-
Notifications
You must be signed in to change notification settings - Fork 22
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
基于 MMYOLO 在 YOLOv5-s 中增加 CFP MSCOCO 上效果提升 1 个点 #10
Comments
@hhaAndroid |
你好,请问可以提供一下在yolov5-s网络添加CFP后训练的权重吗? |
@hhaAndroid 您好,我按照您的方法,在mmyolo框架中,添加了YOLOv8CPAFPN(YOLOv8PAFPN),然后将YOLOv8的neck替换为YOLOv8CPAFPN,但运行后会出现如下的错误:
请问该如何解决呢? |
Hello, how to use grad cam or AblationCAM to visualize the pre-input and output feature maps of EVCBlock module? Detailed usage see: your "https://mmyolo.readthedocs.io/zh_CN/latest/user_guides/visualization.html" has failed, are looking forward to your reply |
作者好@QY1994-0919:
我基于你的代码快速在 YOLOv5 中试了下,在 MSCOCO val 数据集上性能为 38.6,没有加之前是 37.6,正好涨 1 个点。
我是基于 MMYOLO 进行实验,配置和代码见个人分支: https://github.com/hhaAndroid/mmyolo/tree/bifpn_demo (请忽略分支名,瞎写的)
具体做法是:
(1) 新建 https://github.com/hhaAndroid/mmyolo/blob/bifpn_demo/mmyolo/models/necks/yolov5_cpafpn.py
核心代码非常简单:
(2) 新建配置 https://github.com/hhaAndroid/mmyolo/blob/bifpn_demo/configs/yolov5/yolov5_s-v61_cpafpn_syncbn_fast_8xb16-300e_coco.py
(3) 开启分布式训练
cd mmyolo
bash ./tools/dist_train.sh configs/yolov5/yolov5_s-v61_cpafpn_syncbn_fast_8xb16-300e_coco.py 8
结果
(4) 特征图可视化
详细用法见: https://mmyolo.readthedocs.io/zh_CN/latest/user_guides/visualization.html
基于训练好的模型,对 EVCBlock 模块的输入前和输出的特征图进行可视化,查看模块效果
(5) grad-cam and grad-free cam
grad cam 可视化 EVCBlock 输入前效果
grad cam 可视化 EVCBlock 输入后效果
AblationCAM 可视化 EVCBlock 输入前效果
AblationCAM 可视化 EVCBlock 输入后效果
如果觉得有必要合入到 MMYOLO 主分支中,欢迎留言!
The text was updated successfully, but these errors were encountered: