From 47b13edd5ffdb28286bdb59d9362bdec80d5f4c0 Mon Sep 17 00:00:00 2001 From: "quant-ranger[bot]" <132915763+quant-ranger[bot]@users.noreply.github.com> Date: Wed, 3 Apr 2024 16:31:16 +0200 Subject: [PATCH] Pre-commit autoupdate (#148) --- .pre-commit-config.yaml | 8 ++++---- src/spox/_schemas.py | 7 +++---- src/spox/_scope.py | 12 ++++------- src/spox/_standard.py | 1 + src/spox/opset/ai/onnx/ml/v3.py | 10 +++++---- src/spox/opset/ai/onnx/ml/v4.py | 9 +++++---- src/spox/opset/ai/onnx/v17.py | 36 +++++++++++++++++++-------------- src/spox/opset/ai/onnx/v19.py | 3 ++- tests/test_custom_operator.py | 1 + 9 files changed, 47 insertions(+), 40 deletions(-) diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 078f8ae6..199d083a 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -1,22 +1,22 @@ repos: - repo: https://github.com/Quantco/pre-commit-mirrors-ruff - rev: 0.2.2 + rev: 0.3.4 hooks: - id: ruff-conda - id: ruff-format-conda - repo: https://github.com/Quantco/pre-commit-mirrors-mypy - rev: "1.8.0" + rev: "1.9.0" hooks: - id: mypy-conda additional_dependencies: [-c, conda-forge, types-setuptools] - repo: https://github.com/Quantco/pre-commit-mirrors-pyupgrade - rev: 3.15.0 + rev: 3.15.2 hooks: - id: pyupgrade-conda args: - --py38 - repo: https://github.com/Quantco/pre-commit-mirrors-prettier - rev: 3.2.4 + rev: 3.2.5 hooks: - id: prettier-conda files: "\\.md$" diff --git a/src/spox/_schemas.py b/src/spox/_schemas.py index 95bf7a80..dba3274a 100644 --- a/src/spox/_schemas.py +++ b/src/spox/_schemas.py @@ -1,4 +1,5 @@ """Exposes information related to reference ONNX operator schemas, used by StandardOpNode.""" + import itertools from typing import ( Callable, @@ -16,11 +17,9 @@ class _Comparable(Protocol): - def __lt__(self, other): - ... + def __lt__(self, other): ... - def __gt__(self, other): - ... + def __gt__(self, other): ... S = TypeVar("S") diff --git a/src/spox/_scope.py b/src/spox/_scope.py index 2d08a4e0..a8a793d9 100644 --- a/src/spox/_scope.py +++ b/src/spox/_scope.py @@ -59,12 +59,10 @@ def __contains__(self, item: Union[str, H]) -> bool: ) @overload - def __getitem__(self, item: H) -> str: - ... + def __getitem__(self, item: H) -> str: ... @overload - def __getitem__(self, item: str) -> H: - ... + def __getitem__(self, item: str) -> H: ... def __getitem__(self, item: Union[str, H]): """Access the name of an object or an object with a given name in this (or outer) namespace.""" @@ -76,12 +74,10 @@ def __getitem__(self, item: Union[str, H]): return self.name_of[item] @overload - def __setitem__(self, key: str, value: H): - ... + def __setitem__(self, key: str, value: H): ... @overload - def __setitem__(self, key: H, value: str): - ... + def __setitem__(self, key: H, value: str): ... def __setitem__(self, _key, _value): """Set the name of an object in exactly this namespace. Both ``[name] = obj`` and ``[obj] = name`` work.""" diff --git a/src/spox/_standard.py b/src/spox/_standard.py index 43deb6c4..ace93d10 100644 --- a/src/spox/_standard.py +++ b/src/spox/_standard.py @@ -1,4 +1,5 @@ """Module implementing a base for standard ONNX operators, which use the functionality of ONNX node-level inference.""" + from typing import TYPE_CHECKING, Callable, Dict, Tuple import numpy diff --git a/src/spox/opset/ai/onnx/ml/v3.py b/src/spox/opset/ai/onnx/ml/v3.py index 1959ffea..16b59275 100644 --- a/src/spox/opset/ai/onnx/ml/v3.py +++ b/src/spox/opset/ai/onnx/ml/v3.py @@ -1836,12 +1836,14 @@ def tree_ensemble_regressor( 'SUM,' 'MIN,' 'MAX.' base_values Attribute. - Base values for classification, added to final class score; the size - must be the same as the classes or can be left unassigned (assumed 0) + Base values for regression, added to final prediction after applying + aggregate_function; the size must be the same as the classes or can be + left unassigned (assumed 0) base_values_as_tensor Attribute. - Base values for classification, added to final class score; the size - must be the same as the classes or can be left unassigned (assumed 0) + Base values for regression, added to final prediction after applying + aggregate_function; the size must be the same as the classes or can be + left unassigned (assumed 0) n_targets Attribute. The total number of targets. diff --git a/src/spox/opset/ai/onnx/ml/v4.py b/src/spox/opset/ai/onnx/ml/v4.py index 0a99f4a8..3a0fe2ad 100644 --- a/src/spox/opset/ai/onnx/ml/v4.py +++ b/src/spox/opset/ai/onnx/ml/v4.py @@ -64,7 +64,7 @@ class Attributes(BaseAttributes): default_float: AttrFloat32 default_int64: AttrInt64 default_string: AttrString - default_tensor: AttrTensor + default_tensor: Optional[AttrTensor] keys_floats: Optional[AttrFloat32s] keys_int64s: Optional[AttrInt64s] keys_strings: Optional[AttrStrings] @@ -95,7 +95,7 @@ def label_encoder( default_float: float = -0.0, default_int64: int = -1, default_string: str = "_Unused", - default_tensor: np.ndarray, + default_tensor: Optional[np.ndarray] = None, keys_floats: Optional[Iterable[float]] = None, keys_int64s: Optional[Iterable[int]] = None, keys_strings: Optional[Iterable[str]] = None, @@ -144,7 +144,8 @@ def label_encoder( A string. default_tensor Attribute. - A default tensor. + A default tensor. {"*Unused"} if values*\ \* has string type, {-1} if + values\_\* has integral type, and {-0.f} if values\_\* has float type. keys_floats Attribute. A list of floats. @@ -192,7 +193,7 @@ def label_encoder( default_float=AttrFloat32(default_float, name="default_float"), default_int64=AttrInt64(default_int64, name="default_int64"), default_string=AttrString(default_string, name="default_string"), - default_tensor=AttrTensor(default_tensor, name="default_tensor"), + default_tensor=AttrTensor.maybe(default_tensor, name="default_tensor"), keys_floats=AttrFloat32s.maybe(keys_floats, name="keys_floats"), keys_int64s=AttrInt64s.maybe(keys_int64s, name="keys_int64s"), keys_strings=AttrStrings.maybe(keys_strings, name="keys_strings"), diff --git a/src/spox/opset/ai/onnx/v17.py b/src/spox/opset/ai/onnx/v17.py index d18a7e8f..4f9e1f65 100644 --- a/src/spox/opset/ai/onnx/v17.py +++ b/src/spox/opset/ai/onnx/v17.py @@ -4615,7 +4615,7 @@ def batch_normalization( training_mode Attribute. If set to true, it indicates BatchNormalization is being used for - training, and outputs 1, 2, 3, and 4 would be populated. + training, and outputs 1 and 2 are to be computed. Returns ======= @@ -8532,7 +8532,11 @@ def layer_normalization( indicate the i-th dimension of ``X``. If ``X``'s shape is ``[d[0], ..., d[axis-1], d[axis], ..., d[rank-1]]``, the shape of ``Mean`` and ``InvStdDev`` is ``[d[0], ..., d[axis-1], 1, ..., 1]``. - ``Y`` and ``X`` have the same shape. + ``Y`` and ``X`` have the same shape. This operator supports + unidirectional broadcasting (tensors ``Scale`` and ``B`` should be + unidirectional broadcastable to tensor ``X``); for more details please + check `the + doc `__. Parameters ========== @@ -9302,7 +9306,8 @@ def max_pool( output_spatial_shape[i] = ceil((input_spatial_shape[i] + pad_shape[i] - dilation[i] * (kernel_shape[i] - 1) - 1) / strides_spatial_shape[i] + 1) if ceil_mode is enabled. ``pad_shape[i]`` is the sum of pads along axis - ``i``. + ``i``. Sliding windows that would start in the right padded region are + ignored. ``auto_pad`` is a DEPRECATED attribute. If you are using them currently, the output spatial shape will be following when ceil_mode is enabled: @@ -14978,16 +14983,16 @@ def top_k( ) -> Tuple[Var, Var]: r""" Retrieve the top-K largest or smallest elements along a specified axis. - Given an input tensor of shape [a_1, a_2, ..., a_n, r] and integer + Given an input tensor of shape [a_0, a_1, ..., a\_{n-1}] and integer argument k, return two outputs: - - Value tensor of shape [a_1, a_2, ..., a\_{axis-1}, k, a\_{axis+1}, - ... a_n] which contains the values of the top k elements along the - specified axis + - Value tensor of shape [a_0, a_1, ..., a\_{axis-1}, k, a\_{axis+1}, + ... a\_{n-1}] which contains the values of the top k elements along + the specified axis - - Index tensor of shape [a_1, a_2, ..., a\_{axis-1}, k, a\_{axis+1}, - ... a_n] which contains the indices of the top k elements (original - indices from the input tensor). + - Index tensor of shape [a_0, a_1, ..., a\_{axis-1}, k, a\_{axis+1}, + ... a\_{n-1}] which contains the indices of the top k elements + (original indices from the input tensor). - If "largest" is 1 (the default value) then the k largest elements are returned. @@ -15006,7 +15011,7 @@ def top_k( ========== X Type T. - Tensor of shape [a_1, a_2, ..., a_n, r] + Tensor of shape [a_0, a_1, ..., a\_{n-1}] K Type tensor(int64). A 1-D tensor containing a single positive value corresponding to the @@ -15027,12 +15032,13 @@ def top_k( ======= Values : Var Type T. - Tensor of shape [a_1, a_2, ..., a\_{axis-1}, k, a\_{axis+1}, ... a_n] - containing top K values from the input tensor + Tensor of shape [a_0, a_1, ..., a\_{axis-1}, k, a\_{axis+1}, ... + a\_{n-1}] containing top K values from the input tensor Indices : Var Type I. - Tensor of shape [a_1, a_2, ..., a\_{axis-1}, k, a\_{axis+1}, ... a_n] - containing the corresponding input tensor indices for the top K values. + Tensor of shape [a_0, a_1, ..., a\_{axis-1}, k, a\_{axis+1}, ... + a\_{n-1}] containing the corresponding input tensor indices for the top + K values. Notes ===== diff --git a/src/spox/opset/ai/onnx/v19.py b/src/spox/opset/ai/onnx/v19.py index c2130e36..c6509b57 100644 --- a/src/spox/opset/ai/onnx/v19.py +++ b/src/spox/opset/ai/onnx/v19.py @@ -821,7 +821,8 @@ def average_pool( output_spatial_shape[i] = ceil((input_spatial_shape[i] + pad_shape[i] - dilation[i] * (kernel_shape[i] - 1) - 1) / strides_spatial_shape[i] + 1) if ceil_mode is enabled. ``pad_shape[i]`` is the sum of pads along axis - ``i``. + ``i``. Sliding windows that would start in the right padded region are + ignored. ``auto_pad`` is a DEPRECATED attribute. If you are using them currently, the output spatial shape will be following when ceil_mode is enabled: diff --git a/tests/test_custom_operator.py b/tests/test_custom_operator.py index 4c25acbb..b3b8bbfa 100644 --- a/tests/test_custom_operator.py +++ b/tests/test_custom_operator.py @@ -5,6 +5,7 @@ for the respective fields ``attrs/inputs/outputs`` and ``infer_output_types`` will be useful as well. Of these, ``propagate_values`` is probably least common. """ + from dataclasses import dataclass from typing import Dict