You are given an array of integers nums
, there is a sliding window of size k
which is moving from the very left of the array to the very right. You can only see the k
numbers in the window. Each time the sliding window moves right by one position.
Return the max sliding window.
Example 1:
Input: nums = [1,3,-1,-3,5,3,6,7], k = 3 Output: [3,3,5,5,6,7] Explanation: Window position Max --------------- ----- [1 3 -1] -3 5 3 6 7 3 1 [3 -1 -3] 5 3 6 7 3 1 3 [-1 -3 5] 3 6 7 5 1 3 -1 [-3 5 3] 6 7 5 1 3 -1 -3 [5 3 6] 7 6 1 3 -1 -3 5 [3 6 7] 7
Example 2:
Input: nums = [1], k = 1 Output: [1]
Constraints:
1 <= nums.length <= 105
-104 <= nums[i] <= 104
1 <= k <= nums.length
class Solution:
def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]:
q = [(-v, i) for i, v in enumerate(nums[: k - 1])]
heapify(q)
ans = []
for i in range(k - 1, len(nums)):
heappush(q, (-nums[i], i))
while q[0][1] <= i - k:
heappop(q)
ans.append(-q[0][0])
return ans
class Solution:
def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]:
q = deque()
ans = []
for i, v in enumerate(nums):
if q and i - k + 1 > q[0]:
q.popleft()
while q and nums[q[-1]] <= v:
q.pop()
q.append(i)
if i >= k - 1:
ans.append(nums[q[0]])
return ans
class Solution {
public int[] maxSlidingWindow(int[] nums, int k) {
PriorityQueue<int[]> q
= new PriorityQueue<>((a, b) -> a[0] == b[0] ? a[1] - b[1] : b[0] - a[0]);
int n = nums.length;
for (int i = 0; i < k - 1; ++i) {
q.offer(new int[] {nums[i], i});
}
int[] ans = new int[n - k + 1];
for (int i = k - 1, j = 0; i < n; ++i) {
q.offer(new int[] {nums[i], i});
while (q.peek()[1] <= i - k) {
q.poll();
}
ans[j++] = q.peek()[0];
}
return ans;
}
}
class Solution {
public int[] maxSlidingWindow(int[] nums, int k) {
int n = nums.length;
int[] ans = new int[n - k + 1];
Deque<Integer> q = new ArrayDeque<>();
for (int i = 0, j = 0; i < n; ++i) {
if (!q.isEmpty() && i - k + 1 > q.peekFirst()) {
q.pollFirst();
}
while (!q.isEmpty() && nums[q.peekLast()] <= nums[i]) {
q.pollLast();
}
q.offer(i);
if (i >= k - 1) {
ans[j++] = nums[q.peekFirst()];
}
}
return ans;
}
}
class Solution {
public:
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
priority_queue<pair<int, int>> q;
int n = nums.size();
for (int i = 0; i < k - 1; ++i) {
q.push({nums[i], -i});
}
vector<int> ans;
for (int i = k - 1; i < n; ++i) {
q.push({nums[i], -i});
while (-q.top().second <= i - k) {
q.pop();
}
ans.emplace_back(q.top().first);
}
return ans;
}
};
class Solution {
public:
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
deque<int> q;
vector<int> ans;
for (int i = 0; i < nums.size(); ++i) {
if (!q.empty() && i - k + 1 > q.front()) {
q.pop_front();
}
while (!q.empty() && nums[q.back()] <= nums[i]) {
q.pop_back();
}
q.push_back(i);
if (i >= k - 1) {
ans.emplace_back(nums[q.front()]);
}
}
return ans;
}
};
func maxSlidingWindow(nums []int, k int) (ans []int) {
q := hp{}
for i, v := range nums[:k-1] {
heap.Push(&q, pair{v, i})
}
for i := k - 1; i < len(nums); i++ {
heap.Push(&q, pair{nums[i], i})
for q[0].i <= i-k {
heap.Pop(&q)
}
ans = append(ans, q[0].v)
}
return
}
type pair struct{ v, i int }
type hp []pair
func (h hp) Len() int { return len(h) }
func (h hp) Less(i, j int) bool {
a, b := h[i], h[j]
return a.v > b.v || (a.v == b.v && i < j)
}
func (h hp) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *hp) Push(v interface{}) { *h = append(*h, v.(pair)) }
func (h *hp) Pop() interface{} { a := *h; v := a[len(a)-1]; *h = a[:len(a)-1]; return v }
func maxSlidingWindow(nums []int, k int) (ans []int) {
q := []int{}
for i, v := range nums {
if len(q) > 0 && i-k+1 > q[0] {
q = q[1:]
}
for len(q) > 0 && nums[q[len(q)-1]] <= v {
q = q[:len(q)-1]
}
q = append(q, i)
if i >= k-1 {
ans = append(ans, nums[q[0]])
}
}
return ans
}
/**
* @param {number[]} nums
* @param {number} k
* @return {number[]}
*/
var maxSlidingWindow = function (nums, k) {
let ans = [];
let q = [];
for (let i = 0; i < nums.length; ++i) {
if (q && i - k + 1 > q[0]) {
q.shift();
}
while (q && nums[q[q.length - 1]] <= nums[i]) {
q.pop();
}
q.push(i);
if (i >= k - 1) {
ans.push(nums[q[0]]);
}
}
return ans;
};