-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path152_Tripplebyte_Genrate_number_with_givin_probablity.py
executable file
·96 lines (72 loc) · 3.01 KB
/
152_Tripplebyte_Genrate_number_with_givin_probablity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
"""
This problem was asked by Triplebyte.
You are given n numbers as well as n probabilities that sum up to 1.
Write a function to generate one of the numbers with its corresponding probability.
For example, given the numbers [1, 2, 3, 4] and probabilities [0.1, 0.5, 0.2, 0.2],
your function should return 1 10% of the time, 2 50% of the time, and 3 and 4 20% of the time.
You can generate random numbers between 0 and 1 uniformly.
"""
# Idea:
# 1.Sort numbers in descending order according to probability:
# eg [1, 2, 3, 4], [0.1, 0.5, 0.2, 0.2] ---sort---> [2, 3, 4, 1], [0.5, 0.2, 0.2, 0.1]
# 2. Since we can generate uniform random numbers b/w 0 and 1, use this to define when to output which number
# eg After sorting: 1.0 - 0.5 = 0.5 --so--> if rand uniform > 0.5 output 2
# 0.5 - 0.2 = 0.3 --so--> elif rand uniform > 0.3 output 3
# 0.3 - 0.2 = 0.1 --so--> elif rand uniform > 0.1 output 4
# else output 1
#
import random
class NumGenerator:
def __init__(self, numbers:list, probs:list):
# first check sum of probs due to python number representation sum to 1.0 can hardly ever match so using
# rounding of number s upto 5 decimal places to check.
if round(sum(probs), 5) != 1.0:
raise ValueError("Probabilities do not add up to 1.0!")
numbers = [n for n, _ in sorted(zip(numbers, probs), key= lambda pair : pair[1], reverse=True)]
probs = sorted(probs, reverse=True)
# # create mapping_thresholds
temp = 1.0
self.mapping = {}
for i in range(len(probs)):
self.mapping[temp-probs[i]] = numbers[i]
temp-=probs[i]
def generate(self):
uni_rand_num = random.uniform(0.0, 1.0)
for thres in self.mapping:
if uni_rand_num > thres:
return self.mapping[thres]
if __name__ == '__main__':
# Test 1
nums = [1, 2, 3, 4]
probs = [0.1, 0.5, 0.2, 0.2]
test = NumGenerator(nums, probs)
num_iterations = 100000
values = {i:0 for i in nums}
for j in range(num_iterations):
values[test.generate()]+=1
for k, v in values.items():
print("{}: {:.2f}".format(k, v/num_iterations))
print("---------")
# Test 2
nums = [1, 2, 3, 4, 6]
probs = [0.1, 0.3, 0.2, 0.2, 0.2]
test = NumGenerator(nums, probs)
num_iterations = 100000
values = {i: 0 for i in nums}
for j in range(num_iterations):
a = test.generate()
values[a] += 1
for k, v in values.items():
print("{}: {:.2f}".format(k, v / num_iterations))
print("---------")
# Test 3
nums = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
probs = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]
test = NumGenerator(nums, probs)
num_iterations = 100000
values = {i: 0 for i in nums}
for j in range(num_iterations):
a = test.generate()
values[a] += 1
for k, v in values.items():
print("{}: {:.2f}".format(k, v / num_iterations))