-
Notifications
You must be signed in to change notification settings - Fork 232
/
VIX_Strategy.py
96 lines (79 loc) · 3.26 KB
/
VIX_Strategy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import pandas as pd
import quandl
import matplotlib.pyplot as plt
import math
def fetch_data(string1, string2, string3, filename):
w = quandl.get(string1, authtoken = string2, start_date = string3)
w.to_csv(filename)
w = pd.read_csv(filename)
return w
# The Data pulled from quandl and stored locally for faster execution
Data = fetch_data("CHRIS/CME_SP1", "", "2017-07-31", "local_future.csv")
Data1 = fetch_data("CHRIS/SPX_PC", "", "2017-07-31", "local_data.csv")
Data['future'] = Data1['Last']
Data['VIX'] = Data['VIX Close']
# Variables
mtm = list()
order_details = list()
order = list() #list which contains the orders: BUY / SELL / Do Nothing
profit = list()
buy_sell = list()
stoploss = list()
pro = 0 # Profit Variable
v = 0 # 'v' is the price at which we buy S&P 500 futures at that particular level of VIX
thresh = 22 # VIX threshold for placing buy order
change_1 = 5 # % of the buy price to be used for executing a take profit order
change_2 = 5 # % of the buy price to be used for executing a stoploss order
buy_flag = False
Sell_flag = True
s = Data['future'].size # size of VIX dataset
c_1 = (1 + (change_1)/float(100)) # c_1 is the value above which the sell order wi;; execute in a successful trade
c_2 = (1 - (change_2)/float(100)) # c_2 is the value below a sell order will execute in a stoploss
for i in range(s):
pro = 0
if(Data['VIX'][i]>= thresh and (not buy_flag)):
order_details = [-1, "Buy", "0", "Position Taken"]
buy_flag = True
Sell_flag = False
v = Data['future'][i]
elif(Data['future'][i] >= (c_1) * v and (not Sell_flag)):
buy_flag = False
Sell_flag = True
pro = (Data['future'][i] - v)
order_details = [1, "Sell", "0", "Position Closed"]
elif(Data['future'][i] <= (c_2)*v and (not Sell_flag)):
buy_flag = False
Sell_flag = True
pro = (Data['future'][i] - v)
order_details = [1, "Sell", "Stoploss Executed", "Position Closed"]
else:
if(buy_flag == 1 ):
x = (Data['future'][i] - v) * 500 * 2
else:
x = "0"
order_details = [0, "No Trade", "0", x]
profit.append(pro)
order.append(order_details[0])
buy_sell.append(order_details[1])
stoploss.append(order_details[2])
mtm.append(order_details[3])
Data['placed_order'] = pd.Series(order) # Converting list into Panda Series
Data['cost'] = - (Data['placed_order'].multiply(Data['future'])) * 500 * 2 # Cost of each transaction
Data['out'] = Data['cost'].cumsum() # Out is the cumulative cost profit / loss after transaction till now
Data['buy_sell'] = pd.Series(buy_sell)
Data['profit'] = -pd.Series(profit) * 500 * 2
Data['stoploss'] = pd.Series(stoploss)
Data['mtm'] = pd.Series(mtm)
print(Data['out'])
output = pd.DataFrame() # Final output to be stored in excel file
output['date'] = Data['Date']
output['Close'] = Data['future']
output['VIX'] = Data['VIX']
output['placed_order'] = Data['placed_order']
output['buy_sell'] = Data['buy_sell']
output['Profit'] = Data['profit']
output['mtm'] = Data['mtm']
output['stoploss'] = Data['stoploss']
output.to_excel('VIX_SL_output.xlsx', sheet_name='Sheet1')
plt.plot(Data['out'])
plt.show()