From 4ee4d69205a38636af48489094d67d8064f4cf41 Mon Sep 17 00:00:00 2001 From: lakhinderwalia Date: Tue, 12 Sep 2023 20:52:46 -0700 Subject: [PATCH] q_linearadd operator --- src/onnx/parse_qlinearadd.cpp | 202 +++++++++++++++++++++++++++++++++ test/onnx/gen_onnx.py | 30 +++++ test/onnx/qlinearadd_test.onnx | Bin 0 -> 307 bytes test/onnx/verify_onnx.cpp | 36 ++++++ 4 files changed, 268 insertions(+) create mode 100644 src/onnx/parse_qlinearadd.cpp create mode 100644 test/onnx/qlinearadd_test.onnx diff --git a/src/onnx/parse_qlinearadd.cpp b/src/onnx/parse_qlinearadd.cpp new file mode 100644 index 00000000000..2f0f6c02c60 --- /dev/null +++ b/src/onnx/parse_qlinearadd.cpp @@ -0,0 +1,202 @@ +/* + * The MIT License (MIT) + * + * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + */ + +#include +#include +#include +#include +#include + +namespace migraphx { +inline namespace MIGRAPHX_INLINE_NS { +namespace onnx { + +/* + ********************************************************************************* + * Reference: see QLinearAdd in * + * https://github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md * + ********************************************************************************* + + com.microsoft.QLinearAdd + Performs element-wise binary addition on 8 bit data types (with Numpy-style broadcasting support). + + C = (A_scale * (A - A_zero_point) + B_scale * (B - B_zero_point))/C_scale + C_zero_point + + Version + This version of the operator has been available since version 1 of the 'com.microsoft' operator + set. + + Inputs (7 - 8) + A : T + First operand. + + A_scale : tensor(float) + Input A's scale. It's a scalar, which means a per-tensor/layer quantization. + + A_zero_point (optional) : T + Input A zero point. Default value is 0 if it's not specified. It's a scalar, which means a + per-tensor/layer quantization. + + B : T + Second operand. + + B_scale : tensor(float) + Input B's scale. It's a scalar, which means a per-tensor/layer quantization. + + B_zero_point (optional) : T + Input B zero point. Default value is 0 if it's not specified. It's a scalar, which means a + per-tensor/layer quantization. + + C_scale : tensor(float) + Output scale. It's a scalar, which means a per-tensor/layer quantization. + + C_zero_point (optional) : T + + Output zero point. Default value is 0 if it's not specified. It's a scalar, which means a + per-tensor/layer quantization. + + Outputs + C : T + Result, has same element type as two inputs + + Type Constraints + T : tensor(uint8), tensor(int8) + Constrain input and output types to 8 bit signed and unsigned tensors. + +*/ + +struct parse_qlinearadd : op_parser +{ + std::vector operators() const { return {{"QLinearAdd"}}; } + + // basic type checking for QLinearAdd Operator + void check_inputs(const std::vector& args) const + { + if(args.size() < 7) + MIGRAPHX_THROW("QLINEARADD: missing inputs"); + + const auto& in_a = args[0]; + const auto& in_b = args[3]; + + auto sh_a = in_a->get_shape(); + auto sh_b = in_b->get_shape(); + if(sh_a != sh_b) + MIGRAPHX_THROW("QLINEARADD: mismatched input shapes"); + + auto type_a = sh_a.type(); + auto type_b = sh_b.type(); + if(type_a != migraphx::shape::int8_type and type_a != migraphx::shape::uint8_type) + MIGRAPHX_THROW("QLINEARADD: unsupported input type"); + if(type_b != migraphx::shape::int8_type and type_b != migraphx::shape::uint8_type) + MIGRAPHX_THROW("QLINEARADD: unsupported input type"); + } + + instruction_ref bcast_scalar_instr(const migraphx::shape& shape_out, + const instruction_ref& arg_in, + const onnx_parser::node_info& info) const + { + auto bcast_instr_out = info.add_instruction( + migraphx::make_op("multibroadcast", {{"out_lens", shape_out.lens()}}), arg_in); + return bcast_instr_out; + } + + // This method is to prep for quantizelinear or dequantizelinear operation for + // either the broadcasting of weight-scale or zero-points of qlinearadd operator + // outputs: operator op (inputs x, broadcasted: scale (float) & zero_pt (8-bit)) + instruction_ref bcast_qdq_instr(const std::string& op_name, + const instruction_ref& x_in, + const instruction_ref& arg_fscale, + const instruction_ref& arg_z_pt, + const onnx_parser::node_info& info) const + { + auto in_lens = x_in->get_shape().lens(); + + // prep 1: broadcast scale. it can come as a scalar or a 1-D tensor. + std::vector sc_val; + auto ev_arg_fscale = arg_fscale->eval(); + ev_arg_fscale.visit([&](auto s) { sc_val.assign(s.begin(), s.end()); }); + shape sh_scale = {shape::float_type, {sc_val.size()}}; + instruction_ref bcast_scale; + if(sc_val.size() > 1) + bcast_scale = info.add_instruction( + migraphx::make_op("broadcast", {{"axis", 0}, {"out_lens", in_lens}}), + info.add_literal(sh_scale, sc_val)); + else + bcast_scale = + info.add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", in_lens}}), + info.add_literal(sh_scale, sc_val)); + + // prep 2: broadcast zero point. it can come as a scalar or a 1-D tensor. + std::vector z_pt_val; + auto ev_arg_z_pt = arg_z_pt->eval(); + ev_arg_z_pt.visit([&](auto z) { z_pt_val.assign(z.begin(), z.end()); }); + instruction_ref bcast_zero_pt; + if(z_pt_val.size() > 1) + bcast_zero_pt = info.add_instruction( + migraphx::make_op("broadcast", {{"axis", 0}, {"out_lens", in_lens}}), arg_z_pt); + else + bcast_zero_pt = info.add_instruction( + migraphx::make_op("multibroadcast", {{"out_lens", in_lens}}), arg_z_pt); + + // op_name is either quantizelinear or dequantizelinear: + return info.add_instruction(migraphx::make_op(op_name), x_in, bcast_scale, bcast_zero_pt); + } + + instruction_ref parse(const op_desc& /* opd */, + const onnx_parser& /*parser*/, + const onnx_parser::node_info& info, + const std::vector& args) const + { + check_inputs(args); + + // A + const auto& in_a = args[0]; + const auto& in_scale_a = args[1]; + const auto& in_zero_pt_a = args[2]; + auto dquant_a = bcast_qdq_instr("dequantizelinear", in_a, in_scale_a, in_zero_pt_a, info); + + // B + const auto& in_b = args[3]; + const auto& in_scale_b = args[4]; + const auto& in_zero_pt_b = args[5]; + auto dquant_b = bcast_qdq_instr("dequantizelinear", in_b, in_scale_b, in_zero_pt_b, info); + + // C = A + B + auto out_c = info.add_instruction(migraphx::make_op("add"), dquant_a, dquant_b); + + const auto& in_scale_c = args[6]; + + // zero_pt for C is supplied as the last optional argument.. + if(args.size() == 8) + return (bcast_qdq_instr("quantizelinear", out_c, in_scale_c, args[7], info)); + + // if no zero_pt: just broadcast the scale.. + auto bcast_scale_c = bcast_scalar_instr(out_c->get_shape(), in_scale_c, info); + return (info.add_instruction(migraphx::make_op("quantizelinear"), out_c, bcast_scale_c)); + } +}; + +} // namespace onnx +} // namespace MIGRAPHX_INLINE_NS +} // namespace migraphx diff --git a/test/onnx/gen_onnx.py b/test/onnx/gen_onnx.py index b1cc1cd96cc..a48f30fc442 100644 --- a/test/onnx/gen_onnx.py +++ b/test/onnx/gen_onnx.py @@ -32,7 +32,9 @@ def onnx_test(external_data=False): + def create_onnx_test(op_test): + def run_test(): op_info = op_test() if len(op_info) > 3: @@ -5017,6 +5019,34 @@ def prelu_brcst_test(): return ([node], [arg0, arg1], [arg_out]) +@onnx_test() +def qlinearadd_test(): + a = helper.make_tensor_value_info('A', TensorProto.UINT8, [64]) + sc_a = helper.make_tensor('A_scale', TensorProto.FLOAT, [], [0.05]) + zero_pt_a = helper.make_tensor('A_zero_point', TensorProto.UINT8, [], [0]) + + b = helper.make_tensor_value_info('B', TensorProto.UINT8, [64]) + sc_b = helper.make_tensor('B_scale', TensorProto.FLOAT, [], [0.05]) + zero_pt_b = helper.make_tensor('B_zero_point', TensorProto.UINT8, [], + [128]) + + sc_c = helper.make_tensor('C_scale', TensorProto.FLOAT, [], [0.05]) + zero_pt_c = helper.make_tensor('C_zero_point', TensorProto.UINT8, [], [64]) + + c = helper.make_tensor_value_info('C', TensorProto.UINT8, [64]) + + node = onnx.helper.make_node( + 'QLinearAdd', + inputs=[ + 'A', 'A_scale', 'A_zero_point', 'B', 'B_scale', 'B_zero_point', + 'C_scale', 'C_zero_point' + ], + outputs=['C'], + ) + return ([node], [a, b], [c], + [sc_a, zero_pt_a, sc_b, zero_pt_b, sc_c, zero_pt_c]) + + @onnx_test() def quantizelinear_test(): arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5]) diff --git a/test/onnx/qlinearadd_test.onnx b/test/onnx/qlinearadd_test.onnx new file mode 100644 index 0000000000000000000000000000000000000000..eaa5500bf1940e54361df4a57f41b8ed3950e14a GIT binary patch literal 307 zcmd data_a = { + 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, + 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, + 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, + 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126}; + + migraphx::shape b{migraphx::shape::uint8_type, {64}}; + std::vector data_b = { + 128, 126, 124, 122, 120, 118, 116, 114, 112, 110, 108, 106, 104, 102, 100, 98, + 96, 94, 92, 90, 88, 86, 84, 82, 80, 78, 76, 74, 72, 70, 68, 66, + 64, 62, 60, 58, 56, 54, 52, 50, 48, 46, 44, 42, 40, 38, 36, 34, + 32, 30, 28, 26, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2}; + + migraphx::parameter_map pp; + pp["A"] = migraphx::argument(a, data_a.data()); + pp["B"] = migraphx::argument(b, data_b.data()); + auto result = p.eval(pp).back(); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = { + 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, + 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, + 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64}; + + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + TEST_CASE(resize_downsample_f_test) { migraphx::program p = migraphx::parse_onnx("resize_downsample_f_test.onnx");