOM,1.15,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,957.47,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop,lifetime,35.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop commercial,FOM,1.22,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,790.08,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,35.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.08,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,1124.86,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,35.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.01,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,509.47,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,35.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-rooftop,investment,957.47,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop commercial,FOM,1.22,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,790.08,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.08,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,1124.86,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.01,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,509.47,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,5.45,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.78,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,618.18,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,5.45,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,618.18,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2025.csv b/outputs/costs_2025.csv index 213332e..6096e87 100644 --- a/outputs/costs_2025.csv +++ b/outputs/costs_2025.csv @@ -5,28 +5,28 @@ Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene. BioSNG,C in fuel,0.33,per unit,Stoichiometric calculation, BioSNG,C stored,0.67,per unit,Stoichiometric calculation, BioSNG,CO2 stored,0.24,tCO2/MWh_th,Stoichiometric calculation, -BioSNG,FOM,1.62,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,2.2,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.62,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,2.2,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.62,per unit,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,2050.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.62,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" +BioSNG,investment,2050.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.26,per unit,Stoichiometric calculation, BtL,C stored,0.74,per unit,Stoichiometric calculation, BtL,CO2 stored,0.27,tCO2/MWh_th,Stoichiometric calculation, -BtL,FOM,2.53,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.53,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.37,per unit,doi:10.1016/j.enpol.2017.05.013, BtL,investment,3250.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.34,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.3,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,1.9,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.57,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,855.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.34,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,1.9,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.57,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,855.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station., CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.", CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station., @@ -151,10 +151,10 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., HVDC submarine,investment,471.16,EUR/MW/km,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,investment,1441.86,EUR/kW_NH3,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,investment,1441.86,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" HighT-Molten-Salt-charger,investment,166045.89,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" @@ -166,13 +166,13 @@ HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129 HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" HighT-Molten-Salt-store,investment,103333.78,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen-charger,FOM,0.59,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-charger,investment,790713.57,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,FOM,0.55,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,825760.62,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.5,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-discharger,investment,857468.43,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,FOM,0.53,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,822421.39,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Hydrogen-store,investment,4779.95,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" @@ -265,11 +265,11 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Ni-Zn-store,investment,306333.14,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.78,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.4,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,444.6,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.78,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,444.6,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -343,127 +343,127 @@ Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'c Zn-Br-Nonflow-store,FOM,0.24,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Nonflow-store,investment,258047.1,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,investment,810492.64,EUR/t_N2/h,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.25,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,215.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,187.0,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,22.5,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,investment,810492.64,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.25,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,215.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,187.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.09,tCO2/MWh_th,Stoichiometric calculation, -biogas,FOM,12.07,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,FOM,12.07,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" biogas,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1625.16,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,831.6,EUR/kW_CH4,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.5,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.44,EUR/MWh input,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,402.0,EUR/kW input,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" +biogas,investment,1625.16,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,investment,831.6,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,2.5,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.44,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,investment,402.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" biomass,FOM,4.53,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.47,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.6,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3295.78,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.83,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.83,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.6,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3295.78,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.78,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.45,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,1.03,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,854.02,EUR/kW_th - heat output,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.43,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,665.99,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.83,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2800000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.21,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,951.39,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.87,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,0.92,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.5,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1880.24,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.31,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.3,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,0.98,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass CHP,FOM,3.6,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3295.78,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.83,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.83,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.6,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3295.78,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.78,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.45,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,854.02,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.43,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.84,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,665.99,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.83,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.21,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,951.39,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.87,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,0.92,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1880.24,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.31,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,575.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,575.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.05,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,55.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.37,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.12,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.72,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,535.8,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central resistive heater,FOM,1.61,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,0.95,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,65.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.05,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,55.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.37,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.12,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.72,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,535.8,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central resistive heater,FOM,1.61,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,0.95,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,65.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.88,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.59,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.35,50°C/100°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3442.07,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.88,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.59,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3442.07,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central water tank storage,FOM,0.53,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.56,EUR/kWhCapacity,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,22.5,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central water tank storage,FOM,0.53,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.56,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.63,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -487,23 +487,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,2.98,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,2.98,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,895.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.62,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,895.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.62,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,304.45,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,190.28,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.84,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,304.45,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,190.28,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.84,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.85,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1450.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,3.85,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1450.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.01,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -526,41 +526,41 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.35,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-input,2.5,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -electric boiler steam,FOM,1.39,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.87,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,75.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.35,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,heat-input,2.5,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +electric boiler steam,FOM,1.39,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.87,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,75.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.67,per unit,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,investment,550.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,27.5,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1200.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M +electrolysis,efficiency,0.67,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,investment,550.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,lifetime,27.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1200.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.2,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,20.1,EUR/MWh_th,BP 2019, -gas boiler steam,FOM,3.9,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.05,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,50.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,3.9,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.05,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,50.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.59,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.03,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -623,21 +623,21 @@ methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", methanolisation,investment,704056.13,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.43,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.6,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,8716.89,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.43,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.6,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,8716.89,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.23,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.23,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1706.12,"EUR/kW_e, 2020","Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020]" -offwind,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1706.12,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020]" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -645,16 +645,16 @@ offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions oil,CO2 intensity,0.26,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.51,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.51,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,343.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.23,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.42,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1077.17,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,28.5,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.23,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.42,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1077.17,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,28.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -663,34 +663,34 @@ seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", seawater desalination,investment,36907.69,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -solar,FOM,1.73,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,FOM,1.73,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,612.79,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar,lifetime,37.5,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop,FOM,1.26,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,investment,612.79,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop,FOM,1.26,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,797.07,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop,lifetime,37.5,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop commercial,FOM,1.36,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,651.27,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,37.5,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.16,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,942.86,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,37.5,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.2,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,428.52,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,37.5,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-rooftop,investment,797.07,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop commercial,FOM,1.36,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,651.27,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.16,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,942.86,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.2,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,428.52,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,5.76,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.8,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,604.55,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,5.76,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.8,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,604.55,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2030.csv b/outputs/costs_2030.csv index 2fb4867..6bc70fb 100644 --- a/outputs/costs_2030.csv +++ b/outputs/costs_2030.csv @@ -5,28 +5,28 @@ Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene. BioSNG,C in fuel,0.34,per unit,Stoichiometric calculation, BioSNG,C stored,0.66,per unit,Stoichiometric calculation, BioSNG,CO2 stored,0.24,tCO2/MWh_th,Stoichiometric calculation, -BioSNG,FOM,1.64,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.7,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.64,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.7,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.63,per unit,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,1600.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" +BioSNG,investment,1600.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.27,per unit,Stoichiometric calculation, BtL,C stored,0.73,per unit,Stoichiometric calculation, BtL,CO2 stored,0.27,tCO2/MWh_th,Stoichiometric calculation, -BtL,FOM,2.67,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.67,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.38,per unit,doi:10.1016/j.enpol.2017.05.013, BtL,investment,3000.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.35,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.2,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.0,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.58,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,830.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.35,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.58,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,830.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station., CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.", CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station., @@ -151,10 +151,10 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., HVDC submarine,investment,471.16,EUR/MW/km,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,investment,1297.43,EUR/kW_NH3,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,investment,1297.43,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" HighT-Molten-Salt-charger,investment,144192.27,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" @@ -166,13 +166,13 @@ HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129 HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" HighT-Molten-Salt-store,investment,94107.55,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen-charger,FOM,0.71,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-charger,investment,312123.78,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,FOM,0.63,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,347170.82,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.53,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-discharger,investment,414054.49,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,FOM,0.58,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,379007.45,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Hydrogen-store,investment,4779.95,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" @@ -265,11 +265,11 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Ni-Zn-store,investment,267837.87,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.78,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.41,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,435.24,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.78,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,435.24,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -343,127 +343,127 @@ Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'c Zn-Br-Nonflow-store,FOM,0.22,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Nonflow-store,investment,239220.58,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,investment,729306.18,EUR/t_N2/h,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.34,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,160.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,142.0,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,investment,729306.18,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.34,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,160.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,142.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.09,tCO2/MWh_th,Stoichiometric calculation, -biogas,FOM,12.84,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,FOM,12.84,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" biogas,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1539.62,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,756.0,EUR/kW_CH4,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.49,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.18,EUR/MWh input,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,381.0,EUR/kW input,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" +biogas,investment,1539.62,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,investment,756.0,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,2.49,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.18,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,investment,381.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" biomass,FOM,4.53,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.47,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.58,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3210.28,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.72,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2700000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.58,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3210.28,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.75,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.78,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,1.03,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,832.63,EUR/kW_th - heat output,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.49,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,649.3,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.54,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2600000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.23,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.51,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.25,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.84,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1860.47,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.32,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.2,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass CHP,FOM,3.58,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3210.28,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2700000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.58,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3210.28,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.75,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.78,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,832.63,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.49,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,649.3,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.54,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2600000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.23,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.51,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.25,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.84,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1860.47,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.32,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.41,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,560.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,560.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas boiler,FOM,3.8,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.39,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.25,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.73,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,507.6,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central resistive heater,FOM,1.7,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas boiler,FOM,3.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.39,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.25,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.73,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,507.6,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central resistive heater,FOM,1.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.87,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.58,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.35,50°C/100°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.82,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3349.49,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.87,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.58,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.82,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3349.49,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central water tank storage,FOM,0.55,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.54,EUR/kWhCapacity,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central water tank storage,FOM,0.55,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.54,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.63,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -487,23 +487,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.0,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,850.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.69,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,850.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.69,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,296.82,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,185.51,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.82,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,296.82,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,185.51,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.82,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.9,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1400.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,3.9,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1400.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.01,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -526,41 +526,41 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.32,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-input,2.0,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-output,1.0,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,6000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -electric boiler steam,FOM,1.46,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.88,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.32,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,heat-input,2.0,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,heat-output,1.0,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,6000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +electric boiler steam,FOM,1.46,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.88,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.68,per unit,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,investment,450.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1100.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M +electrolysis,efficiency,0.68,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,investment,450.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1100.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.2,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,20.1,EUR/MWh_th,BP 2019, -gas boiler steam,FOM,4.18,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.45,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,4.18,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.45,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.59,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.03,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -587,20 +587,6 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,2.0,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.09,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.05,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,934.56,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.11,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.7,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,778.8,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime hydrogen storage tank type 1 including compressor,FOM,1.11,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M hydrogen storage tank type 1 including compressor,investment,44.91,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime @@ -637,21 +623,21 @@ methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", methanolisation,investment,650711.26,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.11,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.61,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,7410.27,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.11,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.61,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,7410.27,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.17,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.17,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1626.14,"EUR/kW_e, 2020","Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020]" -offwind,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1626.14,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020]" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -659,16 +645,16 @@ offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions oil,CO2 intensity,0.26,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.46,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.46,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,343.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.22,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.35,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1035.56,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.22,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.35,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1035.56,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -677,34 +663,34 @@ seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", seawater desalination,investment,32882.05,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -solar,FOM,1.95,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,FOM,1.95,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,492.11,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop,FOM,1.42,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,investment,492.11,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop,FOM,1.42,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,636.66,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop commercial,FOM,1.57,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,512.47,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.27,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,760.86,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.48,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,347.56,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-rooftop,investment,636.66,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop commercial,FOM,1.57,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,512.47,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.27,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,760.86,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.48,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,347.56,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.08,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.82,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,590.91,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,6.08,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.82,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,590.91,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2035.csv b/outputs/costs_2035.csv index 5657556..4aa8f0e 100644 --- a/outputs/costs_2035.csv +++ b/outputs/costs_2035.csv @@ -5,28 +5,28 @@ Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene. BioSNG,C in fuel,0.35,per unit,Stoichiometric calculation, BioSNG,C stored,0.65,per unit,Stoichiometric calculation, BioSNG,CO2 stored,0.24,tCO2/MWh_th,Stoichiometric calculation, -BioSNG,FOM,1.63,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.68,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.63,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.68,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.65,per unit,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,1575.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.65,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" +BioSNG,investment,1575.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.28,per unit,Stoichiometric calculation, BtL,C stored,0.72,per unit,Stoichiometric calculation, BtL,CO2 stored,0.26,tCO2/MWh_th,Stoichiometric calculation, -BtL,FOM,2.75,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.75,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.4,per unit,doi:10.1016/j.enpol.2017.05.013, BtL,investment,2750.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.33,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.15,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.05,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.58,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,822.5,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.33,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.05,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.58,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,822.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station., CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.", CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station., @@ -66,14 +66,14 @@ Compressed-Air-Adiabatic-store,investment,5448.79,EUR/MWh,"Viswanathan_2022, p.6 Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,100804.39,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,investment,122498.33,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,403217.55,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,investment,489993.31,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.34,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,18709.77,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,21377.0,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -97,19 +97,19 @@ Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" Gravity-Brick-bicharger,investment,415570.52,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,127737.1,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,investment,142559.41,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" Gravity-Water-Aboveground-bicharger,investment,365630.71,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,99026.17,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,investment,110390.6,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" Gravity-Water-Underground-bicharger,investment,905158.96,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,78256.57,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,investment,87119.54,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)", H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).", @@ -151,28 +151,28 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., HVDC submarine,investment,471.16,EUR/MW/km,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,investment,1179.3,EUR/kW_NH3,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,investment,1179.3,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,100922.1,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,investment,122557.19,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,403688.41,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,investment,490228.74,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,75839.61,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,investment,84973.58,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen-charger,FOM,0.93,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-charger,investment,-592410.93,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,FOM,0.66,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,210560.34,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.59,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-discharger,investment,-463905.11,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,FOM,0.6,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,212993.27,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Hydrogen-store,investment,4779.95,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" @@ -201,48 +201,48 @@ LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://pap LOHC unloaded DBT storage,FOM,6.25,%/year,, LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", LOHC unloaded DBT storage,lifetime,30.0,years,, -Lead-Acid-bicharger,FOM,2.48,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,FOM,2.46,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,108184.78,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,investment,118519.2,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.27,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,276419.49,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,FOM,0.26,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,298525.44,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,448058.14,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,investment,461889.69,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,314594.02,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,investment,324305.52,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.31,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,131537.88,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,145271.32,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.17,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,FOM,2.14,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,67663.08,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,investment,74608.28,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,148166.94,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,investment,192324.88,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.17,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,FOM,2.14,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,67663.08,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,investment,74608.28,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,168067.06,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,investment,218821.96,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,139061.85,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,investment,141627.06,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,556247.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,investment,566508.23,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,46774.38,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,investment,52407.79,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -258,32 +258,32 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.17,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,FOM,2.14,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,67663.08,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,investment,74608.28,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,191617.25,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,investment,229727.56,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.78,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.42,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,429.39,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.78,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,429.39,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,716830.16,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,investment,739306.42,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,503306.28,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,investment,519087.48,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.24,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,-8002.76,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,FOM,0.17,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,7850.15,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" @@ -303,167 +303,167 @@ SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,135844.29,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,investment,140018.28,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,543377.18,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,investment,560073.13,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,5400.1,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,investment,6050.47,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Vanadium-Redox-Flow-bicharger,FOM,2.48,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,FOM,2.46,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,108305.17,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,investment,118664.11,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,199126.95,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,228599.9,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.14,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,154082.13,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,FOM,0.15,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,164235.07,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,1.77,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,FOM,1.94,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,29336.96,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,investment,55445.22,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,348632.45,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,380469.52,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.2,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,201944.09,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,FOM,0.21,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,220582.33,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,investment,662903.6,EUR/t_N2/h,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.42,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,130.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,118.0,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,27.5,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,investment,662903.6,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.42,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,130.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,118.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.09,tCO2/MWh_th,Stoichiometric calculation, -biogas,FOM,13.14,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,FOM,13.14,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" biogas,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1501.13,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,680.4,EUR/kW_CH4,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.5,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.31,EUR/MWh input,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,371.5,EUR/kW input,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" +biogas,investment,1501.13,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,investment,680.4,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,2.5,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.31,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,investment,371.5,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" biomass,FOM,4.53,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.47,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.57,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3135.77,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.92,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.69,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2550000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.57,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3135.77,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.74,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.87,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.78,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,812.77,EUR/kW_th - heat output,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.5,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,633.81,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.92,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.51,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.23,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.35,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.62,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.25,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.81,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1841.32,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.35,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.15,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass CHP,FOM,3.57,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3135.77,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.92,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2550000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.57,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3135.77,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.74,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.87,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.78,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,812.77,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.5,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,633.81,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.92,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.51,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.23,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.35,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.62,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.25,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.81,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1841.32,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.35,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,550.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas boiler,FOM,3.7,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.4,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.3,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,494.91,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central resistive heater,FOM,1.66,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas boiler,FOM,3.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.4,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.3,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,494.91,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central resistive heater,FOM,1.66,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.86,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.61,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.35,50°C/100°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3301.1,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.86,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.61,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3301.1,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central water tank storage,FOM,0.57,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.52,EUR/kWhCapacity,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central water tank storage,FOM,0.57,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.52,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.63,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -487,23 +487,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.03,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.03,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,827.5,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.7,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,827.5,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.7,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,289.74,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,181.09,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.86,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,289.74,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,181.09,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.86,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.94,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1350.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,3.94,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1350.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.01,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -526,41 +526,41 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.31,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-input,1.75,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-output,0.88,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,5500000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -electric boiler steam,FOM,1.42,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.83,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.31,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,heat-input,1.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,heat-output,0.88,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,5500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +electric boiler steam,FOM,1.42,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.83,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.7,per unit,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,investment,375.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,31.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1025.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M +electrolysis,efficiency,0.7,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,investment,375.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,lifetime,31.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1025.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.2,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,20.1,EUR/MWh_th,BP 2019, -gas boiler steam,FOM,4.07,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.45,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,4.07,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.45,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.59,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.03,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -587,20 +587,6 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.75,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.09,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.1,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,905.28,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.11,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.75,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,754.4,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime hydrogen storage tank type 1 including compressor,FOM,1.39,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M hydrogen storage tank type 1 including compressor,investment,35.98,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime @@ -637,21 +623,21 @@ methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", methanolisation,investment,608179.55,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.18,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.61,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,6998.59,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.18,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.61,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,6998.59,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.1,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.1,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1572.26,"EUR/kW_e, 2020","Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020]" -offwind,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1572.26,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020]" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -659,16 +645,16 @@ offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions oil,CO2 intensity,0.26,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.45,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.45,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,341.25,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.2,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.3,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1006.56,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,341.25,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.2,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1006.56,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -677,34 +663,34 @@ seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", seawater desalination,investment,29589.74,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -solar,FOM,1.99,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,FOM,1.99,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,449.99,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop,FOM,1.48,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,investment,449.99,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop,FOM,1.48,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,580.91,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop commercial,FOM,1.65,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,464.79,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.32,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,697.04,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.5,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,319.07,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-rooftop,investment,580.91,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop commercial,FOM,1.65,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,464.79,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.32,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,697.04,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,319.07,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.12,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.84,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,577.27,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,6.12,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.84,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,577.27,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2040.csv b/outputs/costs_2040.csv index ca0f96f..9d6a0c8 100644 --- a/outputs/costs_2040.csv +++ b/outputs/costs_2040.csv @@ -5,28 +5,28 @@ Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene. BioSNG,C in fuel,0.36,per unit,Stoichiometric calculation, BioSNG,C stored,0.64,per unit,Stoichiometric calculation, BioSNG,CO2 stored,0.23,tCO2/MWh_th,Stoichiometric calculation, -BioSNG,FOM,1.62,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.65,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.62,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.65,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.66,per unit,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,1550.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.66,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" +BioSNG,investment,1550.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.29,per unit,Stoichiometric calculation, BtL,C stored,0.71,per unit,Stoichiometric calculation, BtL,CO2 stored,0.26,tCO2/MWh_th,Stoichiometric calculation, -BtL,FOM,2.84,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.84,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.42,per unit,doi:10.1016/j.enpol.2017.05.013, BtL,investment,2500.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.1,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.1,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.59,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,815.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.1,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.59,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,815.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station., CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.", CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station., @@ -66,14 +66,14 @@ Compressed-Air-Adiabatic-store,investment,5448.79,EUR/MWh,"Viswanathan_2022, p.6 Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,83054.8,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,investment,113623.53,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,332219.2,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,investment,454494.14,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Concrete-store,FOM,0.34,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,16527.49,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,investment,20285.86,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -97,19 +97,19 @@ Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" Gravity-Brick-bicharger,investment,415570.52,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,115609.76,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,investment,136495.74,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" Gravity-Water-Aboveground-bicharger,investment,365630.71,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,89728.01,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,investment,105741.52,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" Gravity-Water-Underground-bicharger,investment,905158.96,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,71005.04,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,investment,83493.78,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)", H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).", @@ -151,28 +151,28 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., HVDC submarine,investment,471.16,EUR/MW/km,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,investment,1061.17,EUR/kW_NH3,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,investment,1061.17,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,83220.67,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,investment,113706.47,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,332882.69,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,investment,454825.88,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,68366.37,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,investment,81236.96,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen-charger,FOM,0.98,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-charger,investment,-775471.53,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,FOM,0.66,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,193621.26,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.62,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-discharger,investment,-823070.41,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,FOM,0.6,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,186175.59,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Hydrogen-store,investment,4779.95,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" @@ -201,48 +201,48 @@ LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://pap LOHC unloaded DBT storage,FOM,6.25,%/year,, LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", LOHC unloaded DBT storage,lifetime,30.0,years,, -Lead-Acid-bicharger,FOM,2.49,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,FOM,2.47,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,99729.34,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,investment,114291.48,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.28,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,258332.81,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,FOM,0.27,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,289482.1,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,436741.43,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,investment,456231.33,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,306648.24,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,investment,320332.63,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.31,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,120301.42,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,139653.1,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.19,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,FOM,2.15,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,61980.65,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,investment,71767.07,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,112037.72,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,investment,174260.27,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.19,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,FOM,2.15,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,61980.65,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,investment,71767.07,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,126540.33,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,investment,198058.59,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,136963.04,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,investment,140577.65,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,547852.14,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,investment,562310.61,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,42165.22,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,investment,50103.21,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -258,32 +258,32 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.19,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,FOM,2.15,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,61980.65,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,investment,71767.07,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,160436.08,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,investment,214136.98,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.79,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.42,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,423.54,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.79,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,423.54,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,698440.5,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,investment,730111.58,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,490394.39,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,investment,512631.54,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.28,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,-16000.31,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,FOM,0.17,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,7253.0,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" @@ -303,167 +303,167 @@ SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,132429.21,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,investment,138310.74,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,529716.86,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,investment,553242.97,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,4867.97,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,investment,5784.41,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Vanadium-Redox-Flow-bicharger,FOM,2.49,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,FOM,2.47,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,99829.67,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,investment,114426.36,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Vanadium-Redox-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,175012.71,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,investment,216542.78,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.13,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,145775.18,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,FOM,0.15,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,160081.6,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,1.62,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,FOM,1.87,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,7975.65,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,investment,44764.57,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.22,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,322583.94,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,367445.27,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.19,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,186694.61,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,FOM,0.21,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,212957.6,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,investment,596501.02,EUR/t_N2/h,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.54,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,100.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,94.0,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,investment,596501.02,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.54,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,100.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,94.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.09,tCO2/MWh_th,Stoichiometric calculation, -biogas,FOM,13.45,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,FOM,13.45,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" biogas,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1462.64,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,604.8,EUR/kW_CH4,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.5,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.43,EUR/MWh input,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,362.0,EUR/kW input,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" +biogas,investment,1462.64,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,investment,604.8,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,2.5,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.43,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,investment,362.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" biomass,FOM,4.53,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.47,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.56,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3061.26,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.56,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3061.26,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.73,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.95,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.53,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,792.91,EUR/kW_th - heat output,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.51,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.87,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,618.33,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.23,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.25,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.78,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.53,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1822.17,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.39,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.1,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass CHP,FOM,3.56,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3061.26,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.56,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3061.26,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.73,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.95,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.53,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,792.91,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.51,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.87,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,618.33,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.23,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.25,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.78,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.53,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1822.17,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.39,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,540.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,540.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas boiler,FOM,3.6,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.41,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.34,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,482.22,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central resistive heater,FOM,1.62,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas boiler,FOM,3.6,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.41,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.34,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,482.22,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central resistive heater,FOM,1.62,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.86,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.63,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.35,50°C/100°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3252.72,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.86,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.63,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3252.72,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central water tank storage,FOM,0.59,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.51,EUR/kWhCapacity,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central water tank storage,FOM,0.59,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.51,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.63,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -487,23 +487,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.07,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.07,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,805.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.71,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,805.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.71,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,282.67,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,176.67,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.9,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,282.67,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,176.67,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.9,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.98,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1300.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,3.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1300.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.01,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -526,41 +526,41 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.3,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-input,1.5,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,5000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -electric boiler steam,FOM,1.39,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.3,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,heat-input,1.5,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,5000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +electric boiler steam,FOM,1.39,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.72,per unit,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,investment,300.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,32.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,950.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M +electrolysis,efficiency,0.72,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,investment,300.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,lifetime,32.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,950.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.2,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,20.1,EUR/MWh_th,BP 2019, -gas boiler steam,FOM,3.96,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.45,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,3.96,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.45,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.59,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.03,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -623,21 +623,21 @@ methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", methanolisation,investment,565647.83,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.25,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.61,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,6586.91,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.25,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.61,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,6586.91,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.03,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.03,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1518.38,"EUR/kW_e, 2020","Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020]" -offwind,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1518.38,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020]" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -645,16 +645,16 @@ offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions oil,CO2 intensity,0.26,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.44,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.44,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,339.5,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.19,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.24,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,977.57,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,339.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.19,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.24,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,977.57,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -663,34 +663,34 @@ seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", seawater desalination,investment,26297.44,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -solar,FOM,2.04,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,FOM,2.04,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,407.87,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop,FOM,1.56,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,investment,407.87,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop,FOM,1.56,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,525.16,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop commercial,FOM,1.74,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,417.1,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.37,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,633.22,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.52,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,290.58,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-rooftop,investment,525.16,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop commercial,FOM,1.74,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,417.1,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.37,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,633.22,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.52,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,290.58,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.17,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.85,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,563.64,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,6.17,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.85,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,563.64,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2045.csv b/outputs/costs_2045.csv index 2859017..27e1859 100644 --- a/outputs/costs_2045.csv +++ b/outputs/costs_2045.csv @@ -5,28 +5,28 @@ Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene. BioSNG,C in fuel,0.37,per unit,Stoichiometric calculation, BioSNG,C stored,0.63,per unit,Stoichiometric calculation, BioSNG,CO2 stored,0.23,tCO2/MWh_th,Stoichiometric calculation, -BioSNG,FOM,1.61,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.62,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.61,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.62,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.68,per unit,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,1525.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.68,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" +BioSNG,investment,1525.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.3,per unit,Stoichiometric calculation, BtL,C stored,0.7,per unit,Stoichiometric calculation, BtL,CO2 stored,0.26,tCO2/MWh_th,Stoichiometric calculation, -BtL,FOM,2.92,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.92,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.43,per unit,doi:10.1016/j.enpol.2017.05.013, BtL,investment,2250.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.28,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.05,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.6,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,807.5,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.28,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,807.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station., CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.", CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station., @@ -66,14 +66,14 @@ Compressed-Air-Adiabatic-store,investment,5448.79,EUR/MWh,"Viswanathan_2022, p.6 Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,74180.01,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,investment,109186.14,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,296720.02,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,investment,436744.55,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Concrete-store,FOM,0.34,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,15436.35,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,investment,19740.29,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -97,19 +97,19 @@ Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" Gravity-Brick-bicharger,investment,415570.52,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,109546.08,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,investment,133463.91,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" Gravity-Water-Aboveground-bicharger,investment,365630.71,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,85078.92,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,investment,103416.98,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" Gravity-Water-Underground-bicharger,investment,905158.96,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,67379.27,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,investment,81680.9,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)", H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).", @@ -151,28 +151,28 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., HVDC submarine,investment,471.16,EUR/MW/km,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,investment,937.36,EUR/kW_NH3,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,investment,937.36,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,74369.96,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,investment,109281.11,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,297479.82,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,investment,437124.45,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,64629.74,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,investment,79368.65,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen-charger,FOM,0.99,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-charger,investment,-821236.68,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,FOM,0.66,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,191015.25,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.63,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-discharger,investment,-1002653.05,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,FOM,0.6,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,180812.06,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Hydrogen-store,investment,4779.95,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" @@ -201,48 +201,48 @@ LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://pap LOHC unloaded DBT storage,FOM,6.25,%/year,, LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", LOHC unloaded DBT storage,lifetime,30.0,years,, -Lead-Acid-bicharger,FOM,2.5,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,FOM,2.47,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,95501.63,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,investment,112177.62,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.28,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,249289.47,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,FOM,0.27,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,284960.43,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,431083.07,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,investment,453402.15,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,302675.35,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,investment,318346.19,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Liquid-Air-store,FOM,0.31,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,114683.19,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,investment,136843.98,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.2,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,FOM,2.16,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,59139.43,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,investment,70346.46,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,93973.11,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,investment,165227.96,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.2,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,FOM,2.16,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,59139.43,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,investment,70346.46,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,105776.97,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,investment,187676.91,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,135913.63,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,investment,140052.95,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,543654.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,investment,560211.8,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,39860.65,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,investment,48950.92,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -258,32 +258,32 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.2,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,FOM,2.16,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,59139.43,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,investment,70346.46,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,144845.5,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,investment,206341.69,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.8,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.42,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,417.69,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,417.69,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,689245.66,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,investment,725514.17,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,483938.44,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,investment,509403.56,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.3,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,-19999.09,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,FOM,0.17,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,7133.57,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" @@ -303,167 +303,167 @@ SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,130721.67,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,investment,137456.97,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,522886.7,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,investment,549827.89,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,4601.91,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,investment,5651.38,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Vanadium-Redox-Flow-bicharger,FOM,2.5,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,FOM,2.47,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,95591.92,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,investment,112307.49,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Vanadium-Redox-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,162955.59,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,investment,210514.22,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.13,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,141621.71,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,FOM,0.15,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,158004.86,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,1.55,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,FOM,1.84,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,-2705.0,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,investment,39424.24,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.21,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,309559.68,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,360933.14,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.19,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,179069.87,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,FOM,0.21,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,209145.23,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,investment,526904.4,EUR/t_N2/h,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.68,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,80.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,84.5,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,investment,526904.4,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.68,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,80.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,84.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.09,tCO2/MWh_th,Stoichiometric calculation, -biogas,FOM,13.78,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,FOM,13.78,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" biogas,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1424.15,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,529.2,EUR/kW_CH4,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.5,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.56,EUR/MWh input,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,352.5,EUR/kW input,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" +biogas,investment,1424.15,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,investment,529.2,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,2.5,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.56,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,investment,352.5,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" biomass,FOM,4.53,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.47,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.55,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,2986.75,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.55,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,2986.75,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.71,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,3.04,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.28,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,773.06,EUR/kW_th - heat output,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.53,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,602.85,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.23,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.43,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.68,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.25,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.75,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.53,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1803.02,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.42,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.05,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass CHP,FOM,3.55,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,2986.75,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.55,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,2986.75,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.71,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,3.04,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.28,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,773.06,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.53,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,602.85,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.23,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.43,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.68,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.25,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.75,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.53,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1803.02,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.42,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,530.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,530.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.43,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.38,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,469.53,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central resistive heater,FOM,1.58,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.43,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.38,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,469.53,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central resistive heater,FOM,1.58,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.86,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.65,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.34,50°C/100°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3204.34,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.86,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.65,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.34,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3204.34,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central water tank storage,FOM,0.62,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.49,EUR/kWhCapacity,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central water tank storage,FOM,0.62,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.49,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.63,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -487,23 +487,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.1,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.1,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.75,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,782.5,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.72,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.75,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,782.5,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.72,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,275.59,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,172.24,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.94,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,275.59,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,172.24,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.94,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,4.01,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1250.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,4.01,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1250.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.01,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -526,41 +526,41 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.29,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-input,1.5,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,4500000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -electric boiler steam,FOM,1.35,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.29,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,heat-input,1.5,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,4500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +electric boiler steam,FOM,1.35,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.73,per unit,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,investment,275.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,33.5,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,875.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M +electrolysis,efficiency,0.73,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,investment,275.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,lifetime,33.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,875.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.2,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,20.1,EUR/MWh_th,BP 2019, -gas boiler steam,FOM,3.85,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.45,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,3.85,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.45,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.59,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.03,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -623,21 +623,21 @@ methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", methanolisation,investment,523116.11,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.33,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.61,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,6175.23,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.33,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.61,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,6175.23,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.02,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.02,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1503.13,"EUR/kW_e, 2020","Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020]" -offwind,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1503.13,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020]" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -645,16 +645,16 @@ offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions oil,CO2 intensity,0.26,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.42,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.42,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,337.75,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.18,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.23,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,970.32,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,337.75,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.18,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.23,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,970.32,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -663,34 +663,34 @@ seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", seawater desalination,investment,23661.54,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -solar,FOM,2.05,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,FOM,2.05,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,389.03,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop,FOM,1.58,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,investment,389.03,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop,FOM,1.58,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,500.27,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop commercial,FOM,1.77,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,395.99,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.39,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,604.55,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.53,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,277.79,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-rooftop,investment,500.27,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop commercial,FOM,1.77,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,395.99,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.39,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,604.55,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.53,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,277.79,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.23,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.85,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,550.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,6.23,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.85,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2050.csv b/outputs/costs_2050.csv index 1707710..ae664b9 100644 --- a/outputs/costs_2050.csv +++ b/outputs/costs_2050.csv @@ -5,28 +5,28 @@ Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene. BioSNG,C in fuel,0.38,per unit,Stoichiometric calculation, BioSNG,C stored,0.62,per unit,Stoichiometric calculation, BioSNG,CO2 stored,0.23,tCO2/MWh_th,Stoichiometric calculation, -BioSNG,FOM,1.61,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.6,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.61,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.6,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,1500.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" +BioSNG,investment,1500.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.32,per unit,Stoichiometric calculation, BtL,C stored,0.68,per unit,Stoichiometric calculation, BtL,CO2 stored,0.25,tCO2/MWh_th,Stoichiometric calculation, -BtL,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.45,per unit,doi:10.1016/j.enpol.2017.05.013, BtL,investment,2000.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.25,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.2,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.6,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,800.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.2,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,800.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station., CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.", CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station., @@ -66,14 +66,14 @@ Compressed-Air-Adiabatic-store,investment,5448.79,EUR/MWh,"Viswanathan_2022, p.6 Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,69742.61,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,investment,106967.44,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,278970.44,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,investment,427869.76,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Concrete-store,FOM,0.34,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,14890.78,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,investment,19467.51,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -97,19 +97,19 @@ Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" Gravity-Brick-bicharger,investment,415570.52,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,106514.25,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,investment,131947.99,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" Gravity-Water-Aboveground-bicharger,investment,365630.71,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,82754.38,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,investment,102254.7,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" Gravity-Water-Underground-bicharger,investment,905158.96,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,65566.39,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,investment,80774.46,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)", H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).", @@ -151,28 +151,28 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., HVDC submarine,investment,471.16,EUR/MW/km,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,investment,813.55,EUR/kW_NH3,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,investment,813.55,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,69944.6,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,investment,107068.43,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,279778.39,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,investment,428273.73,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,62761.43,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,investment,78434.49,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen-charger,FOM,0.99,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-charger,investment,-832677.97,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,FOM,0.66,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,190614.33,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.64,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-discharger,investment,-1092444.38,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,FOM,0.6,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,179739.35,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Hydrogen-store,investment,4779.95,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" @@ -201,48 +201,48 @@ LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://pap LOHC unloaded DBT storage,FOM,6.25,%/year,, LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", LOHC unloaded DBT storage,lifetime,30.0,years,, -Lead-Acid-bicharger,FOM,2.5,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,FOM,2.47,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,93387.77,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,investment,111120.69,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.28,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,244767.8,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,FOM,0.27,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,282699.59,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,428253.89,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,investment,451987.56,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,300688.9,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,investment,317352.97,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Liquid-Air-store,FOM,0.31,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,111874.08,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,investment,135439.43,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.2,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,FOM,2.16,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,57718.82,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,investment,69636.15,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,84940.81,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,investment,160711.81,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.2,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,FOM,2.16,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,57718.82,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,investment,69636.15,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,95395.28,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,investment,182486.07,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,135388.93,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,investment,139790.6,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,541555.71,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,investment,559162.39,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,38708.36,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,investment,48374.78,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", @@ -258,32 +258,32 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.2,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,FOM,2.16,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,57718.82,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,investment,69636.15,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,137050.21,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,investment,202444.04,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.8,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.43,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,411.84,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,411.84,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,684648.25,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,investment,723215.46,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,480710.47,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,investment,507789.58,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.31,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,-21998.47,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,FOM,0.17,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,7109.69,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" @@ -303,167 +303,167 @@ SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,129867.9,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,investment,137030.09,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,519471.62,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,investment,548120.35,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,4468.88,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,investment,5584.86,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Vanadium-Redox-Flow-bicharger,FOM,2.5,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,FOM,2.47,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,93473.05,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,investment,111248.05,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Vanadium-Redox-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,156927.03,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,investment,207499.94,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.12,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,139544.97,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,FOM,0.15,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,156966.49,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,1.52,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,FOM,1.82,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,-8045.32,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,investment,36754.08,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.21,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,303047.55,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,357677.07,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.18,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,175257.5,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,FOM,0.2,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,207239.04,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,investment,457307.78,EUR/t_N2/h,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.9,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,60.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,75.0,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,investment,457307.78,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.9,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,60.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,75.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.09,tCO2/MWh_th,Stoichiometric calculation, -biogas,FOM,14.12,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,FOM,14.12,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" biogas,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1385.66,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,453.6,EUR/kW_CH4,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.51,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.68,EUR/MWh input,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,343.0,EUR/kW input,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" +biogas,investment,1385.66,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,investment,453.6,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,2.51,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.68,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,investment,343.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" biomass,FOM,4.53,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.47,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.54,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,2912.24,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.54,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,2912.24,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,3.12,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.03,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,753.2,EUR/kW_th - heat output,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.54,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,587.36,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,1800000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.23,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.67,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.25,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.72,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.54,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1783.87,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.46,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass CHP,FOM,3.54,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,2912.24,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.54,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,2912.24,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,3.12,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,753.2,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.54,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,587.36,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,1800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.23,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.67,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.25,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.72,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.54,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1783.87,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.46,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.43,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,520.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,520.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas boiler,FOM,3.4,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.44,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.43,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.75,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,456.84,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central resistive heater,FOM,1.53,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas boiler,FOM,3.4,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.44,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.43,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.75,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,456.84,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central resistive heater,FOM,1.53,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.85,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.67,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.34,50°C/100°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3155.95,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.85,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.67,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.34,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3155.95,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central water tank storage,FOM,0.64,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.47,EUR/kWhCapacity,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central water tank storage,FOM,0.64,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.47,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.63,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -487,23 +487,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.14,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.14,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,760.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.73,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,760.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.73,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,268.51,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,167.82,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.99,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,268.51,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,167.82,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.99,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,4.05,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1200.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,4.05,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1200.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.01,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -526,41 +526,41 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.28,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-input,1.5,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,4000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -electric boiler steam,FOM,1.31,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.28,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,heat-input,1.5,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,4000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +electric boiler steam,FOM,1.31,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.75,per unit,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,investment,250.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,35.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,800.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M +electrolysis,efficiency,0.75,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,investment,250.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,lifetime,35.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,800.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.2,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,20.1,EUR/MWh_th,BP 2019, -gas boiler steam,FOM,3.74,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.45,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,3.74,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.45,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.59,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.03,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -623,21 +623,21 @@ methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", methanolisation,investment,480584.39,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.43,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.61,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,5763.55,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.43,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.61,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,5763.55,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.01,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.01,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1487.88,"EUR/kW_e, 2020","Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020]" -offwind,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1487.88,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020]" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -645,16 +645,16 @@ offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions oil,CO2 intensity,0.26,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.41,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.41,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,336.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.18,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.22,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,963.07,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,336.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.18,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.22,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,963.07,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -663,34 +663,34 @@ seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", seawater desalination,investment,21025.64,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -solar,FOM,2.07,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,FOM,2.07,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,370.19,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop,FOM,1.61,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,investment,370.19,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop,FOM,1.61,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,475.38,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop commercial,FOM,1.81,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,374.88,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.4,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,575.88,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.53,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,265.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-rooftop,investment,475.38,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop commercial,FOM,1.81,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,374.88,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.4,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,575.88,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.53,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,265.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.28,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.85,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,536.36,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,6.28,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.85,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,536.36,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2060.csv b/outputs/costs_2060.csv new file mode 100644 index 0000000..b90b0bd --- /dev/null +++ b/outputs/costs_2060.csv @@ -0,0 +1,696 @@ +technology,parameter,value,unit,source,further description +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", +Ammonia cracker,investment,527592.22,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.", +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", +BioSNG,C in fuel,0.38,per unit,Stoichiometric calculation, +BioSNG,C stored,0.62,per unit,Stoichiometric calculation, +BioSNG,CO2 stored,0.23,tCO2/MWh_th,Stoichiometric calculation, +BioSNG,FOM,1.61,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.6,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" +BioSNG,investment,1500.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" +BtL,C in fuel,0.32,per unit,Stoichiometric calculation, +BtL,C stored,0.68,per unit,Stoichiometric calculation, +BtL,CO2 stored,0.25,tCO2/MWh_th,Stoichiometric calculation, +BtL,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BtL,efficiency,0.45,per unit,doi:10.1016/j.enpol.2017.05.013, +BtL,investment,2000.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" +BtL,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.25,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.2,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.6,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,800.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station., +CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.", +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station., +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology)., +CH4 (g) pipeline,investment,79.0,EUR/MW/km,Guesstimate., +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology)., +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.", +CH4 (g) submarine pipeline,investment,114.89,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 ., +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.", +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,investment,87.6,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,investment,232.13,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,investment,16.03,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .", +CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.", +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .", +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +Compressed-Air-Adiabatic-bicharger,FOM,0.93,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.72,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,946180.94,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Compressed-Air-Adiabatic-store,investment,5448.79,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-charger,investment,105241.78,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,420967.14,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-store,FOM,0.34,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,19255.34,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +Fischer-Tropsch,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", +Fischer-Tropsch,investment,480584.39,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +Gasnetz,FOM,,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,investment,,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,lifetime,,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .", +General liquid hydrocarbon storage (crude),investment,135.83,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .", +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .", +General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .", +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,415570.52,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Brick-store,investment,130768.94,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,365630.71,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-store,investment,101350.72,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,905158.96,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-store,investment,80069.45,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)", +H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).", +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", +H2 (g) pipeline,FOM,1.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", +H2 (g) pipeline,investment,226.47,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf., +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", +H2 (g) pipeline repurposed,FOM,1.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", +H2 (g) pipeline repurposed,investment,105.88,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf., +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline., +H2 (g) submarine pipeline,investment,329.37,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).", +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline., +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.", +H2 (l) storage tank,investment,750.08,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.", +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.", +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,investment,361223561.58,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 evaporation,investment,56.59,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.", +H2 evaporation,lifetime,20.0,years,Guesstimate., +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 liquefaction,investment,522.34,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.", +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions +H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,investment,162364.82,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., +HVDC submarine,investment,471.16,EUR/MW/km,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,investment,813.55,EUR/kW_NH3,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-charger,investment,105347.46,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,421389.84,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,77707.92,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Hydrogen-charger,FOM,0.74,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,155494.18,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-discharger,FOM,0.55,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,214520.77,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Hydrogen-store,investment,4779.95,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", +LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).", +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", +LOHC chemical,investment,2264.33,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation,investment,50728.03,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation (small scale),investment,759908.15,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,investment,51259.54,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC loaded DBT storage,FOM,6.25,%/year,, +LOHC loaded DBT storage,investment,149.27,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", +LOHC loaded DBT storage,lifetime,30.0,years,, +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,investment,31700578.34,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC unloaded DBT storage,FOM,6.25,%/year,, +LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", +LOHC unloaded DBT storage,lifetime,30.0,years,, +Lead-Acid-bicharger,FOM,2.48,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,110298.64,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-store,FOM,0.27,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,280941.16,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-charger,investment,450887.32,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,investment,316580.46,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-store,FOM,0.31,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,134346.99,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Lithium-Ion-LFP-bicharger,FOM,2.16,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,69083.69,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,157199.25,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,FOM,2.16,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,69083.69,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,178448.74,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-charger,investment,139586.55,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,558346.19,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,47926.67,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4.", +Methanol steam reforming,investment,16318.43,EUR/MW_H2,"Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4.", +Methanol steam reforming,lifetime,20.0,years,"Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4.", +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", +NH3 (l) storage tank incl. liquefaction,investment,161.93,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.", +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", +Ni-Zn-bicharger,FOM,2.16,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" +Ni-Zn-bicharger,investment,69083.69,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,199412.54,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +OCGT,FOM,1.8,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.43,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,411.84,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" +Pumped-Heat-charger,investment,721427.58,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,investment,506534.26,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,FOM,0.17,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,7103.77,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1397128.46,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Pumped-Storage-Hydro-store,investment,57074.06,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR,investment,493470.4,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-charger,investment,136698.06,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,investment,546792.26,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,5533.13,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", +Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", +Vanadium-Redox-Flow-bicharger,FOM,2.47,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,110424.04,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,205155.5,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-store,FOM,0.14,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,156158.87,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-bicharger,FOM,1.8,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,34677.29,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,355144.58,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-store,FOM,0.2,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,205756.45,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,investment,457307.78,EUR/t_N2/h,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.9,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,60.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,75.0,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +biogas,CO2 stored,0.09,tCO2/MWh_th,Stoichiometric calculation, +biogas,FOM,14.12,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions +biogas,investment,1385.66,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,investment,453.6,EUR/kW_CH4,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,2.51,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.68,EUR/MWh input,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,investment,343.0,EUR/kW input,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" +biomass,FOM,4.53,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,efficiency,0.47,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions +biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass CHP,FOM,3.54,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,2912.24,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.54,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,2912.24,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,3.12,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.03,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,753.2,EUR/kW_th - heat output,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.54,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,587.36,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,1800000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.23,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.67,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.25,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.72,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.54,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1783.87,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.46,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions +central gas CHP,efficiency,0.43,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,520.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central gas boiler,FOM,3.4,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.44,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.43,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.75,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,456.84,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central resistive heater,FOM,1.53,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions +central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +central solid biomass CHP,FOM,2.85,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.67,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.34,50°C/100°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3155.95,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central water tank storage,FOM,0.64,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.47,EUR/kWhCapacity,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,investment,67.63,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +coal,CO2 intensity,0.34,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,fuel,8.15,EUR/MWh_th,BP 2019, +coal,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +csp-tower,FOM,1.4,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power), +csp-tower,investment,90.01,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/)., +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power), +csp-tower TES,FOM,1.4,%/year,see solar-tower., +csp-tower TES,investment,12.06,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/)., +csp-tower TES,lifetime,30.0,years,see solar-tower., +csp-tower power block,FOM,1.4,%/year,see solar-tower., +csp-tower power block,investment,630.57,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/)., +csp-tower power block,lifetime,30.0,years,see solar-tower., +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions +decentral air-sourced heat pump,FOM,3.14,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral air-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,760.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.73,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,268.51,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,167.82,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.99,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral ground-sourced heat pump,efficiency,4.05,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1200.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,investment,156.01,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral water tank storage,investment,18.38,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions +digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.28,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,heat-input,1.5,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,4000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +electric boiler steam,FOM,1.31,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electrolysis,FOM,2.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M +electrolysis,efficiency,0.75,per unit,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,investment,250.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,lifetime,35.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,800.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +gas,CO2 intensity,0.2,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, +gas,fuel,20.1,EUR/MWh_th,BP 2019, +gas boiler steam,FOM,3.74,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.45,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas storage,FOM,3.59,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" +gas storage,investment,0.03,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" +gas storage charger,investment,14.34,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage discharger,investment,4.78,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +geothermal,CO2 intensity,0.03,tCO2/MWhth,https://www.eia.gov/environment/emissions/co2_vol_mass.php, from old pypsa cost assumptions +geothermal,FOM,2.36,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +geothermal,efficiency,0.24,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +geothermal,investment,3392.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +geothermal,lifetime,40.0,years,IEA2010, from old pypsa cost assumptions +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions +helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", +hydrogen storage compressor,investment,79.42,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", +hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", +hydrogen storage tank type 1 including compressor,FOM,1.9,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,21.0,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,1.2,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.09,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.2,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,840.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.85,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,700.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +lignite,CO2 intensity,0.41,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,fuel,2.9,EUR/MWh_th,DIW, +lignite,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", +methanation,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +methanation,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", +methanation,investment,480.58,"EUR/MW_CH4; and +EUR/kW_CH4","Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,lifetime,20.0,years,Guesstimate., +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.", +methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10)., +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +methanolisation,investment,480584.39,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +micro CHP,FOM,6.43,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.61,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,5763.55,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +offwind,FOM,2.01,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +offwind,investment,1487.88,"EUR/kW_e, 2020","Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020]" +offwind,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions +offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions +offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions +oil,CO2 intensity,0.26,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, +oil,FOM,2.41,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions +oil,investment,336.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.18,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.22,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,963.07,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", +seawater desalination,investment,21025.64,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +solar,FOM,2.07,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +solar,investment,370.19,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop,FOM,1.61,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions +solar-rooftop,investment,475.38,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop commercial,FOM,1.81,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,374.88,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.4,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,575.88,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.53,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,265.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, +solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", +solid biomass boiler steam,FOM,6.28,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.85,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,536.36,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) From 2043de5520f940a59aca377b6d07cb84796f1678 Mon Sep 17 00:00:00 2001 From: Max Parzen Date: Sat, 18 Feb 2023 17:35:09 +0000 Subject: [PATCH 17/24] fix demon typo --- scripts/compile_cost_assumptions.py | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/scripts/compile_cost_assumptions.py b/scripts/compile_cost_assumptions.py index 9c60b11..93499a3 100644 --- a/scripts/compile_cost_assumptions.py +++ b/scripts/compile_cost_assumptions.py @@ -1720,7 +1720,7 @@ def add_energy_storage_database(costs, data_year): # While the first segment is known, the others are defined by the initial segments with a accumulating quadratic descreasing gradient other_segments_points = [2034, 2039, 2044, 2049, 2054, 2059] - def geometric_series(nominator, demoninator=1, number_of_terms=1, start=1): + def geometric_series(nominator, denominator=1, number_of_terms=1, start=1): """ A geometric series is a series with a constant ratio between successive terms. When moving to infinity the geometric series converges to a limit. @@ -1729,21 +1729,21 @@ def geometric_series(nominator, demoninator=1, number_of_terms=1, start=1): Example: -------- nominator = 1 - demoninator = 2 + denominator = 2 number_of_terms = 3 start = 0 # 0 means it starts at the first term result = 1/1**0 + 1/2**1 + 1/2**2 = 1 + 1/2 + 1/4 = 1.75 If moving to infinity the result converges to 2 """ - return sum([nominator/demoninator**i for i in range(start, start+number_of_terms)]) + return sum([nominator/denominator**i for i in range(start, start+number_of_terms)]) if tech=="Hydrogen-discharger" or tech=="Pumped-Heat-store": x1 = pd.concat([x,pd.DataFrame(other_segments_points)], ignore_index=True) y1 = y factor = 5 for i in range(len(other_segments_points)): # -1 because of segments - cost_at_year = endp_first_segment - geometric_series(nominator=first_segment_diff, demoninator=factor, number_of_terms=i+1) + cost_at_year = endp_first_segment - geometric_series(nominator=first_segment_diff, denominator=factor, number_of_terms=i+1) y1 = pd.concat([y1, pd.DataFrame([cost_at_year])], ignore_index=True) f = interpolate.interp1d(x1.squeeze(), y1.squeeze(), kind='linear', fill_value="extrapolate") elif tech=="Hydrogen-charger": @@ -1751,7 +1751,7 @@ def geometric_series(nominator, demoninator=1, number_of_terms=1, start=1): y2 = y factor = 6.5 for i in range(len(other_segments_points)): - cost_at_year = endp_first_segment - geometric_series(nominator=first_segment_diff, demoninator=factor, number_of_terms=i+1) + cost_at_year = endp_first_segment - geometric_series(nominator=first_segment_diff, denominator=factor, number_of_terms=i+1) y2 = pd.concat([y2, pd.DataFrame([cost_at_year])], ignore_index=True) f = interpolate.interp1d(x2.squeeze(), y2.squeeze(), kind='linear', fill_value="extrapolate") else: @@ -1759,7 +1759,7 @@ def geometric_series(nominator, demoninator=1, number_of_terms=1, start=1): y3 = y factor = 2 for i in range(len(other_segments_points)): - cost_at_year = endp_first_segment - geometric_series(nominator=first_segment_diff, demoninator=factor, number_of_terms=i+1) + cost_at_year = endp_first_segment - geometric_series(nominator=first_segment_diff, denominator=factor, number_of_terms=i+1) y3 = pd.concat([y3, pd.DataFrame([cost_at_year])], ignore_index=True) f = interpolate.interp1d(x3.squeeze(), y3.squeeze(), kind='linear', fill_value="extrapolate") ynew = f(data_year) From b4ab970ece55b53542aec867390873838a5ca4f8 Mon Sep 17 00:00:00 2001 From: Max Parzen Date: Wed, 17 May 2023 17:58:12 +0100 Subject: [PATCH 18/24] add latex table fix --- latex_tables/tables_in_latex.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/latex_tables/tables_in_latex.py b/latex_tables/tables_in_latex.py index c257e85..6535601 100644 --- a/latex_tables/tables_in_latex.py +++ b/latex_tables/tables_in_latex.py @@ -184,6 +184,7 @@ #'NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; 'IWES Interaktion':'Gerhardt_2015, DEA_2019', 'Schaber thesis':'Schaber_2013', + 'Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 ': 'Hagspiel_2014', 'Hagspiel':'Hagspiel_2014', #'Fasihi':'Fasihi_2017', 'Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306':'Fasihi_2017', @@ -197,6 +198,7 @@ 'Is a 100% renewable European power system feasible by 2050?': 'Zappa_2019, JRC_biomass', 'Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018': 'German_Environment_Agency', 'IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf':'IEA_WEO2017', + 'Danish Energy Agency': 'DEA_2019', 'Danish Energy Agency, technology_data_for_el_and_dh.xlsx':'DEA_2019', 'Danish Energy Agency, technology_data_for_el_and_dh_-_0009.xlsx':'DEA_2019', 'Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx':'DEA_2019', From 9246f9a3395a3cdc10d41f357a13a13afe209452 Mon Sep 17 00:00:00 2001 From: Max Parzen Date: Wed, 17 May 2023 18:03:59 +0100 Subject: [PATCH 19/24] revert data back to master --- outputs/costs_2020.csv | 521 ++++++++++++++---------------- outputs/costs_2025.csv | 521 ++++++++++++++---------------- outputs/costs_2030.csv | 521 ++++++++++++++---------------- outputs/costs_2035.csv | 521 ++++++++++++++---------------- outputs/costs_2040.csv | 521 ++++++++++++++---------------- outputs/costs_2045.csv | 521 ++++++++++++++---------------- outputs/costs_2050.csv | 517 ++++++++++++++---------------- outputs/costs_2060.csv | 696 ----------------------------------------- 8 files changed, 1685 insertions(+), 2654 deletions(-) delete mode 100644 outputs/costs_2060.csv diff --git a/outputs/costs_2020.csv b/outputs/costs_2020.csv index 21c6487..429379d 100644 --- a/outputs/costs_2020.csv +++ b/outputs/costs_2020.csv @@ -1,22 +1,24 @@ technology,parameter,value,unit,source,further description -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -Ammonia cracker,investment,1062107.74,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.", +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). +Ammonia cracker,investment,1062107.74,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -BioSNG,C in fuel,0.32,per unit,Stoichiometric calculation, -BioSNG,C stored,0.68,per unit,Stoichiometric calculation, -BioSNG,CO2 stored,0.25,tCO2/MWh_th,Stoichiometric calculation, +BioSNG,C in fuel,0.32,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.68,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.25,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,FOM,1.61,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" BioSNG,VOM,2.7,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" -BioSNG,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BioSNG,efficiency,0.6,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" BioSNG,investment,2500.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.25,per unit,Stoichiometric calculation, -BtL,C stored,0.75,per unit,Stoichiometric calculation, -BtL,CO2 stored,0.28,tCO2/MWh_th,Stoichiometric calculation, +BtL,C in fuel,0.25,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.75,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.28,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,FOM,2.4,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" -BtL,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.35,per unit,doi:10.1016/j.enpol.2017.05.013, BtL,investment,3500.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" @@ -27,114 +29,91 @@ CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xl CCGT,efficiency,0.56,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" CCGT,investment,880.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station., -CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.", -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station., -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology)., -CH4 (g) pipeline,investment,79.0,EUR/MW/km,Guesstimate., -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology)., -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.", -CH4 (g) submarine pipeline,investment,114.89,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 ., -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.", +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) pipeline,investment,79.0,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (g) submarine pipeline,investment,114.89,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.6,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,investment,87.6,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,investment,232.13,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,electricity-input,0.04,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.13,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,investment,16.03,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." +CO2 liquefaction,electricity-input,0.12,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.01,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.03,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .", -CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.", -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .", +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -Compressed-Air-Adiabatic-bicharger,FOM,0.93,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.72,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,946180.94,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,5448.79,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,188018.41,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,752073.64,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,29432.58,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,VOM,5.3,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,carbondioxide-input,0.36,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,investment,757401.0,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", +Fischer-Tropsch,electricity-input,0.01,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.53,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,757401.0,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .", -General liquid hydrocarbon storage (crude),investment,135.83,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .", +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (crude),investment,135.83,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .", -General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .", +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,415570.52,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,187325.79,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,365630.71,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,144713.47,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,905158.96,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,113887.53,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)", -H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).", +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." +H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,4.0,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) pipeline,investment,226.47,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf., -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) pipeline repurposed,FOM,4.0,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) pipeline repurposed,investment,105.88,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf., -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline., -H2 (g) submarine pipeline,investment,329.37,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).", -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline., -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.", -H2 (l) storage tank,investment,750.08,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.", -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.", +H2 (g) pipeline,FOM,4.0,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline,investment,226.47,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline repurposed,FOM,4.0,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) pipeline repurposed,investment,105.88,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline,investment,329.37,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) storage tank,investment,750.08,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,investment,361223561.58,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,143.64,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.", -H2 evaporation,lifetime,20.0,years,Guesstimate., +H2 evaporation,investment,143.64,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,investment,870.56,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.", +H2 liquefaction,electricity-input,0.2,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.02,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,870.56,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions @@ -148,123 +127,61 @@ HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.en HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -HVDC submarine,investment,471.16,EUR/MW/km,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,investment,471.16,EUR/MW/km,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,electricity-input,0.25,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.15,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." Haber-Bosch,investment,1586.29,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,187899.51,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,751598.02,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,112560.01,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen-charger,FOM,0.46,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,1304350.41,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.48,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,1265835.33,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4779.95,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", -LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).", -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", +Haber-Bosch,nitrogen-input,0.16,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. LOHC chemical,investment,2264.33,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.03,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation,investment,50728.03,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.15,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation (small scale),investment,759908.15,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,investment,51259.54,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,electricity-input,0.0,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.87,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.54,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC loaded DBT storage,FOM,6.25,%/year,, -LOHC loaded DBT storage,investment,149.27,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", -LOHC loaded DBT storage,lifetime,30.0,years,, +LOHC hydrogenation,lohc-input,0.94,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC loaded DBT storage,investment,149.27,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,investment,31700578.34,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC unloaded DBT storage,FOM,6.25,%/year,, -LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", -LOHC unloaded DBT storage,lifetime,30.0,years,, -Lead-Acid-bicharger,FOM,2.41,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,149731.23,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.24,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,365289.85,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,503663.74,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,353636.24,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,186749.11,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.07,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,95584.19,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,325690.76,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.07,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,95584.19,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,372111.99,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,149374.51,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,597498.06,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,69421.83,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4.", -Methanol steam reforming,investment,16318.43,EUR/MW_H2,"Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4.", -Methanol steam reforming,lifetime,20.0,years,"Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4.", +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,investment,16318.43,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,methanol-input,1.2,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.93,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.", +NH3 (l) storage tank incl. liquefaction,investment,161.93,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.07,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,95584.19,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.22,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,344828.41,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" OCGT,FOM,1.78,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M OCGT,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" @@ -274,24 +191,6 @@ PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,807189.25,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,566749.9,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.06,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,31293.83,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1397128.46,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,57074.06,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR,investment,493470.4,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" @@ -301,49 +200,12 @@ SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydroge SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,152624.56,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,610498.26,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,8014.74,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Vanadium-Redox-Flow-bicharger,FOM,2.4,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,149950.21,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,317614.19,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.19,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,194899.01,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.48,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,134297.45,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.28,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,476623.91,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.25,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,276873.61,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,methane-input,1.48,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." air separation unit,investment,891679.11,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime battery inverter,FOM,0.2,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M @@ -352,13 +214,19 @@ battery inverter,investment,270.0,EUR/kW,"Danish Energy Agency, technology_data_ battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime battery storage,investment,232.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment battery storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.09,tCO2/MWh_th,Stoichiometric calculation, +biogas,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biogas,FOM,11.38,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions biogas,investment,1710.69,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas CC,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,11.38,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas CC,investment,1710.69,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M biogas plus hydrogen,investment,907.2,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime @@ -405,6 +273,7 @@ biomass boiler,FOM,7.39,%/year,"Danish Energy Agency, technologydatafor_heating_ biomass boiler,efficiency,0.82,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" biomass boiler,investment,682.67,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln @@ -434,6 +303,12 @@ central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_f central gas CHP,investment,590.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central gas CHP CC,FOM,3.31,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,590.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas boiler,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M central gas boiler,VOM,1.1,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" @@ -444,6 +319,11 @@ central ground-sourced heat pump,VOM,0.98,EUR/MWh_th,"Danish Energy Agency, tech central ground-sourced heat pump,efficiency,1.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" central ground-sourced heat pump,investment,564.0,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,1300.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime central resistive heater,FOM,1.53,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M central resistive heater,VOM,0.9,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" @@ -461,6 +341,22 @@ central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, t central solid biomass CHP,investment,3534.65,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central solid biomass CHP CC,FOM,2.89,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.6,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,5449.8,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.89,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.6,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3534.65,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central water tank storage,FOM,0.52,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M central water tank storage,investment,0.58,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime @@ -474,15 +370,15 @@ coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Versi coal,fuel,8.15,EUR/MWh_th,BP 2019, coal,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -csp-tower,FOM,1.0,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power), -csp-tower,investment,144.88,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/)., -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power), -csp-tower TES,FOM,1.0,%/year,see solar-tower., -csp-tower TES,investment,19.41,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/)., -csp-tower TES,lifetime,30.0,years,see solar-tower., -csp-tower power block,FOM,1.0,%/year,see solar-tower., -csp-tower power block,investment,1014.93,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/)., -csp-tower power block,lifetime,30.0,years,see solar-tower., +csp-tower,FOM,1.0,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. +csp-tower,investment,144.88,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- +csp-tower TES,FOM,1.0,%/year,see solar-tower.,- +csp-tower TES,investment,19.41,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,lifetime,30.0,years,see solar-tower.,- +csp-tower power block,FOM,1.0,%/year,see solar-tower.,- +csp-tower power block,investment,1014.93,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,lifetime,30.0,years,see solar-tower.,- decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions @@ -523,17 +419,37 @@ decentral water tank storage,investment,18.38,EUR/kWh,IWES Interaktion, from old decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,investment,4000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.35,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-input,2.5,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.21,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.21,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.55,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.55,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime electric boiler steam,FOM,1.34,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M electric boiler steam,VOM,0.86,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" @@ -545,8 +461,17 @@ electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assu electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electrobiofuels,C in fuel,0.92,per unit,Stoichiometric calculation, +electrobiofuels,FOM,2.4,%/year,combination of BtL and electrofuels, +electrobiofuels,VOM,4.66,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.18,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.62,per unit,Stoichiometric calculation, +electrobiofuels,investment,517844.13,EUR/kW_th,combination of BtL and electrofuels, electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M electrolysis,efficiency,0.66,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,efficiency-heat,0.18,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating electrolysis,investment,650.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M @@ -575,18 +500,24 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions +home battery inverter,FOM,0.2,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,377.0,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,323.53,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,20.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", -hydrogen storage compressor,investment,79.42,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. +hydrogen storage compressor,investment,79.42,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1 including compressor,FOM,1.05,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M hydrogen storage tank type 1 including compressor,investment,57.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment hydrogen storage tank type 1 including compressor,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime @@ -612,16 +543,21 @@ lignite,fuel,2.9,EUR/MWh_th,DIW, lignite,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanation,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,investment,718.95,"EUR/MW_CH4; and -EUR/kW_CH4","Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", -methanation,lifetime,20.0,years,Guesstimate., -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.", -methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10)., -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.", +methanation,carbondioxide-input,0.2,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions +methanation,hydrogen-input,1.28,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,718.95,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). +methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,investment,757401.0,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", +methanolisation,VOM,6.27,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +methanolisation,carbondioxide-input,0.25,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.27,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,hydrogen-input,1.14,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,757401.0,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", micro CHP,FOM,6.67,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" @@ -634,9 +570,9 @@ nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Ve nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.36,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.51,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1916.48,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020]" +offwind,investment,1804.77,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" offwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -659,18 +595,19 @@ ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +seawater RO desalination,electricity-input,0.0,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", seawater desalination,investment,40219.78,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -solar,FOM,1.58,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,FOM,1.58,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,733.47,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop,FOM,1.15,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,investment,733.47,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar-rooftop,FOM,1.15,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,957.47,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop,investment,957.47,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop commercial,FOM,1.22,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] solar-rooftop commercial,investment,790.08,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] solar-rooftop commercial,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] @@ -680,6 +617,9 @@ solar-rooftop residential,lifetime,35.0,years,"Danish Energy Agency, technology_ solar-utility,FOM,2.01,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] solar-utility,investment,509.47,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] solar-utility,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,1.86,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,589.04,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", solid biomass boiler steam,FOM,5.45,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M @@ -687,10 +627,31 @@ solid biomass boiler steam,VOM,2.78,EUR/MWh,"Danish Energy Agency, technology_da solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" solid biomass boiler steam,investment,618.18,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,5.45,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,618.18,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,investment,4000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +waste CHP,FOM,2.4,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,27.28,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.28,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,8577.7,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.4,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,27.28,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.28,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,8577.7,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2025.csv b/outputs/costs_2025.csv index 6096e87..b9cb92d 100644 --- a/outputs/costs_2025.csv +++ b/outputs/costs_2025.csv @@ -1,22 +1,24 @@ technology,parameter,value,unit,source,further description -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -Ammonia cracker,investment,1062107.74,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.", +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). +Ammonia cracker,investment,1062107.74,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -BioSNG,C in fuel,0.33,per unit,Stoichiometric calculation, -BioSNG,C stored,0.67,per unit,Stoichiometric calculation, -BioSNG,CO2 stored,0.24,tCO2/MWh_th,Stoichiometric calculation, +BioSNG,C in fuel,0.33,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.67,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.24,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,FOM,1.62,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" BioSNG,VOM,2.2,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" -BioSNG,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BioSNG,efficiency,0.62,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" BioSNG,investment,2050.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.26,per unit,Stoichiometric calculation, -BtL,C stored,0.74,per unit,Stoichiometric calculation, -BtL,CO2 stored,0.27,tCO2/MWh_th,Stoichiometric calculation, +BtL,C in fuel,0.26,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.74,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.27,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,FOM,2.53,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" -BtL,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.37,per unit,doi:10.1016/j.enpol.2017.05.013, BtL,investment,3250.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" @@ -27,114 +29,91 @@ CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xl CCGT,efficiency,0.57,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" CCGT,investment,855.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station., -CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.", -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station., -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology)., -CH4 (g) pipeline,investment,79.0,EUR/MW/km,Guesstimate., -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology)., -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.", -CH4 (g) submarine pipeline,investment,114.89,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 ., -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.", +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) pipeline,investment,79.0,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (g) submarine pipeline,investment,114.89,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.6,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,investment,87.6,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,investment,232.13,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,electricity-input,0.04,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.13,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,investment,16.03,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." +CO2 liquefaction,electricity-input,0.12,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.01,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.03,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .", -CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.", -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .", +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -Compressed-Air-Adiabatic-bicharger,FOM,0.93,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.72,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,946180.94,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,5448.79,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,166105.34,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,664421.36,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,26738.41,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,VOM,4.75,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,carbondioxide-input,0.34,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,investment,704056.13,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", +Fischer-Tropsch,electricity-input,0.01,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.48,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,704056.13,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .", -General liquid hydrocarbon storage (crude),investment,135.83,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .", +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (crude),investment,135.83,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .", -General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .", +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,415570.52,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,172353.76,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,365630.71,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,133234.25,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,905158.96,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,104935.02,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)", -H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).", +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." +H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,3.58,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) pipeline,investment,226.47,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf., -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) pipeline repurposed,FOM,3.58,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) pipeline repurposed,investment,105.88,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf., -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline., -H2 (g) submarine pipeline,investment,329.37,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).", -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline., -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.", -H2 (l) storage tank,investment,750.08,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.", -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.", +H2 (g) pipeline,FOM,3.58,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline,investment,226.47,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline repurposed,FOM,3.58,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) pipeline repurposed,investment,105.88,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline,investment,329.37,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) storage tank,investment,750.08,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,investment,361223561.58,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,143.64,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.", -H2 evaporation,lifetime,20.0,years,Guesstimate., +H2 evaporation,investment,143.64,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,investment,870.56,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.", +H2 liquefaction,electricity-input,0.2,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.02,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,870.56,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions @@ -148,123 +127,61 @@ HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.en HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -HVDC submarine,investment,471.16,EUR/MW/km,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,investment,471.16,EUR/MW/km,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,electricity-input,0.25,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.15,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." Haber-Bosch,investment,1441.86,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,166045.89,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,664183.55,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,103333.78,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen-charger,FOM,0.55,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,825760.62,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.53,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,822421.39,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4779.95,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", -LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).", -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", +Haber-Bosch,nitrogen-input,0.16,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. LOHC chemical,investment,2264.33,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.03,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation,investment,50728.03,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.15,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation (small scale),investment,759908.15,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,investment,51259.54,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,electricity-input,0.0,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.87,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.54,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC loaded DBT storage,FOM,6.25,%/year,, -LOHC loaded DBT storage,investment,149.27,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", -LOHC loaded DBT storage,lifetime,30.0,years,, +LOHC hydrogenation,lohc-input,0.94,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC loaded DBT storage,investment,149.27,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,investment,31700578.34,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC unloaded DBT storage,FOM,6.25,%/year,, -LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", -LOHC unloaded DBT storage,lifetime,30.0,years,, -Lead-Acid-bicharger,FOM,2.42,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,139292.42,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.25,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,342960.62,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,489692.48,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,343826.64,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,172876.94,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.09,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,88568.84,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,281086.79,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.09,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,88568.84,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,320844.42,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,146783.39,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,587133.56,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,63731.51,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4.", -Methanol steam reforming,investment,16318.43,EUR/MW_H2,"Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4.", -Methanol steam reforming,lifetime,20.0,years,"Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4.", +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,investment,16318.43,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,methanol-input,1.2,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.93,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.", +NH3 (l) storage tank incl. liquefaction,investment,161.93,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.09,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,88568.84,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,306333.14,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" OCGT,FOM,1.78,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M OCGT,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" @@ -274,24 +191,6 @@ PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,784485.96,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,550809.29,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.11,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,21420.31,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1397128.46,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,57074.06,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR,investment,493470.4,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" @@ -301,49 +200,12 @@ SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydroge SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,148408.42,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,593633.67,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,7357.8,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Vanadium-Redox-Flow-bicharger,FOM,2.42,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,139486.63,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,287843.52,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.18,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,184643.51,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.3,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,107925.47,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.27,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,444465.25,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.24,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,258047.1,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,methane-input,1.48,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." air separation unit,investment,810492.64,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime battery inverter,FOM,0.25,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M @@ -352,13 +214,19 @@ battery inverter,investment,215.0,EUR/kW,"Danish Energy Agency, technology_data_ battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime battery storage,investment,187.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment battery storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.09,tCO2/MWh_th,Stoichiometric calculation, +biogas,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biogas,FOM,12.07,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions biogas,investment,1625.16,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas CC,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,12.07,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas CC,investment,1625.16,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M biogas plus hydrogen,investment,831.6,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime @@ -405,6 +273,7 @@ biomass boiler,FOM,7.43,%/year,"Danish Energy Agency, technologydatafor_heating_ biomass boiler,efficiency,0.84,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" biomass boiler,investment,665.99,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln @@ -434,6 +303,12 @@ central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_f central gas CHP,investment,575.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central gas CHP CC,FOM,3.31,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,575.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M central gas boiler,VOM,1.05,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" @@ -444,6 +319,11 @@ central ground-sourced heat pump,VOM,1.12,EUR/MWh_th,"Danish Energy Agency, tech central ground-sourced heat pump,efficiency,1.72,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" central ground-sourced heat pump,investment,535.8,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,1200.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime central resistive heater,FOM,1.61,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M central resistive heater,VOM,0.95,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" @@ -461,6 +341,22 @@ central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, t central solid biomass CHP,investment,3442.07,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central solid biomass CHP CC,FOM,2.88,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.59,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,5308.7,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.88,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.59,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3442.07,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central water tank storage,FOM,0.53,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M central water tank storage,investment,0.56,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment central water tank storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime @@ -474,15 +370,15 @@ coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Versi coal,fuel,8.15,EUR/MWh_th,BP 2019, coal,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -csp-tower,FOM,1.05,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power), -csp-tower,investment,121.52,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/)., -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power), -csp-tower TES,FOM,1.05,%/year,see solar-tower., -csp-tower TES,investment,16.28,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/)., -csp-tower TES,lifetime,30.0,years,see solar-tower., -csp-tower power block,FOM,1.05,%/year,see solar-tower., -csp-tower power block,investment,851.27,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/)., -csp-tower power block,lifetime,30.0,years,see solar-tower., +csp-tower,FOM,1.05,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. +csp-tower,investment,121.52,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- +csp-tower TES,FOM,1.05,%/year,see solar-tower.,- +csp-tower TES,investment,16.28,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,lifetime,30.0,years,see solar-tower.,- +csp-tower power block,FOM,1.05,%/year,see solar-tower.,- +csp-tower power block,investment,851.27,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,lifetime,30.0,years,see solar-tower.,- decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions @@ -523,17 +419,37 @@ decentral water tank storage,investment,18.38,EUR/kWh,IWES Interaktion, from old decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,investment,3750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.35,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-input,2.5,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.2,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.2,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.52,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.52,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime electric boiler steam,FOM,1.39,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M electric boiler steam,VOM,0.87,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" @@ -545,8 +461,17 @@ electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assu electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electrobiofuels,C in fuel,0.93,per unit,Stoichiometric calculation, +electrobiofuels,FOM,2.53,%/year,combination of BtL and electrofuels, +electrobiofuels,VOM,4.24,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.2,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.63,per unit,Stoichiometric calculation, +electrobiofuels,investment,473961.81,EUR/kW_th,combination of BtL and electrofuels, electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M electrolysis,efficiency,0.67,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,efficiency-heat,0.18,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating electrolysis,investment,550.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment electrolysis,lifetime,27.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M @@ -575,18 +500,24 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions +home battery inverter,FOM,0.25,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,303.6,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,264.77,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,22.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", -hydrogen storage compressor,investment,79.42,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. +hydrogen storage compressor,investment,79.42,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1 including compressor,FOM,1.08,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M hydrogen storage tank type 1 including compressor,investment,50.96,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment hydrogen storage tank type 1 including compressor,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime @@ -612,16 +543,21 @@ lignite,fuel,2.9,EUR/MWh_th,DIW, lignite,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanation,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,investment,673.78,"EUR/MW_CH4; and -EUR/kW_CH4","Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", -methanation,lifetime,20.0,years,Guesstimate., -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.", -methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10)., -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.", +methanation,carbondioxide-input,0.2,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions +methanation,hydrogen-input,1.28,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,673.78,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). +methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,investment,704056.13,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", +methanolisation,VOM,6.27,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +methanolisation,carbondioxide-input,0.25,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.27,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,hydrogen-input,1.14,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,704056.13,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", micro CHP,FOM,6.43,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" @@ -634,9 +570,9 @@ nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Ve nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.23,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.37,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1706.12,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020]" +offwind,investment,1602.34,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -659,18 +595,19 @@ ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +seawater RO desalination,electricity-input,0.0,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", seawater desalination,investment,36907.69,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -solar,FOM,1.73,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,FOM,1.73,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,612.79,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop,FOM,1.26,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,investment,612.79,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar-rooftop,FOM,1.26,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,797.07,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop,investment,797.07,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop commercial,FOM,1.36,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] solar-rooftop commercial,investment,651.27,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] solar-rooftop commercial,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] @@ -680,6 +617,9 @@ solar-rooftop residential,lifetime,37.5,years,"Danish Energy Agency, technology_ solar-utility,FOM,2.2,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] solar-utility,investment,428.52,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] solar-utility,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.04,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,500.34,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", solid biomass boiler steam,FOM,5.76,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M @@ -687,10 +627,31 @@ solid biomass boiler steam,VOM,2.8,EUR/MWh,"Danish Energy Agency, technology_dat solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" solid biomass boiler steam,investment,604.55,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,5.76,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.8,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,604.55,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,investment,3750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +waste CHP,FOM,2.38,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.9,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.29,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.21,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,8344.05,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.38,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.9,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.29,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.21,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,8344.05,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2030.csv b/outputs/costs_2030.csv index 6bc70fb..938e6a2 100644 --- a/outputs/costs_2030.csv +++ b/outputs/costs_2030.csv @@ -1,22 +1,24 @@ technology,parameter,value,unit,source,further description -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -Ammonia cracker,investment,1062107.74,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.", +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). +Ammonia cracker,investment,1062107.74,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -BioSNG,C in fuel,0.34,per unit,Stoichiometric calculation, -BioSNG,C stored,0.66,per unit,Stoichiometric calculation, -BioSNG,CO2 stored,0.24,tCO2/MWh_th,Stoichiometric calculation, +BioSNG,C in fuel,0.34,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.66,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.24,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,FOM,1.64,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" BioSNG,VOM,1.7,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" -BioSNG,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BioSNG,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" BioSNG,investment,1600.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.27,per unit,Stoichiometric calculation, -BtL,C stored,0.73,per unit,Stoichiometric calculation, -BtL,CO2 stored,0.27,tCO2/MWh_th,Stoichiometric calculation, +BtL,C in fuel,0.27,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.73,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.27,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,FOM,2.67,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" -BtL,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.38,per unit,doi:10.1016/j.enpol.2017.05.013, BtL,investment,3000.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" @@ -27,114 +29,91 @@ CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xl CCGT,efficiency,0.58,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" CCGT,investment,830.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station., -CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.", -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station., -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology)., -CH4 (g) pipeline,investment,79.0,EUR/MW/km,Guesstimate., -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology)., -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.", -CH4 (g) submarine pipeline,investment,114.89,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 ., -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.", +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) pipeline,investment,79.0,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (g) submarine pipeline,investment,114.89,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.6,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,investment,87.6,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,investment,232.13,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,electricity-input,0.04,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.13,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,investment,16.03,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." +CO2 liquefaction,electricity-input,0.12,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.01,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.03,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .", -CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.", -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .", +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -Compressed-Air-Adiabatic-bicharger,FOM,0.93,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.72,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,946180.94,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,5448.79,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,144192.27,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,576769.07,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,24044.23,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,VOM,4.2,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,carbondioxide-input,0.33,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,investment,650711.26,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", +Fischer-Tropsch,electricity-input,0.01,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.42,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,650711.26,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .", -General liquid hydrocarbon storage (crude),investment,135.83,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .", +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (crude),investment,135.83,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .", -General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .", +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,415570.52,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,157381.73,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,365630.71,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,121755.03,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,905158.96,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,95982.52,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)", -H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).", +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." +H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,3.17,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) pipeline,investment,226.47,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf., -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) pipeline repurposed,FOM,3.17,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) pipeline repurposed,investment,105.88,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf., -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline., -H2 (g) submarine pipeline,investment,329.37,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).", -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline., -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.", -H2 (l) storage tank,investment,750.08,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.", -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.", +H2 (g) pipeline,FOM,3.17,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline,investment,226.47,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline repurposed,FOM,3.17,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) pipeline repurposed,investment,105.88,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline,investment,329.37,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) storage tank,investment,750.08,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,investment,361223561.58,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,143.64,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.", -H2 evaporation,lifetime,20.0,years,Guesstimate., +H2 evaporation,investment,143.64,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,investment,870.56,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.", +H2 liquefaction,electricity-input,0.2,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.02,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,870.56,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions @@ -148,123 +127,61 @@ HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.en HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -HVDC submarine,investment,471.16,EUR/MW/km,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,investment,471.16,EUR/MW/km,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,electricity-input,0.25,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.15,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." Haber-Bosch,investment,1297.43,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,144192.27,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,576769.07,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,94107.55,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen-charger,FOM,0.63,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,347170.82,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.58,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,379007.45,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4779.95,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", -LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).", -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", +Haber-Bosch,nitrogen-input,0.16,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. LOHC chemical,investment,2264.33,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.03,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation,investment,50728.03,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.15,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation (small scale),investment,759908.15,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,investment,51259.54,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,electricity-input,0.0,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.87,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.54,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC loaded DBT storage,FOM,6.25,%/year,, -LOHC loaded DBT storage,investment,149.27,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", -LOHC loaded DBT storage,lifetime,30.0,years,, +LOHC hydrogenation,lohc-input,0.94,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC loaded DBT storage,investment,149.27,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,investment,31700578.34,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC unloaded DBT storage,FOM,6.25,%/year,, -LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", -LOHC unloaded DBT storage,lifetime,30.0,years,, -Lead-Acid-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,128853.61,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.25,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,320631.38,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,475721.23,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,334017.03,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,159004.77,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,81553.48,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,236482.81,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,81553.48,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,269576.85,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,144192.27,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,576769.07,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,58041.2,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4.", -Methanol steam reforming,investment,16318.43,EUR/MW_H2,"Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4.", -Methanol steam reforming,lifetime,20.0,years,"Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4.", +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,investment,16318.43,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,methanol-input,1.2,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.93,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.", +NH3 (l) storage tank incl. liquefaction,investment,161.93,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,81553.48,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,267837.87,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" OCGT,FOM,1.78,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M OCGT,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" @@ -274,24 +191,6 @@ PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,761782.67,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,534868.69,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.15,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,11546.8,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1397128.46,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,57074.06,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR,investment,493470.4,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" @@ -301,49 +200,12 @@ SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydroge SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,144192.27,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,576769.07,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,6700.85,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Vanadium-Redox-Flow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,258072.86,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.17,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,174388.01,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,81553.48,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.26,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,412306.59,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.22,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,239220.58,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,methane-input,1.48,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." air separation unit,investment,729306.18,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime battery inverter,FOM,0.34,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M @@ -352,13 +214,19 @@ battery inverter,investment,160.0,EUR/kW,"Danish Energy Agency, technology_data_ battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime battery storage,investment,142.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment battery storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.09,tCO2/MWh_th,Stoichiometric calculation, +biogas,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biogas,FOM,12.84,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions biogas,investment,1539.62,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas CC,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,12.84,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas CC,investment,1539.62,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M biogas plus hydrogen,investment,756.0,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime @@ -405,6 +273,7 @@ biomass boiler,FOM,7.49,%/year,"Danish Energy Agency, technologydatafor_heating_ biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" biomass boiler,investment,649.3,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln @@ -434,6 +303,12 @@ central gas CHP,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_ central gas CHP,investment,560.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central gas CHP CC,FOM,3.32,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,560.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas boiler,FOM,3.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" @@ -444,6 +319,11 @@ central ground-sourced heat pump,VOM,1.25,EUR/MWh_th,"Danish Energy Agency, tech central ground-sourced heat pump,efficiency,1.73,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" central ground-sourced heat pump,investment,507.6,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,1100.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime central resistive heater,FOM,1.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" @@ -461,6 +341,22 @@ central solid biomass CHP,efficiency-heat,0.82,per unit,"Danish Energy Agency, t central solid biomass CHP,investment,3349.49,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central solid biomass CHP CC,FOM,2.87,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.58,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.82,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,4921.02,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.87,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.58,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.82,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3349.49,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central water tank storage,FOM,0.55,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M central water tank storage,investment,0.54,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime @@ -474,15 +370,15 @@ coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Versi coal,fuel,8.15,EUR/MWh_th,BP 2019, coal,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -csp-tower,FOM,1.1,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power), -csp-tower,investment,98.15,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/)., -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power), -csp-tower TES,FOM,1.1,%/year,see solar-tower., -csp-tower TES,investment,13.15,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/)., -csp-tower TES,lifetime,30.0,years,see solar-tower., -csp-tower power block,FOM,1.1,%/year,see solar-tower., -csp-tower power block,investment,687.6,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/)., -csp-tower power block,lifetime,30.0,years,see solar-tower., +csp-tower,FOM,1.1,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. +csp-tower,investment,98.15,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- +csp-tower TES,FOM,1.1,%/year,see solar-tower.,- +csp-tower TES,investment,13.15,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,lifetime,30.0,years,see solar-tower.,- +csp-tower power block,FOM,1.1,%/year,see solar-tower.,- +csp-tower power block,investment,687.6,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,lifetime,30.0,years,see solar-tower.,- decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions @@ -523,17 +419,37 @@ decentral water tank storage,investment,18.38,EUR/kWh,IWES Interaktion, from old decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,investment,3500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.32,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-input,2.0,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." direct air capture,heat-output,1.0,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,investment,6000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.18,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.18,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime electric boiler steam,FOM,1.46,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M electric boiler steam,VOM,0.88,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" @@ -545,8 +461,17 @@ electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assu electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electrobiofuels,C in fuel,0.93,per unit,Stoichiometric calculation, +electrobiofuels,FOM,2.67,%/year,combination of BtL and electrofuels, +electrobiofuels,VOM,3.83,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.21,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.63,per unit,Stoichiometric calculation, +electrobiofuels,investment,431201.82,EUR/kW_th,combination of BtL and electrofuels, electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M electrolysis,efficiency,0.68,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,efficiency-heat,0.17,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating electrolysis,investment,450.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment electrolysis,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M @@ -575,18 +500,24 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions +home battery inverter,FOM,0.34,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,228.06,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,202.9,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,25.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", -hydrogen storage compressor,investment,79.42,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. +hydrogen storage compressor,investment,79.42,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1 including compressor,FOM,1.11,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M hydrogen storage tank type 1 including compressor,investment,44.91,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime @@ -612,16 +543,21 @@ lignite,fuel,2.9,EUR/MWh_th,DIW, lignite,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanation,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,investment,628.6,"EUR/MW_CH4; and -EUR/kW_CH4","Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", -methanation,lifetime,20.0,years,Guesstimate., -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.", -methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10)., -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.", +methanation,carbondioxide-input,0.2,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions +methanation,hydrogen-input,1.28,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,628.6,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). +methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,investment,650711.26,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", +methanolisation,VOM,6.27,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +methanolisation,carbondioxide-input,0.25,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.27,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,hydrogen-input,1.14,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,650711.26,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", micro CHP,FOM,6.11,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" @@ -634,9 +570,9 @@ nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Ve nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.17,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.32,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1626.14,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020]" +offwind,investment,1523.55,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -659,18 +595,19 @@ ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +seawater RO desalination,electricity-input,0.0,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", seawater desalination,investment,32882.05,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -solar,FOM,1.95,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,FOM,1.95,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,492.11,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop,FOM,1.42,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,investment,492.11,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar-rooftop,FOM,1.42,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,636.66,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop,investment,636.66,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop commercial,FOM,1.57,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] solar-rooftop commercial,investment,512.47,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] @@ -680,6 +617,9 @@ solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_ solar-utility,FOM,2.48,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] solar-utility,investment,347.56,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.29,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,411.63,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", solid biomass boiler steam,FOM,6.08,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M @@ -687,10 +627,31 @@ solid biomass boiler steam,VOM,2.82,EUR/MWh,"Danish Energy Agency, technology_da solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" solid biomass boiler steam,investment,590.91,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.08,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.82,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,590.91,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,investment,3500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +waste CHP,FOM,2.36,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.52,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.29,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.21,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,8110.39,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.36,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.52,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.29,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.21,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,8110.39,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2035.csv b/outputs/costs_2035.csv index 4aa8f0e..5b59bae 100644 --- a/outputs/costs_2035.csv +++ b/outputs/costs_2035.csv @@ -1,22 +1,24 @@ technology,parameter,value,unit,source,further description -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -Ammonia cracker,investment,928478.86,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.", +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). +Ammonia cracker,investment,928478.86,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -BioSNG,C in fuel,0.35,per unit,Stoichiometric calculation, -BioSNG,C stored,0.65,per unit,Stoichiometric calculation, -BioSNG,CO2 stored,0.24,tCO2/MWh_th,Stoichiometric calculation, +BioSNG,C in fuel,0.35,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.65,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.24,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,FOM,1.63,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" BioSNG,VOM,1.68,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" -BioSNG,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BioSNG,efficiency,0.65,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" BioSNG,investment,1575.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.28,per unit,Stoichiometric calculation, -BtL,C stored,0.72,per unit,Stoichiometric calculation, -BtL,CO2 stored,0.26,tCO2/MWh_th,Stoichiometric calculation, +BtL,C in fuel,0.28,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.72,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.26,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,FOM,2.75,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" -BtL,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.4,per unit,doi:10.1016/j.enpol.2017.05.013, BtL,investment,2750.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" @@ -27,114 +29,91 @@ CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xl CCGT,efficiency,0.58,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" CCGT,investment,822.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station., -CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.", -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station., -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology)., -CH4 (g) pipeline,investment,79.0,EUR/MW/km,Guesstimate., -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology)., -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.", -CH4 (g) submarine pipeline,investment,114.89,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 ., -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.", +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) pipeline,investment,79.0,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (g) submarine pipeline,investment,114.89,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.6,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,investment,87.6,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,investment,232.13,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,electricity-input,0.04,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.13,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,investment,16.03,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." +CO2 liquefaction,electricity-input,0.12,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.01,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.03,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .", -CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.", -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .", +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -Compressed-Air-Adiabatic-bicharger,FOM,0.93,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.72,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,946180.94,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,5448.79,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,122498.33,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,489993.31,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,21377.0,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,VOM,3.7,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,carbondioxide-input,0.31,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,investment,608179.55,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", +Fischer-Tropsch,electricity-input,0.01,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.39,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,608179.55,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .", -General liquid hydrocarbon storage (crude),investment,135.83,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .", +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (crude),investment,135.83,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .", -General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .", +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,415570.52,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,142559.41,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,365630.71,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,110390.6,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,905158.96,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,87119.54,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)", -H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).", +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." +H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,2.75,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) pipeline,investment,226.47,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf., -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) pipeline repurposed,FOM,2.75,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) pipeline repurposed,investment,105.88,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf., -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline., -H2 (g) submarine pipeline,investment,329.37,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).", -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline., -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.", -H2 (l) storage tank,investment,750.08,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.", -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.", +H2 (g) pipeline,FOM,2.75,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline,investment,226.47,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline repurposed,FOM,2.75,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) pipeline repurposed,investment,105.88,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline,investment,329.37,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) storage tank,investment,750.08,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,investment,361223561.58,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,121.88,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.", -H2 evaporation,lifetime,20.0,years,Guesstimate., +H2 evaporation,investment,121.88,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,investment,783.5,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.", +H2 liquefaction,electricity-input,0.2,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.02,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,783.5,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions @@ -148,123 +127,61 @@ HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.en HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -HVDC submarine,investment,471.16,EUR/MW/km,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,investment,471.16,EUR/MW/km,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,electricity-input,0.25,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.15,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." Haber-Bosch,investment,1179.3,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,122557.19,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,490228.74,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,84973.58,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen-charger,FOM,0.66,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,210560.34,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.6,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,212993.27,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4779.95,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", -LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).", -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", +Haber-Bosch,nitrogen-input,0.16,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. LOHC chemical,investment,2264.33,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.03,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation,investment,50728.03,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.15,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation (small scale),investment,759908.15,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,investment,51259.54,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,electricity-input,0.0,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.87,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.54,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC loaded DBT storage,FOM,6.25,%/year,, -LOHC loaded DBT storage,investment,149.27,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", -LOHC loaded DBT storage,lifetime,30.0,years,, +LOHC hydrogenation,lohc-input,0.94,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC loaded DBT storage,investment,149.27,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,investment,31700578.34,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC unloaded DBT storage,FOM,6.25,%/year,, -LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", -LOHC unloaded DBT storage,lifetime,30.0,years,, -Lead-Acid-bicharger,FOM,2.46,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,118519.2,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.26,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,298525.44,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,461889.69,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,324305.52,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,145271.32,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.14,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,74608.28,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,192324.88,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.14,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,74608.28,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,218821.96,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,141627.06,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,566508.23,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,52407.79,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4.", -Methanol steam reforming,investment,16318.43,EUR/MW_H2,"Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4.", -Methanol steam reforming,lifetime,20.0,years,"Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4.", +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,investment,16318.43,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,methanol-input,1.2,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.93,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.", +NH3 (l) storage tank incl. liquefaction,investment,161.93,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.14,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,74608.28,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,229727.56,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" OCGT,FOM,1.78,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" @@ -274,24 +191,6 @@ PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,739306.42,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,519087.48,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.17,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,7850.15,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1397128.46,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,57074.06,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR,investment,493470.4,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" @@ -301,49 +200,12 @@ SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydroge SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,140018.28,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,560073.13,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,6050.47,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Vanadium-Redox-Flow-bicharger,FOM,2.46,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,118664.11,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,228599.9,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.15,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,164235.07,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,1.94,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,55445.22,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,380469.52,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.21,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,220582.33,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,methane-input,1.48,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." air separation unit,investment,662903.6,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime battery inverter,FOM,0.42,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M @@ -352,13 +214,19 @@ battery inverter,investment,130.0,EUR/kW,"Danish Energy Agency, technology_data_ battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime battery storage,investment,118.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment battery storage,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.09,tCO2/MWh_th,Stoichiometric calculation, +biogas,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biogas,FOM,13.14,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions biogas,investment,1501.13,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas CC,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,13.14,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas CC,investment,1501.13,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M biogas plus hydrogen,investment,680.4,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime @@ -405,6 +273,7 @@ biomass boiler,FOM,7.5,%/year,"Danish Energy Agency, technologydatafor_heating_i biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" biomass boiler,investment,633.81,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,capture_rate,0.92,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln @@ -434,6 +303,12 @@ central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_ central gas CHP,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central gas CHP CC,FOM,3.35,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas boiler,FOM,3.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" @@ -444,6 +319,11 @@ central ground-sourced heat pump,VOM,1.3,EUR/MWh_th,"Danish Energy Agency, techn central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" central ground-sourced heat pump,investment,494.91,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,1025.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime central resistive heater,FOM,1.66,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" @@ -461,6 +341,22 @@ central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, t central solid biomass CHP,investment,3301.1,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central solid biomass CHP CC,FOM,2.86,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.61,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,4783.0,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.86,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.61,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3301.1,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central water tank storage,FOM,0.57,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M central water tank storage,investment,0.52,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime @@ -474,15 +370,15 @@ coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Versi coal,fuel,8.15,EUR/MWh_th,BP 2019, coal,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -csp-tower,FOM,1.2,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power), -csp-tower,investment,94.35,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/)., -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power), -csp-tower TES,FOM,1.2,%/year,see solar-tower., -csp-tower TES,investment,12.64,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/)., -csp-tower TES,lifetime,30.0,years,see solar-tower., -csp-tower power block,FOM,1.2,%/year,see solar-tower., -csp-tower power block,investment,660.96,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/)., -csp-tower power block,lifetime,30.0,years,see solar-tower., +csp-tower,FOM,1.2,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. +csp-tower,investment,94.35,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- +csp-tower TES,FOM,1.2,%/year,see solar-tower.,- +csp-tower TES,investment,12.64,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,lifetime,30.0,years,see solar-tower.,- +csp-tower power block,FOM,1.2,%/year,see solar-tower.,- +csp-tower power block,investment,660.96,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,lifetime,30.0,years,see solar-tower.,- decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions @@ -523,17 +419,37 @@ decentral water tank storage,investment,18.38,EUR/kWh,IWES Interaktion, from old decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,investment,3250.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.31,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-input,1.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." direct air capture,heat-output,0.88,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,investment,5500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.17,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.17,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.48,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.48,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime electric boiler steam,FOM,1.42,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M electric boiler steam,VOM,0.83,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" @@ -545,8 +461,17 @@ electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assu electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electrobiofuels,C in fuel,0.93,per unit,Stoichiometric calculation, +electrobiofuels,FOM,2.75,%/year,combination of BtL and electrofuels, +electrobiofuels,VOM,3.46,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.23,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.64,per unit,Stoichiometric calculation, +electrobiofuels,investment,396566.0,EUR/kW_th,combination of BtL and electrofuels, electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M electrolysis,efficiency,0.7,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,efficiency-heat,0.15,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating electrolysis,investment,375.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment electrolysis,lifetime,31.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M @@ -575,18 +500,24 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions +home battery inverter,FOM,0.42,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,186.57,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,169.68,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,27.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", -hydrogen storage compressor,investment,79.42,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. +hydrogen storage compressor,investment,79.42,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1 including compressor,FOM,1.39,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M hydrogen storage tank type 1 including compressor,investment,35.98,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime @@ -612,16 +543,21 @@ lignite,fuel,2.9,EUR/MWh_th,DIW, lignite,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanation,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,investment,591.6,"EUR/MW_CH4; and -EUR/kW_CH4","Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", -methanation,lifetime,20.0,years,Guesstimate., -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.", -methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10)., -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.", +methanation,carbondioxide-input,0.2,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions +methanation,hydrogen-input,1.28,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,591.6,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). +methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,investment,608179.55,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", +methanolisation,VOM,6.27,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +methanolisation,carbondioxide-input,0.25,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.27,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,hydrogen-input,1.14,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,608179.55,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", micro CHP,FOM,6.18,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" @@ -634,9 +570,9 @@ nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Ve nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.1,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1572.26,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020]" +offwind,investment,1469.32,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -659,18 +595,19 @@ ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +seawater RO desalination,electricity-input,0.0,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", seawater desalination,investment,29589.74,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -solar,FOM,1.99,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,FOM,1.99,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,449.99,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop,FOM,1.48,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,investment,449.99,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar-rooftop,FOM,1.48,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,580.91,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop,investment,580.91,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop commercial,FOM,1.65,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] solar-rooftop commercial,investment,464.79,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] @@ -680,6 +617,9 @@ solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_ solar-utility,FOM,2.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] solar-utility,investment,319.07,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.36,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,379.86,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", solid biomass boiler steam,FOM,6.12,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M @@ -687,10 +627,31 @@ solid biomass boiler steam,VOM,2.84,EUR/MWh,"Danish Energy Agency, technology_da solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" solid biomass boiler steam,investment,577.27,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.12,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.84,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,577.27,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,investment,3250.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +waste CHP,FOM,2.34,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.27,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.29,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.21,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7850.02,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.34,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.27,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.29,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.21,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7850.02,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2040.csv b/outputs/costs_2040.csv index 9d6a0c8..402ae93 100644 --- a/outputs/costs_2040.csv +++ b/outputs/costs_2040.csv @@ -1,22 +1,24 @@ technology,parameter,value,unit,source,further description -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -Ammonia cracker,investment,794849.98,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.", +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). +Ammonia cracker,investment,794849.98,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -BioSNG,C in fuel,0.36,per unit,Stoichiometric calculation, -BioSNG,C stored,0.64,per unit,Stoichiometric calculation, -BioSNG,CO2 stored,0.23,tCO2/MWh_th,Stoichiometric calculation, +BioSNG,C in fuel,0.36,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.64,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.23,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,FOM,1.62,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" BioSNG,VOM,1.65,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" -BioSNG,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BioSNG,efficiency,0.66,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" BioSNG,investment,1550.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.29,per unit,Stoichiometric calculation, -BtL,C stored,0.71,per unit,Stoichiometric calculation, -BtL,CO2 stored,0.26,tCO2/MWh_th,Stoichiometric calculation, +BtL,C in fuel,0.29,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.71,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.26,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,FOM,2.84,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" -BtL,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.42,per unit,doi:10.1016/j.enpol.2017.05.013, BtL,investment,2500.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" @@ -27,114 +29,91 @@ CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xl CCGT,efficiency,0.59,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" CCGT,investment,815.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station., -CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.", -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station., -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology)., -CH4 (g) pipeline,investment,79.0,EUR/MW/km,Guesstimate., -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology)., -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.", -CH4 (g) submarine pipeline,investment,114.89,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 ., -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.", +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) pipeline,investment,79.0,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (g) submarine pipeline,investment,114.89,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.6,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,investment,87.6,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,investment,232.13,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,electricity-input,0.04,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.13,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,investment,16.03,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." +CO2 liquefaction,electricity-input,0.12,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.01,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.03,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .", -CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.", -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .", +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -Compressed-Air-Adiabatic-bicharger,FOM,0.93,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.72,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,946180.94,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,5448.79,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,113623.53,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,454494.14,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.34,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,20285.86,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,VOM,3.2,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,carbondioxide-input,0.3,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,investment,565647.83,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", +Fischer-Tropsch,electricity-input,0.01,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.36,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,565647.83,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .", -General liquid hydrocarbon storage (crude),investment,135.83,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .", +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (crude),investment,135.83,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .", -General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .", +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,415570.52,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,136495.74,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,365630.71,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,105741.52,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,905158.96,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,83493.78,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)", -H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).", +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." +H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,2.33,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) pipeline,investment,226.47,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf., -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) pipeline repurposed,FOM,2.33,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) pipeline repurposed,investment,105.88,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf., -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline., -H2 (g) submarine pipeline,investment,329.37,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).", -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline., -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.", -H2 (l) storage tank,investment,750.08,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.", -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.", +H2 (g) pipeline,FOM,2.33,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline,investment,226.47,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline repurposed,FOM,2.33,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) pipeline repurposed,investment,105.88,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline,investment,329.37,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) storage tank,investment,750.08,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,investment,361223561.58,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,100.11,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.", -H2 evaporation,lifetime,20.0,years,Guesstimate., +H2 evaporation,investment,100.11,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,investment,696.45,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.", +H2 liquefaction,electricity-input,0.2,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.02,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,696.45,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions @@ -148,123 +127,61 @@ HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.en HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -HVDC submarine,investment,471.16,EUR/MW/km,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,investment,471.16,EUR/MW/km,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,electricity-input,0.25,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.15,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." Haber-Bosch,investment,1061.17,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,113706.47,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,454825.88,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,81236.96,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen-charger,FOM,0.66,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,193621.26,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.6,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,186175.59,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4779.95,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", -LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).", -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", +Haber-Bosch,nitrogen-input,0.16,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. LOHC chemical,investment,2264.33,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.03,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation,investment,50728.03,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.15,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation (small scale),investment,759908.15,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,investment,51259.54,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,electricity-input,0.0,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.87,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.54,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC loaded DBT storage,FOM,6.25,%/year,, -LOHC loaded DBT storage,investment,149.27,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", -LOHC loaded DBT storage,lifetime,30.0,years,, +LOHC hydrogenation,lohc-input,0.94,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC loaded DBT storage,investment,149.27,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,investment,31700578.34,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC unloaded DBT storage,FOM,6.25,%/year,, -LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", -LOHC unloaded DBT storage,lifetime,30.0,years,, -Lead-Acid-bicharger,FOM,2.47,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,114291.48,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.27,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,289482.1,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,456231.33,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,320332.63,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,139653.1,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.15,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,71767.07,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,174260.27,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.15,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,71767.07,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,198058.59,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,140577.65,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,562310.61,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,50103.21,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4.", -Methanol steam reforming,investment,16318.43,EUR/MW_H2,"Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4.", -Methanol steam reforming,lifetime,20.0,years,"Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4.", +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,investment,16318.43,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,methanol-input,1.2,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.93,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.", +NH3 (l) storage tank incl. liquefaction,investment,161.93,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.15,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,71767.07,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,214136.98,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" OCGT,FOM,1.79,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" @@ -274,24 +191,6 @@ PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,730111.58,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,512631.54,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.17,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,7253.0,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1397128.46,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,57074.06,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR,investment,493470.4,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" @@ -301,49 +200,12 @@ SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydroge SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,138310.74,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,553242.97,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,5784.41,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Vanadium-Redox-Flow-bicharger,FOM,2.47,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,114426.36,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,216542.78,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.15,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,160081.6,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,1.87,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,44764.57,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,367445.27,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.21,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,212957.6,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,methane-input,1.48,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." air separation unit,investment,596501.02,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime battery inverter,FOM,0.54,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M @@ -352,13 +214,19 @@ battery inverter,investment,100.0,EUR/kW,"Danish Energy Agency, technology_data_ battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime battery storage,investment,94.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.09,tCO2/MWh_th,Stoichiometric calculation, +biogas,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biogas,FOM,13.45,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions biogas,investment,1462.64,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas CC,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,13.45,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas CC,investment,1462.64,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M biogas plus hydrogen,investment,604.8,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime @@ -405,6 +273,7 @@ biomass boiler,FOM,7.51,%/year,"Danish Energy Agency, technologydatafor_heating_ biomass boiler,efficiency,0.87,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" biomass boiler,investment,618.33,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln @@ -434,6 +303,12 @@ central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_ central gas CHP,investment,540.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central gas CHP CC,FOM,3.39,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,540.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas boiler,FOM,3.6,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" @@ -444,6 +319,11 @@ central ground-sourced heat pump,VOM,1.34,EUR/MWh_th,"Danish Energy Agency, tech central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" central ground-sourced heat pump,investment,482.22,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,950.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime central resistive heater,FOM,1.62,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" @@ -461,6 +341,22 @@ central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, t central solid biomass CHP,investment,3252.72,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central solid biomass CHP CC,FOM,2.86,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.63,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,4647.0,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.86,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.63,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3252.72,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central water tank storage,FOM,0.59,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M central water tank storage,investment,0.51,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime @@ -474,15 +370,15 @@ coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Versi coal,fuel,8.15,EUR/MWh_th,BP 2019, coal,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -csp-tower,FOM,1.3,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power), -csp-tower,investment,90.55,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/)., -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power), -csp-tower TES,FOM,1.3,%/year,see solar-tower., -csp-tower TES,investment,12.13,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/)., -csp-tower TES,lifetime,30.0,years,see solar-tower., -csp-tower power block,FOM,1.3,%/year,see solar-tower., -csp-tower power block,investment,634.32,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/)., -csp-tower power block,lifetime,30.0,years,see solar-tower., +csp-tower,FOM,1.3,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. +csp-tower,investment,90.55,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- +csp-tower TES,FOM,1.3,%/year,see solar-tower.,- +csp-tower TES,investment,12.13,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,lifetime,30.0,years,see solar-tower.,- +csp-tower power block,FOM,1.3,%/year,see solar-tower.,- +csp-tower power block,investment,634.32,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,lifetime,30.0,years,see solar-tower.,- decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions @@ -523,17 +419,37 @@ decentral water tank storage,investment,18.38,EUR/kWh,IWES Interaktion, from old decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,investment,3000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.3,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-input,1.5,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,investment,5000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.15,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.15,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.45,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.45,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime electric boiler steam,FOM,1.39,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" @@ -545,8 +461,17 @@ electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assu electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electrobiofuels,C in fuel,0.93,per unit,Stoichiometric calculation, +electrobiofuels,FOM,2.84,%/year,combination of BtL and electrofuels, +electrobiofuels,VOM,3.1,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +electrobiofuels,efficiency-biomass,1.33,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.25,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.64,per unit,Stoichiometric calculation, +electrobiofuels,investment,362825.01,EUR/kW_th,combination of BtL and electrofuels, electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M electrolysis,efficiency,0.72,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,efficiency-heat,0.12,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating electrolysis,investment,300.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment electrolysis,lifetime,32.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M @@ -575,18 +500,24 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions +home battery inverter,FOM,0.54,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,144.57,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,136.17,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", -hydrogen storage compressor,investment,79.42,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. +hydrogen storage compressor,investment,79.42,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1 including compressor,FOM,1.85,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M hydrogen storage tank type 1 including compressor,investment,27.05,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime @@ -612,16 +543,21 @@ lignite,fuel,2.9,EUR/MWh_th,DIW, lignite,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanation,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,investment,554.59,"EUR/MW_CH4; and -EUR/kW_CH4","Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", -methanation,lifetime,20.0,years,Guesstimate., -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.", -methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10)., -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.", +methanation,carbondioxide-input,0.2,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions +methanation,hydrogen-input,1.28,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,554.59,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). +methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,investment,565647.83,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", +methanolisation,VOM,6.27,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +methanolisation,carbondioxide-input,0.25,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.27,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,hydrogen-input,1.14,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,565647.83,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", micro CHP,FOM,6.25,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" @@ -634,9 +570,9 @@ nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Ve nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.03,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.18,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1518.38,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020]" +offwind,investment,1415.08,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -659,18 +595,19 @@ ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +seawater RO desalination,electricity-input,0.0,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", seawater desalination,investment,26297.44,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -solar,FOM,2.04,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,FOM,2.04,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,407.87,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop,FOM,1.56,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,investment,407.87,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar-rooftop,FOM,1.56,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,525.16,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop,investment,525.16,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop commercial,FOM,1.74,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] solar-rooftop commercial,investment,417.1,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] @@ -680,6 +617,9 @@ solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_ solar-utility,FOM,2.52,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] solar-utility,investment,290.58,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.45,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,348.08,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", solid biomass boiler steam,FOM,6.17,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M @@ -687,10 +627,31 @@ solid biomass boiler steam,VOM,2.85,EUR/MWh,"Danish Energy Agency, technology_da solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" solid biomass boiler steam,investment,563.64,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.17,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.85,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,563.64,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,investment,3000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +waste CHP,FOM,2.33,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.03,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.3,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.21,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7589.64,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.33,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.03,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.3,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.21,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7589.64,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2045.csv b/outputs/costs_2045.csv index 27e1859..18eae22 100644 --- a/outputs/costs_2045.csv +++ b/outputs/costs_2045.csv @@ -1,22 +1,24 @@ technology,parameter,value,unit,source,further description -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -Ammonia cracker,investment,661221.1,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.", +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). +Ammonia cracker,investment,661221.1,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -BioSNG,C in fuel,0.37,per unit,Stoichiometric calculation, -BioSNG,C stored,0.63,per unit,Stoichiometric calculation, -BioSNG,CO2 stored,0.23,tCO2/MWh_th,Stoichiometric calculation, +BioSNG,C in fuel,0.37,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.63,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.23,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,FOM,1.61,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" BioSNG,VOM,1.62,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" -BioSNG,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BioSNG,efficiency,0.68,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" BioSNG,investment,1525.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.3,per unit,Stoichiometric calculation, -BtL,C stored,0.7,per unit,Stoichiometric calculation, -BtL,CO2 stored,0.26,tCO2/MWh_th,Stoichiometric calculation, +BtL,C in fuel,0.3,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.7,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.26,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,FOM,2.92,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" -BtL,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.43,per unit,doi:10.1016/j.enpol.2017.05.013, BtL,investment,2250.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" @@ -27,114 +29,91 @@ CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xl CCGT,efficiency,0.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" CCGT,investment,807.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station., -CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.", -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station., -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology)., -CH4 (g) pipeline,investment,79.0,EUR/MW/km,Guesstimate., -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology)., -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.", -CH4 (g) submarine pipeline,investment,114.89,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 ., -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.", +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) pipeline,investment,79.0,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (g) submarine pipeline,investment,114.89,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.6,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,investment,87.6,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,investment,232.13,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,electricity-input,0.04,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.13,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,investment,16.03,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." +CO2 liquefaction,electricity-input,0.12,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.01,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.03,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .", -CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.", -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .", +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -Compressed-Air-Adiabatic-bicharger,FOM,0.93,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.72,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,946180.94,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,5448.79,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,109186.14,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,436744.55,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.34,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,19740.29,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,VOM,2.65,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,carbondioxide-input,0.29,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,investment,523116.11,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", +Fischer-Tropsch,electricity-input,0.01,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.34,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,523116.11,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .", -General liquid hydrocarbon storage (crude),investment,135.83,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .", +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (crude),investment,135.83,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .", -General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .", +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,415570.52,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,133463.91,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,365630.71,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,103416.98,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,905158.96,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,81680.9,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)", -H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).", +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." +H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,1.92,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) pipeline,investment,226.47,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf., -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) pipeline repurposed,FOM,1.92,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) pipeline repurposed,investment,105.88,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf., -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline., -H2 (g) submarine pipeline,investment,329.37,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).", -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline., -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.", -H2 (l) storage tank,investment,750.08,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.", -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.", +H2 (g) pipeline,FOM,1.92,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline,investment,226.47,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline repurposed,FOM,1.92,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) pipeline repurposed,investment,105.88,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline,investment,329.37,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) storage tank,investment,750.08,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,investment,361223561.58,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,78.35,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.", -H2 evaporation,lifetime,20.0,years,Guesstimate., +H2 evaporation,investment,78.35,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,investment,609.39,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.", +H2 liquefaction,electricity-input,0.2,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.02,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,609.39,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions @@ -148,123 +127,61 @@ HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.en HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -HVDC submarine,investment,471.16,EUR/MW/km,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,investment,471.16,EUR/MW/km,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,electricity-input,0.25,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.15,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." Haber-Bosch,investment,937.36,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,109281.11,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,437124.45,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,79368.65,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen-charger,FOM,0.66,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,191015.25,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.6,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,180812.06,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4779.95,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", -LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).", -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", +Haber-Bosch,nitrogen-input,0.16,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. LOHC chemical,investment,2264.33,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.03,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation,investment,50728.03,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.15,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation (small scale),investment,759908.15,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,investment,51259.54,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,electricity-input,0.0,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.87,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.54,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC loaded DBT storage,FOM,6.25,%/year,, -LOHC loaded DBT storage,investment,149.27,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", -LOHC loaded DBT storage,lifetime,30.0,years,, +LOHC hydrogenation,lohc-input,0.94,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC loaded DBT storage,investment,149.27,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,investment,31700578.34,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC unloaded DBT storage,FOM,6.25,%/year,, -LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", -LOHC unloaded DBT storage,lifetime,30.0,years,, -Lead-Acid-bicharger,FOM,2.47,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,112177.62,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.27,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,284960.43,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,453402.15,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,318346.19,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.31,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,136843.98,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.16,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,70346.46,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,165227.96,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.16,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,70346.46,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,187676.91,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,140052.95,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,560211.8,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,48950.92,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4.", -Methanol steam reforming,investment,16318.43,EUR/MW_H2,"Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4.", -Methanol steam reforming,lifetime,20.0,years,"Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4.", +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,investment,16318.43,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,methanol-input,1.2,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.93,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.", +NH3 (l) storage tank incl. liquefaction,investment,161.93,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.16,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,70346.46,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,206341.69,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" OCGT,FOM,1.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" @@ -274,24 +191,6 @@ PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,725514.17,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,509403.56,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.17,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,7133.57,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1397128.46,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,57074.06,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR,investment,493470.4,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" @@ -301,49 +200,12 @@ SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydroge SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,137456.97,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,549827.89,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,5651.38,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Vanadium-Redox-Flow-bicharger,FOM,2.47,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,112307.49,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,210514.22,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.15,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,158004.86,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,1.84,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,39424.24,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,360933.14,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.21,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,209145.23,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,methane-input,1.48,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." air separation unit,investment,526904.4,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime battery inverter,FOM,0.68,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M @@ -352,13 +214,19 @@ battery inverter,investment,80.0,EUR/kW,"Danish Energy Agency, technology_data_c battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime battery storage,investment,84.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.09,tCO2/MWh_th,Stoichiometric calculation, +biogas,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biogas,FOM,13.78,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions biogas,investment,1424.15,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas CC,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,13.78,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas CC,investment,1424.15,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M biogas plus hydrogen,investment,529.2,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime @@ -405,6 +273,7 @@ biomass boiler,FOM,7.53,%/year,"Danish Energy Agency, technologydatafor_heating_ biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" biomass boiler,investment,602.85,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln @@ -434,6 +303,12 @@ central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_ central gas CHP,investment,530.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central gas CHP CC,FOM,3.42,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,530.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" @@ -444,6 +319,11 @@ central ground-sourced heat pump,VOM,1.38,EUR/MWh_th,"Danish Energy Agency, tech central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" central ground-sourced heat pump,investment,469.53,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,875.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime central resistive heater,FOM,1.58,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" @@ -461,6 +341,22 @@ central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, t central solid biomass CHP,investment,3204.34,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central solid biomass CHP CC,FOM,2.86,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.65,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.34,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,4570.47,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.86,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.65,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.34,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3204.34,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central water tank storage,FOM,0.62,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M central water tank storage,investment,0.49,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime @@ -474,15 +370,15 @@ coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Versi coal,fuel,8.15,EUR/MWh_th,BP 2019, coal,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -csp-tower,FOM,1.35,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power), -csp-tower,investment,90.28,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/)., -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power), -csp-tower TES,FOM,1.35,%/year,see solar-tower., -csp-tower TES,investment,12.1,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/)., -csp-tower TES,lifetime,30.0,years,see solar-tower., -csp-tower power block,FOM,1.35,%/year,see solar-tower., -csp-tower power block,investment,632.44,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/)., -csp-tower power block,lifetime,30.0,years,see solar-tower., +csp-tower,FOM,1.35,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. +csp-tower,investment,90.28,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- +csp-tower TES,FOM,1.35,%/year,see solar-tower.,- +csp-tower TES,investment,12.1,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,lifetime,30.0,years,see solar-tower.,- +csp-tower power block,FOM,1.35,%/year,see solar-tower.,- +csp-tower power block,investment,632.44,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,lifetime,30.0,years,see solar-tower.,- decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions @@ -523,17 +419,37 @@ decentral water tank storage,investment,18.38,EUR/kWh,IWES Interaktion, from old decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,investment,2750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.29,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-input,1.5,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,investment,4500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.09,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.09,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.43,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.43,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime electric boiler steam,FOM,1.35,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" @@ -545,8 +461,17 @@ electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assu electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electrobiofuels,C in fuel,0.93,per unit,Stoichiometric calculation, +electrobiofuels,FOM,2.92,%/year,combination of BtL and electrofuels, +electrobiofuels,VOM,2.72,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +electrobiofuels,efficiency-biomass,1.33,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.28,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.65,per unit,Stoichiometric calculation, +electrobiofuels,investment,329978.85,EUR/kW_th,combination of BtL and electrofuels, electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M electrolysis,efficiency,0.73,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,efficiency-heat,0.1,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating electrolysis,investment,275.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment electrolysis,lifetime,33.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M @@ -575,18 +500,24 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions +home battery inverter,FOM,0.68,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,115.9,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,122.66,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", -hydrogen storage compressor,investment,79.42,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. +hydrogen storage compressor,investment,79.42,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1 including compressor,FOM,1.87,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M hydrogen storage tank type 1 including compressor,investment,24.03,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime @@ -612,16 +543,21 @@ lignite,fuel,2.9,EUR/MWh_th,DIW, lignite,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanation,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,investment,517.59,"EUR/MW_CH4; and -EUR/kW_CH4","Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", -methanation,lifetime,20.0,years,Guesstimate., -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.", -methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10)., -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.", +methanation,carbondioxide-input,0.2,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions +methanation,hydrogen-input,1.28,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,517.59,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). +methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,investment,523116.11,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", +methanolisation,VOM,6.27,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +methanolisation,carbondioxide-input,0.25,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.27,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,hydrogen-input,1.14,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,523116.11,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", micro CHP,FOM,6.33,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" @@ -634,9 +570,9 @@ nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Ve nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.02,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.17,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1503.13,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020]" +offwind,investment,1397.68,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -659,18 +595,19 @@ ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +seawater RO desalination,electricity-input,0.0,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", seawater desalination,investment,23661.54,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -solar,FOM,2.05,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,FOM,2.05,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,389.03,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop,FOM,1.58,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,investment,389.03,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar-rooftop,FOM,1.58,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,500.27,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop,investment,500.27,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop commercial,FOM,1.77,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] solar-rooftop commercial,investment,395.99,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] @@ -680,6 +617,9 @@ solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_ solar-utility,FOM,2.53,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] solar-utility,investment,277.79,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,333.68,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", solid biomass boiler steam,FOM,6.23,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M @@ -687,10 +627,31 @@ solid biomass boiler steam,VOM,2.85,EUR/MWh,"Danish Energy Agency, technology_da solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" solid biomass boiler steam,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.23,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.85,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,investment,2750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +waste CHP,FOM,2.31,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,25.78,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.3,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.21,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7329.26,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.31,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,25.78,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.3,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.21,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7329.26,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2050.csv b/outputs/costs_2050.csv index ae664b9..f916234 100644 --- a/outputs/costs_2050.csv +++ b/outputs/costs_2050.csv @@ -1,22 +1,24 @@ technology,parameter,value,unit,source,further description -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -Ammonia cracker,investment,527592.22,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.", +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). +Ammonia cracker,investment,527592.22,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -BioSNG,C in fuel,0.38,per unit,Stoichiometric calculation, -BioSNG,C stored,0.62,per unit,Stoichiometric calculation, -BioSNG,CO2 stored,0.23,tCO2/MWh_th,Stoichiometric calculation, +BioSNG,C in fuel,0.38,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.62,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.23,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,FOM,1.61,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" BioSNG,VOM,1.6,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" -BioSNG,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" BioSNG,investment,1500.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.32,per unit,Stoichiometric calculation, -BtL,C stored,0.68,per unit,Stoichiometric calculation, -BtL,CO2 stored,0.25,tCO2/MWh_th,Stoichiometric calculation, +BtL,C in fuel,0.32,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.68,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.25,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" -BtL,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.45,per unit,doi:10.1016/j.enpol.2017.05.013, BtL,investment,2000.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" @@ -27,114 +29,91 @@ CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xl CCGT,efficiency,0.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" CCGT,investment,800.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station., -CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.", -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station., -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology)., -CH4 (g) pipeline,investment,79.0,EUR/MW/km,Guesstimate., -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology)., -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.", -CH4 (g) submarine pipeline,investment,114.89,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 ., -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.", +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) pipeline,investment,79.0,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (g) submarine pipeline,investment,114.89,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.6,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,investment,87.6,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,investment,232.13,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,electricity-input,0.04,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.13,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,investment,16.03,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." +CO2 liquefaction,electricity-input,0.12,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.01,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.03,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .", -CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.", -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .", +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -Compressed-Air-Adiabatic-bicharger,FOM,0.93,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.72,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,946180.94,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,5448.79,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,106967.44,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,427869.76,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.34,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,19467.51,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,VOM,2.1,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,carbondioxide-input,0.28,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,investment,480584.39,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", +Fischer-Tropsch,electricity-input,0.01,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.33,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,480584.39,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .", -General liquid hydrocarbon storage (crude),investment,135.83,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .", +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (crude),investment,135.83,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .", -General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .", +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,415570.52,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,131947.99,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,365630.71,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,102254.7,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,905158.96,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,80774.46,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)", -H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).", +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." +H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,1.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) pipeline,investment,226.47,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf., -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) pipeline repurposed,FOM,1.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) pipeline repurposed,investment,105.88,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf., -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline., -H2 (g) submarine pipeline,investment,329.37,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).", -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline., -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.", -H2 (l) storage tank,investment,750.08,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.", -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.", +H2 (g) pipeline,FOM,1.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline,investment,226.47,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline repurposed,FOM,1.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) pipeline repurposed,investment,105.88,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline,investment,329.37,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) storage tank,investment,750.08,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,investment,361223561.58,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,56.59,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.", -H2 evaporation,lifetime,20.0,years,Guesstimate., +H2 evaporation,investment,56.59,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,investment,522.34,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.", +H2 liquefaction,electricity-input,0.2,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.02,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,522.34,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions @@ -148,123 +127,61 @@ HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.en HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -HVDC submarine,investment,471.16,EUR/MW/km,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,investment,471.16,EUR/MW/km,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,electricity-input,0.25,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.15,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." Haber-Bosch,investment,813.55,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,107068.43,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,428273.73,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,78434.49,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen-charger,FOM,0.66,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,190614.33,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.6,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,179739.35,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4779.95,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", -LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).", -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", +Haber-Bosch,nitrogen-input,0.16,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. LOHC chemical,investment,2264.33,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.03,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation,investment,50728.03,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.15,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation (small scale),investment,759908.15,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,investment,51259.54,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,electricity-input,0.0,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.87,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.54,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC loaded DBT storage,FOM,6.25,%/year,, -LOHC loaded DBT storage,investment,149.27,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", -LOHC loaded DBT storage,lifetime,30.0,years,, +LOHC hydrogenation,lohc-input,0.94,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC loaded DBT storage,investment,149.27,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,investment,31700578.34,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC unloaded DBT storage,FOM,6.25,%/year,, -LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", -LOHC unloaded DBT storage,lifetime,30.0,years,, -Lead-Acid-bicharger,FOM,2.47,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,111120.69,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.27,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,282699.59,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,451987.56,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,317352.97,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.31,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,135439.43,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.16,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,69636.15,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,160711.81,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.16,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,69636.15,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,182486.07,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,139790.6,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,559162.39,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,48374.78,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4.", -Methanol steam reforming,investment,16318.43,EUR/MW_H2,"Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4.", -Methanol steam reforming,lifetime,20.0,years,"Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4.", +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,investment,16318.43,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,methanol-input,1.2,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.93,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.", +NH3 (l) storage tank incl. liquefaction,investment,161.93,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.16,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,69636.15,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,202444.04,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" OCGT,FOM,1.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M OCGT,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" @@ -274,24 +191,6 @@ PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,723215.46,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,507789.58,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.17,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,7109.69,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1397128.46,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,57074.06,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR,investment,493470.4,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" @@ -301,49 +200,12 @@ SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydroge SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,137030.09,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,548120.35,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,5584.86,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Vanadium-Redox-Flow-bicharger,FOM,2.47,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,111248.05,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,207499.94,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.15,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,156966.49,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,1.82,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,36754.08,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,357677.07,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.2,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,207239.04,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,methane-input,1.48,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." air separation unit,investment,457307.78,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime battery inverter,FOM,0.9,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M @@ -352,13 +214,19 @@ battery inverter,investment,60.0,EUR/kW,"Danish Energy Agency, technology_data_c battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime battery storage,investment,75.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.09,tCO2/MWh_th,Stoichiometric calculation, +biogas,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biogas,FOM,14.12,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions biogas,investment,1385.66,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas CC,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,14.12,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas CC,investment,1385.66,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M biogas plus hydrogen,investment,453.6,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime @@ -405,6 +273,7 @@ biomass boiler,FOM,7.54,%/year,"Danish Energy Agency, technologydatafor_heating_ biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" biomass boiler,investment,587.36,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln @@ -434,6 +303,12 @@ central gas CHP,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_ central gas CHP,investment,520.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central gas CHP CC,FOM,3.46,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,520.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas boiler,FOM,3.4,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" @@ -444,6 +319,11 @@ central ground-sourced heat pump,VOM,1.43,EUR/MWh_th,"Danish Energy Agency, tech central ground-sourced heat pump,efficiency,1.75,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" central ground-sourced heat pump,investment,456.84,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,800.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime central resistive heater,FOM,1.53,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" @@ -461,6 +341,22 @@ central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, t central solid biomass CHP,investment,3155.95,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central solid biomass CHP CC,FOM,2.85,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.67,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.34,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,4494.05,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.85,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.67,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.34,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3155.95,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central water tank storage,FOM,0.64,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M central water tank storage,investment,0.47,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime @@ -474,15 +370,15 @@ coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Versi coal,fuel,8.15,EUR/MWh_th,BP 2019, coal,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -csp-tower,FOM,1.4,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power), -csp-tower,investment,90.01,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/)., -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power), -csp-tower TES,FOM,1.4,%/year,see solar-tower., -csp-tower TES,investment,12.06,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/)., -csp-tower TES,lifetime,30.0,years,see solar-tower., -csp-tower power block,FOM,1.4,%/year,see solar-tower., -csp-tower power block,investment,630.57,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/)., -csp-tower power block,lifetime,30.0,years,see solar-tower., +csp-tower,FOM,1.4,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. +csp-tower,investment,90.01,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- +csp-tower TES,FOM,1.4,%/year,see solar-tower.,- +csp-tower TES,investment,12.06,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,lifetime,30.0,years,see solar-tower.,- +csp-tower power block,FOM,1.4,%/year,see solar-tower.,- +csp-tower power block,investment,630.57,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,lifetime,30.0,years,see solar-tower.,- decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions @@ -523,17 +419,37 @@ decentral water tank storage,investment,18.38,EUR/kWh,IWES Interaktion, from old decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.28,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-input,1.5,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,investment,4000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.03,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.03,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.41,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.41,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime electric boiler steam,FOM,1.31,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" @@ -545,8 +461,17 @@ electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assu electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electrobiofuels,C in fuel,0.93,per unit,Stoichiometric calculation, +electrobiofuels,FOM,3.0,%/year,combination of BtL and electrofuels, +electrobiofuels,VOM,2.36,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +electrobiofuels,efficiency-biomass,1.33,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.3,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.66,per unit,Stoichiometric calculation, +electrobiofuels,investment,298027.5,EUR/kW_th,combination of BtL and electrofuels, electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M electrolysis,efficiency,0.75,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,efficiency-heat,0.08,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating electrolysis,investment,250.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment electrolysis,lifetime,35.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M @@ -575,18 +500,24 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions +home battery inverter,FOM,0.9,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,87.43,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,108.59,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", -hydrogen storage compressor,investment,79.42,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. +hydrogen storage compressor,investment,79.42,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1 including compressor,FOM,1.9,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M hydrogen storage tank type 1 including compressor,investment,21.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime @@ -612,16 +543,21 @@ lignite,fuel,2.9,EUR/MWh_th,DIW, lignite,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanation,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,investment,480.58,"EUR/MW_CH4; and -EUR/kW_CH4","Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", -methanation,lifetime,20.0,years,Guesstimate., -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.", -methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10)., -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.", +methanation,carbondioxide-input,0.2,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions +methanation,hydrogen-input,1.28,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,480.58,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). +methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,investment,480584.39,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", +methanolisation,VOM,6.27,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +methanolisation,carbondioxide-input,0.25,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.27,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,hydrogen-input,1.14,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,480584.39,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", micro CHP,FOM,6.43,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" @@ -634,9 +570,9 @@ nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Ve nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.01,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.17,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1487.88,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020]" +offwind,investment,1380.27,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -659,18 +595,19 @@ ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +seawater RO desalination,electricity-input,0.0,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", seawater desalination,investment,21025.64,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -solar,FOM,2.07,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,FOM,2.07,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,370.19,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop,FOM,1.61,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar,investment,370.19,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar-rooftop,FOM,1.61,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,475.38,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-rooftop,investment,475.38,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop commercial,FOM,1.81,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] solar-rooftop commercial,investment,374.88,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] @@ -680,6 +617,9 @@ solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_ solar-utility,FOM,2.53,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] solar-utility,investment,265.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.55,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,319.28,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", solid biomass boiler steam,FOM,6.28,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M @@ -687,10 +627,31 @@ solid biomass boiler steam,VOM,2.85,EUR/MWh,"Danish Energy Agency, technology_da solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" solid biomass boiler steam,investment,536.36,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.28,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.85,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,536.36,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +waste CHP,FOM,2.29,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,25.54,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.3,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.22,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7068.89,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.29,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,25.54,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.3,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.22,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7068.89,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2060.csv b/outputs/costs_2060.csv deleted file mode 100644 index b90b0bd..0000000 --- a/outputs/costs_2060.csv +++ /dev/null @@ -1,696 +0,0 @@ -technology,parameter,value,unit,source,further description -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -Ammonia cracker,investment,527592.22,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.", -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -BioSNG,C in fuel,0.38,per unit,Stoichiometric calculation, -BioSNG,C stored,0.62,per unit,Stoichiometric calculation, -BioSNG,CO2 stored,0.23,tCO2/MWh_th,Stoichiometric calculation, -BioSNG,FOM,1.61,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.6,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" -BioSNG,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,1500.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.32,per unit,Stoichiometric calculation, -BtL,C stored,0.68,per unit,Stoichiometric calculation, -BtL,CO2 stored,0.25,tCO2/MWh_th,Stoichiometric calculation, -BtL,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" -BtL,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BtL,efficiency,0.45,per unit,doi:10.1016/j.enpol.2017.05.013, -BtL,investment,2000.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.25,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.2,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.6,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,800.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station., -CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.", -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station., -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology)., -CH4 (g) pipeline,investment,79.0,EUR/MW/km,Guesstimate., -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology)., -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.", -CH4 (g) submarine pipeline,investment,114.89,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 ., -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.", -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.6,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,investment,232.13,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,investment,16.03,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .", -CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.", -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .", -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -Compressed-Air-Adiabatic-bicharger,FOM,0.93,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.72,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,946180.94,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,5448.79,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,105241.78,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,420967.14,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.34,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,19255.34,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -Fischer-Tropsch,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,investment,480584.39,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -Gasnetz,FOM,,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,investment,,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,lifetime,,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .", -General liquid hydrocarbon storage (crude),investment,135.83,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .", -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .", -General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .", -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,415570.52,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,130768.94,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,365630.71,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,101350.72,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,905158.96,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,80069.45,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)", -H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).", -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,1.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) pipeline,investment,226.47,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf., -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) pipeline repurposed,FOM,1.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) pipeline repurposed,investment,105.88,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf., -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline., -H2 (g) submarine pipeline,investment,329.37,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).", -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline., -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.", -H2 (l) storage tank,investment,750.08,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.", -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.", -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,investment,361223561.58,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,56.59,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.", -H2 evaporation,lifetime,20.0,years,Guesstimate., -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,investment,522.34,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.", -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions -H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,investment,162364.82,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -HVDC submarine,investment,471.16,EUR/MW/km,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,investment,813.55,EUR/kW_NH3,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,105347.46,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,421389.84,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,77707.92,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen-charger,FOM,0.74,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,155494.18,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.55,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,214520.77,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4779.95,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", -LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).", -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", -LOHC chemical,investment,2264.33,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.03,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.15,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,investment,51259.54,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC loaded DBT storage,FOM,6.25,%/year,, -LOHC loaded DBT storage,investment,149.27,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", -LOHC loaded DBT storage,lifetime,30.0,years,, -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,investment,31700578.34,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC unloaded DBT storage,FOM,6.25,%/year,, -LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", -LOHC unloaded DBT storage,lifetime,30.0,years,, -Lead-Acid-bicharger,FOM,2.48,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,110298.64,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.27,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,280941.16,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,450887.32,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,316580.46,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.31,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,134346.99,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.16,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,69083.69,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,157199.25,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.16,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,69083.69,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,178448.74,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,139586.55,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,558346.19,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,47926.67,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4.", -Methanol steam reforming,investment,16318.43,EUR/MW_H2,"Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4.", -Methanol steam reforming,lifetime,20.0,years,"Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4.", -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.93,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.", -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.16,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,69083.69,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,199412.54,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.8,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.43,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,411.84,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,721427.58,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,506534.26,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.17,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,7103.77,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1397128.46,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,57074.06,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR,investment,493470.4,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,136698.06,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,546792.26,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,5533.13,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Vanadium-Redox-Flow-bicharger,FOM,2.47,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,110424.04,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.24,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,205155.5,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.14,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,156158.87,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,1.8,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,34677.29,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,355144.58,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,129023.05,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.2,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,205756.45,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,investment,457307.78,EUR/t_N2/h,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.9,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,60.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,75.0,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.09,tCO2/MWh_th,Stoichiometric calculation, -biogas,FOM,14.12,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1385.66,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,453.6,EUR/kW_CH4,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.51,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.68,EUR/MWh input,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,343.0,EUR/kW input,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" -biomass,FOM,4.53,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,efficiency,0.47,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions -biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.54,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,2912.24,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.54,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,2912.24,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,3.12,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.03,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,753.2,EUR/kW_th - heat output,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.54,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,587.36,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,1800000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.23,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.67,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.25,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.72,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.54,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1783.87,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.46,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.43,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,520.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas boiler,FOM,3.4,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.44,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.43,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.75,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,456.84,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central resistive heater,FOM,1.53,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions -central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.85,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.67,EUR/MWh_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.34,50°C/100°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3155.95,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central water tank storage,FOM,0.64,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.47,EUR/kWhCapacity,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,investment,67.63,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -coal,CO2 intensity,0.34,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,fuel,8.15,EUR/MWh_th,BP 2019, -coal,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -csp-tower,FOM,1.4,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power), -csp-tower,investment,90.01,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/)., -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power), -csp-tower TES,FOM,1.4,%/year,see solar-tower., -csp-tower TES,investment,12.06,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/)., -csp-tower TES,lifetime,30.0,years,see solar-tower., -csp-tower power block,FOM,1.4,%/year,see solar-tower., -csp-tower power block,investment,630.57,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/)., -csp-tower power block,lifetime,30.0,years,see solar-tower., -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.14,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,760.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.73,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,268.51,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,167.82,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.99,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,4.05,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1200.0,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,investment,156.01,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral water tank storage,investment,18.38,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions -digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.28,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-input,1.5,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,4000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -electric boiler steam,FOM,1.31,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.75,per unit,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,investment,250.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,35.0,years,"Danish Energy Agency, /home/max/code/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,800.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -gas,CO2 intensity,0.2,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, -gas,fuel,20.1,EUR/MWh_th,BP 2019, -gas boiler steam,FOM,3.74,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.45,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime -gas storage,FOM,3.59,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" -gas storage,investment,0.03,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" -gas storage charger,investment,14.34,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -gas storage discharger,investment,4.78,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -geothermal,CO2 intensity,0.03,tCO2/MWhth,https://www.eia.gov/environment/emissions/co2_vol_mass.php, from old pypsa cost assumptions -geothermal,FOM,2.36,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -geothermal,efficiency,0.24,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -geothermal,investment,3392.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -geothermal,lifetime,40.0,years,IEA2010, from old pypsa cost assumptions -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions -helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", -hydrogen storage compressor,investment,79.42,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.", -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.", -hydrogen storage tank type 1 including compressor,FOM,1.9,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,21.0,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.2,EUR/kWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.09,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.2,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,840.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.85,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,700.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime -lignite,CO2 intensity,0.41,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,fuel,2.9,EUR/MWh_th,DIW, -lignite,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanation,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,investment,480.58,"EUR/MW_CH4; and -EUR/kW_CH4","Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", -methanation,lifetime,20.0,years,Guesstimate., -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.", -methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10)., -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.", -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,investment,480584.39,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.43,%/year,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.61,per unit,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,5763.55,EUR/kW_th,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/max/code/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime -nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.01,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" -offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1487.88,"EUR/kW_e, 2020","Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020]" -offwind,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] -offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions -offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions -offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions -oil,CO2 intensity,0.26,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.41,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" -oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,336.0,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.18,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.22,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,963.07,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", -seawater desalination,investment,21025.64,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -solar,FOM,2.07,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,370.19,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop,FOM,1.61,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,475.38,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop commercial,FOM,1.81,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,374.88,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.4,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,575.88,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.53,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,265.0,EUR/kW_e,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, -solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.28,%/year,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.85,EUR/MWh,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,536.36,EUR/kW,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/max/code/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, /home/max/code/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) From bcdaa1cbb7afb28b810c20d4dae613da8836ce40 Mon Sep 17 00:00:00 2001 From: Max Parzen Date: Wed, 17 May 2023 18:38:24 +0100 Subject: [PATCH 20/24] rename new data, add home batteries --- Snakefile | 2 +- config.yaml | 6 +++--- scripts/compile_cost_assumptions.py | 6 +++--- 3 files changed, 7 insertions(+), 7 deletions(-) diff --git a/Snakefile b/Snakefile index f3bd289..dfd225c 100644 --- a/Snakefile +++ b/Snakefile @@ -15,7 +15,7 @@ rule compile_cost_assumptions: dea_heating = "inputs/technologydatafor_heating_installations_marts_2018.xlsx", dea_industrial = "inputs/technology_data_for_industrial_process_heat.xlsx", dea_ccts = "inputs/technology_data_for_carbon_capture_transport_storage.xlsx", - parzen_energy_storage = "inputs/parzen-energy-storage-database.xlsx", + pnnl_energy_storage_database = "inputs/parzen-energy-storage-database.xlsx", manual_input = "inputs/manual_input.csv" output: expand("outputs/costs_{year}.csv", year = config["years"]) diff --git a/config.yaml b/config.yaml index 4ba8074..c92c9c8 100644 --- a/config.yaml +++ b/config.yaml @@ -20,12 +20,12 @@ solar_rooftop_from_etip : false # add fuel cell/electrolysis efficiencies from Budischak (DEA assumptions very conservative) h2_from_budischak : false -# add storage data from Parzen -parzen_energy_storage: true +# add storage data mainly from PNNL +pnnl_energy_storage_database: true # remove grid connection costs from DEA for offwind because they are calculated # seperately in pypsa-eur -offwind_no_gridcosts : false +offwind_no_gridcosts : true desalination: salinity: 35 # in PSU (Practical Salinity Unit) = kg/m^3 diff --git a/scripts/compile_cost_assumptions.py b/scripts/compile_cost_assumptions.py index ecab072..7df3610 100644 --- a/scripts/compile_cost_assumptions.py +++ b/scripts/compile_cost_assumptions.py @@ -1800,7 +1800,7 @@ def add_energy_storage_database(costs, data_year): print(f"Add energy storage database compiled by Parzen for year {data_year}") # a) Import csv file df = pd.read_excel( - snakemake.input["parzen_energy_storage"], + snakemake.input["pnnl_energy_storage_database"], sheet_name="energy-storage-database", dtype={ "technology": str, @@ -2055,7 +2055,7 @@ def geometric_series(nominator, denominator=1, number_of_terms=1, start=1): data = add_manual_input(data) # add costs for home batteries - # data = add_home_battery_costs(data) + data = add_home_battery_costs(data) # add SMR assumptions data = add_SMR_data(data) # add solar rooftop costs by taking the mean of commercial and residential @@ -2091,7 +2091,7 @@ def geometric_series(nominator, denominator=1, number_of_terms=1, start=1): # add desalination and clean water tank storage costs = add_desalinsation_data(costs) # add energy storage database - if snakemake.config['parzen_energy_storage']: + if snakemake.config['pnnl_energy_storage_database']: costs = add_energy_storage_database(costs, year) # add electrolyzer and fuel cell efficiency from other source than DEA From d4e4d09d44b0d2db6ae6e63e14a39c8dde5b5ea5 Mon Sep 17 00:00:00 2001 From: Max Parzen Date: Wed, 17 May 2023 18:55:05 +0100 Subject: [PATCH 21/24] rename data file and add inflation correction --- Snakefile | 2 +- ...abase.xlsx => pnnl-energy-storage-database.xlsx} | Bin scripts/compile_cost_assumptions.py | 8 +++++--- 3 files changed, 6 insertions(+), 4 deletions(-) rename inputs/{parzen-energy-storage-database.xlsx => pnnl-energy-storage-database.xlsx} (100%) diff --git a/Snakefile b/Snakefile index dfd225c..9deda2d 100644 --- a/Snakefile +++ b/Snakefile @@ -15,7 +15,7 @@ rule compile_cost_assumptions: dea_heating = "inputs/technologydatafor_heating_installations_marts_2018.xlsx", dea_industrial = "inputs/technology_data_for_industrial_process_heat.xlsx", dea_ccts = "inputs/technology_data_for_carbon_capture_transport_storage.xlsx", - pnnl_energy_storage_database = "inputs/parzen-energy-storage-database.xlsx", + pnnl_energy_storage_database = "inputs/pnnl-energy-storage-database.xlsx", manual_input = "inputs/manual_input.csv" output: expand("outputs/costs_{year}.csv", year = config["years"]) diff --git a/inputs/parzen-energy-storage-database.xlsx b/inputs/pnnl-energy-storage-database.xlsx similarity index 100% rename from inputs/parzen-energy-storage-database.xlsx rename to inputs/pnnl-energy-storage-database.xlsx diff --git a/scripts/compile_cost_assumptions.py b/scripts/compile_cost_assumptions.py index 7df3610..6351e2d 100644 --- a/scripts/compile_cost_assumptions.py +++ b/scripts/compile_cost_assumptions.py @@ -1782,7 +1782,7 @@ def add_mean_solar_rooftop(data): def add_energy_storage_database(costs, data_year): - """Add energy storage database compiled by Parzen + """Add energy storage database compiled Learning rate drop. For example, the nominal DC SB learning rate for RFBs is set at 4.5%, 1.5% for lead-acid batteries, compared to 10% for Li-ion batteries, corresponding to cost drops of @@ -1983,9 +1983,10 @@ def geometric_series(nominator, denominator=1, number_of_terms=1, start=1): ) # keep only relevant columns df = df.loc[df.year == data_year,["technology", "parameter", "value", "unit", "source", "further description"]] + tech = df.technology.unique() df = df.set_index(['technology', 'parameter']) - return pd.concat([costs, df]) + return pd.concat([costs, df]), tech # %% ************************************************************************* @@ -2092,7 +2093,8 @@ def geometric_series(nominator, denominator=1, number_of_terms=1, start=1): costs = add_desalinsation_data(costs) # add energy storage database if snakemake.config['pnnl_energy_storage_database']: - costs = add_energy_storage_database(costs, year) + costs, tech = add_energy_storage_database(costs, year) + costs = adjust_for_inflation(costs, tech, 2020) # add electrolyzer and fuel cell efficiency from other source than DEA if snakemake.config['h2_from_budischak']: From 4aae8493dd00ddc2379ece585db3e7271a985274 Mon Sep 17 00:00:00 2001 From: Max Parzen Date: Wed, 17 May 2023 19:23:58 +0100 Subject: [PATCH 22/24] add options for storage --- config.yaml | 9 ++++----- scripts/compile_cost_assumptions.py | 9 ++++++--- 2 files changed, 10 insertions(+), 8 deletions(-) diff --git a/config.yaml b/config.yaml index c92c9c8..8bc18e6 100644 --- a/config.yaml +++ b/config.yaml @@ -17,11 +17,10 @@ eur_year : 2015 solar_utility_from_vartiaien : false solar_rooftop_from_etip : false -# add fuel cell/electrolysis efficiencies from Budischak (DEA assumptions very conservative) -h2_from_budischak : false - -# add storage data mainly from PNNL -pnnl_energy_storage_database: true +energy_storage_database: + h2_from_budischak: true # add fuel cell/electrolysis efficiencies from Budischak (DEA assumptions very conservative) + ewg_home_battery: true # add home battery data derived from DEA data and EWG study + pnnl_energy_storage_database: true # add storage data mainly from PNNL # remove grid connection costs from DEA for offwind because they are calculated # seperately in pypsa-eur diff --git a/scripts/compile_cost_assumptions.py b/scripts/compile_cost_assumptions.py index 6351e2d..72ae376 100644 --- a/scripts/compile_cost_assumptions.py +++ b/scripts/compile_cost_assumptions.py @@ -1903,6 +1903,7 @@ def add_energy_storage_database(costs, data_year): x = df.loc[filter, "year"] # both values 2021+2030 first_segment_diff = y.iloc[0]-y.iloc[1] endp_first_segment = y.iloc[1] + ## # Below we create linear segments between 2021-2030 # While the first segment is known, the others are defined by the initial segments with a accumulating quadratic descreasing gradient other_segments_points = [2034, 2039, 2044, 2049, 2054, 2059] @@ -2056,7 +2057,9 @@ def geometric_series(nominator, denominator=1, number_of_terms=1, start=1): data = add_manual_input(data) # add costs for home batteries - data = add_home_battery_costs(data) + + if snakemake.config["energy_storage_database"].get("ewg_home_battery", True): + data = add_home_battery_costs(data) # add SMR assumptions data = add_SMR_data(data) # add solar rooftop costs by taking the mean of commercial and residential @@ -2092,12 +2095,12 @@ def geometric_series(nominator, denominator=1, number_of_terms=1, start=1): # add desalination and clean water tank storage costs = add_desalinsation_data(costs) # add energy storage database - if snakemake.config['pnnl_energy_storage_database']: + if snakemake.config['energy_storage_database'].get("pnnl_energy_storage_database", True): costs, tech = add_energy_storage_database(costs, year) costs = adjust_for_inflation(costs, tech, 2020) # add electrolyzer and fuel cell efficiency from other source than DEA - if snakemake.config['h2_from_budischak']: + if snakemake.config["energy_storage_database"].get("h2_from_budischak", True): costs = add_h2_from_other(costs) # add data from conventional carriers From 7e108358c52bd074f1dcf0622d82e38aac5a365f Mon Sep 17 00:00:00 2001 From: Max Parzen Date: Thu, 18 May 2023 00:39:06 +0100 Subject: [PATCH 23/24] add fixes --- Snakefile | 2 +- config.yaml | 4 +++- scripts/compile_cost_assumptions.py | 20 +++++++++++++++----- 3 files changed, 19 insertions(+), 7 deletions(-) diff --git a/Snakefile b/Snakefile index 9deda2d..156976e 100644 --- a/Snakefile +++ b/Snakefile @@ -15,7 +15,7 @@ rule compile_cost_assumptions: dea_heating = "inputs/technologydatafor_heating_installations_marts_2018.xlsx", dea_industrial = "inputs/technology_data_for_industrial_process_heat.xlsx", dea_ccts = "inputs/technology_data_for_carbon_capture_transport_storage.xlsx", - pnnl_energy_storage_database = "inputs/pnnl-energy-storage-database.xlsx", + pnnl_energy_storage = "inputs/pnnl-energy-storage-database.xlsx", manual_input = "inputs/manual_input.csv" output: expand("outputs/costs_{year}.csv", year = config["years"]) diff --git a/config.yaml b/config.yaml index 8bc18e6..5ec6102 100644 --- a/config.yaml +++ b/config.yaml @@ -20,7 +20,9 @@ solar_rooftop_from_etip : false energy_storage_database: h2_from_budischak: true # add fuel cell/electrolysis efficiencies from Budischak (DEA assumptions very conservative) ewg_home_battery: true # add home battery data derived from DEA data and EWG study - pnnl_energy_storage_database: true # add storage data mainly from PNNL + pnnl_energy_storage: + add_data: true # add storage data mainly from PNNL + approx_beyond_2030: ["geometric_series"] # ["geometric_series"] or ["same_as_2030"] # remove grid connection costs from DEA for offwind because they are calculated # seperately in pypsa-eur diff --git a/scripts/compile_cost_assumptions.py b/scripts/compile_cost_assumptions.py index 72ae376..b49ece0 100644 --- a/scripts/compile_cost_assumptions.py +++ b/scripts/compile_cost_assumptions.py @@ -1797,10 +1797,10 @@ def add_energy_storage_database(costs, data_year): """ from scipy import interpolate - print(f"Add energy storage database compiled by Parzen for year {data_year}") + print(f"Add energy storage database compiled for year {data_year}") # a) Import csv file df = pd.read_excel( - snakemake.input["pnnl_energy_storage_database"], + snakemake.input["pnnl_energy_storage"], sheet_name="energy-storage-database", dtype={ "technology": str, @@ -1903,7 +1903,7 @@ def add_energy_storage_database(costs, data_year): x = df.loc[filter, "year"] # both values 2021+2030 first_segment_diff = y.iloc[0]-y.iloc[1] endp_first_segment = y.iloc[1] - ## + # Below we create linear segments between 2021-2030 # While the first segment is known, the others are defined by the initial segments with a accumulating quadratic descreasing gradient other_segments_points = [2034, 2039, 2044, 2049, 2054, 2059] @@ -1950,7 +1950,17 @@ def geometric_series(nominator, denominator=1, number_of_terms=1, start=1): cost_at_year = endp_first_segment - geometric_series(nominator=first_segment_diff, denominator=factor, number_of_terms=i+1) y3 = pd.concat([y3, pd.DataFrame([cost_at_year])], ignore_index=True) f = interpolate.interp1d(x3.squeeze(), y3.squeeze(), kind='linear', fill_value="extrapolate") - ynew = f(data_year) + + option = snakemake.config['energy_storage_database']['pnnl_energy_storage'] + if option.get('approx_beyond_2030') == ["geometric_series"]: + ynew = f(data_year) + if option.get('approx_beyond_2030') == ["same_as_2030"]: + if data_year <= 2030: + # apply linear interpolation + ynew = f(data_year) + if data_year > 2030: + # apply same value as 2030 + ynew = y.iloc[1] # assume new value is the same as 2030 df_new = pd.DataFrame([{ "technology": tech, @@ -2095,7 +2105,7 @@ def geometric_series(nominator, denominator=1, number_of_terms=1, start=1): # add desalination and clean water tank storage costs = add_desalinsation_data(costs) # add energy storage database - if snakemake.config['energy_storage_database'].get("pnnl_energy_storage_database", True): + if snakemake.config['energy_storage_database']['pnnl_energy_storage'].get("add_data", True): costs, tech = add_energy_storage_database(costs, year) costs = adjust_for_inflation(costs, tech, 2020) From 58edc03af98d8bf9269ad4e6a54ed2d9892e395d Mon Sep 17 00:00:00 2001 From: Max Parzen Date: Mon, 22 May 2023 14:09:38 +0100 Subject: [PATCH 24/24] 'same_as_2030' new pnnl data default --- config.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/config.yaml b/config.yaml index 5ec6102..222f555 100644 --- a/config.yaml +++ b/config.yaml @@ -22,7 +22,7 @@ energy_storage_database: ewg_home_battery: true # add home battery data derived from DEA data and EWG study pnnl_energy_storage: add_data: true # add storage data mainly from PNNL - approx_beyond_2030: ["geometric_series"] # ["geometric_series"] or ["same_as_2030"] + approx_beyond_2030: ["same_as_2030"] # ["geometric_series"] or ["same_as_2030"] # remove grid connection costs from DEA for offwind because they are calculated # seperately in pypsa-eur