-
Notifications
You must be signed in to change notification settings - Fork 0
/
lstm_l_dgn.py
471 lines (407 loc) · 14.8 KB
/
lstm_l_dgn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
import argparse
import datetime
import os
import pprint
from pathlib import Path
from typing import List, Tuple
from math import pow, e, log
import gym
import gymnasium
import numpy as np
import optuna
import torch
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import VectorReplayBuffer, PrioritizedVectorReplayBuffer
from tianshou.env import DummyVectorEnv, SubprocVectorEnv
from tianshou.env.pettingzoo_env import PettingZooEnv
from tianshou.policy import BasePolicy
from tianshou.trainer import offpolicy_trainer
from tianshou.policy.modelfree.dqn import DQNPolicy
from torch_geometric.nn import global_max_pool, global_mean_pool, \
global_add_pool
from graph_env import graph_env_v0
from graph_env.env.utils.constants import RADIUS_OF_INFLUENCE, \
NUMBER_OF_FEATURES
from graph_env.env.utils.logger import CustomLogger
from graph_env.env.utils.networks.lstm_l_dgn import RecurrentLDGNNetwork
from graph_env.env.utils.policies.multi_agent_managers.shared_policy import \
MultiAgentSharedPolicy
from graph_env.env.utils.collectors.collector import MultiAgentCollector
from graph_env.env.utils.hyp_optimizer.offpolicy_opt import offpolicy_optimizer
import time
import warnings
os.environ["SDL_VIDEODRIVER"] = "x11"
warnings.filterwarnings("ignore")
def get_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=9)
parser.add_argument("--eps-test", type=float, default=0.001)
parser.add_argument("--eps-train", type=float, default=1.)
parser.add_argument("--exploration-fraction", type=float, default=0.6)
parser.add_argument("--eps-train-final", type=float, default=0.05)
parser.add_argument("--buffer-size", type=int, default=100000)
parser.add_argument("--lr", type=float, default=0.001)
parser.add_argument("--gamma", type=float, default=0.99)
parser.add_argument("--n-step", type=int, default=4)
parser.add_argument("--hidden-emb", type=int, default=128)
parser.add_argument("--num-heads", type=int, default=4)
parser.add_argument("--target-update-freq", type=int, default=500)
parser.add_argument("--epoch", type=int, default=10)
parser.add_argument("--step-per-epoch", type=int, default=100000)
parser.add_argument("--step-per-collect", type=int, default=10)
parser.add_argument("--update-per-step", type=float, default=0.1)
parser.add_argument("--batch-size", type=int, default=32)
parser.add_argument("--obs-stacks", type=int, default=4)
parser.add_argument("--training-num", type=int, default=20)
parser.add_argument("--test-num", type=int, default=100)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.)
parser.add_argument('--dueling-q-hidden-sizes', type=int, nargs='*',
default=[128, 128])
parser.add_argument('--dueling-v-hidden-sizes', type=int, nargs='*',
default=[128, 128])
parser.add_argument("--aggregator-function", type=str,
default="global_max_pool")
parser.add_argument("--device", type=str,
default="cuda" if torch.cuda.is_available() else "cpu")
parser.add_argument("--resume-path", type=str, default=None)
parser.add_argument("--resume-id", type=str, default=None)
parser.add_argument("--mpr-policy",
action="store_true",
default=False,
help="Use MPR policy")
parser.add_argument('--n-agents', type=int, choices=[20, 50, 100], default=20)
parser.add_argument(
"--watch",
default=False,
action="store_true",
help="watch the play of pre-trained policy only"
)
parser.add_argument(
"--wandb",
default=False,
action="store_true",
help="Set WANDB logger"
)
parser.add_argument(
"--dynamic-graph",
default=False,
action="store_true",
help="Enable dynamic graphs"
)
parser.add_argument(
"--prio-buffer",
default=False,
action="store_true",
help="Enable prioritized experience replay"
)
parser.add_argument("--save-buffer-name", type=str, default=None)
parser.add_argument("--model-name", type=str,
default=datetime.datetime.now().strftime(
"%y%m%d-%H%M%S"))
parser.add_argument(
"--optimize", "--optimize-hyperparameters", action="store_true",
default=False,
help="Run hyperparameters search"
)
parser.add_argument("--study-name", type=str, default=None)
parser.add_argument("--sampler-method", type=str, default="tpe")
parser.add_argument("--pruner-method", type=str, default="median")
parser.add_argument("--n-trials", type=int, default=100)
parser.add_argument("--n-jobs", type=int, default=1)
parser.add_argument("--n-startup-trials", type=int, default=2)
parser.add_argument("--n-warmup-steps", type=int, default=3)
parser.add_argument("--timeout", type=float, default=None)
parser.add_argument("--alpha", type=float, default=0.6)
parser.add_argument("--beta", type=float, default=0.4)
parser.add_argument(
"--save-study",
default=False,
action="store_true",
help="Save study"
)
return parser
def get_args() -> argparse.Namespace:
parser = get_parser().parse_known_args()[0]
parser.learning_algorithm = "lstm_l_dgn"
return parser
def get_env(
number_of_agents=20,
radius=RADIUS_OF_INFLUENCE,
graph=None,
render_mode=None,
is_scripted=False,
is_testing=False,
dynamic_graph=False
):
env = graph_env_v0.env(
graph=graph,
render_mode=render_mode,
number_of_agents=number_of_agents,
radius=radius,
is_scripted=is_scripted,
is_testing=is_testing,
dynamic_graph=dynamic_graph
)
return PettingZooEnv(env)
def get_agents(
args: argparse.Namespace = get_args(),
policy: BasePolicy = None,
optim: torch.optim.Optimizer = None,
) -> Tuple[BasePolicy, torch.optim.Optimizer, List]:
env = get_env(number_of_agents=args.n_agents)
observation_space = env.observation_space['observation'] if isinstance(
env.observation_space, (gym.spaces.Dict, gymnasium.spaces.Dict)
) else env.observation_space
args.state_shape = observation_space.shape or observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = 1
if policy is None:
# features
q_param = {"hidden_sizes": args.dueling_q_hidden_sizes}
v_param = {"hidden_sizes": args.dueling_v_hidden_sizes}
aggregator = None
if args.aggregator_function == "global_max_pool":
aggregator = global_max_pool
elif args.aggregator_function == "global_mean_pool":
aggregator = global_mean_pool
elif args.aggregator_function == "global_add_pool":
aggregator = global_add_pool
net = RecurrentLDGNNetwork(
NUMBER_OF_FEATURES,
args.hidden_emb,
args.action_shape,
args.num_heads,
device=args.device,
dueling_param=(q_param, v_param),
aggregator_function=aggregator
)
optim = torch.optim.Adam(
net.parameters(), lr=args.lr
)
policy = DQNPolicy(
net,
optim,
args.gamma,
args.n_step,
target_update_freq=args.target_update_freq
).to(args.device)
masp_policy = MultiAgentSharedPolicy(policy, env)
return masp_policy, optim, env.agents
def watch(
args: argparse.Namespace = get_args(),
masp_policy: BasePolicy = None,
) -> None:
weights_path = os.path.join(args.logdir, "mpr", "lstm_l_dgn", "weights", f"{args.model_name}")
env = DummyVectorEnv(
[
lambda: get_env(
number_of_agents=args.n_agents,
is_scripted=args.mpr_policy,
is_testing=True,
dynamic_graph=args.dynamic_graph,
render_mode="human"
)
]
)
env.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if masp_policy is None:
masp_policy = load_policy(weights_path, args, env)
masp_policy.policy.eval()
masp_policy.policy.set_eps(args.eps_test)
collector = MultiAgentCollector(
masp_policy,
env,
exploration_noise=False,
number_of_agents=args.n_agents
)
result = collector.collect(n_episode=args.test_num * args.n_agents)
pprint.pprint(result)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
time.sleep(100)
def train_agent(
args: argparse.Namespace = get_args(),
masp_policy: BasePolicy = None,
optim: torch.optim.Optimizer = None,
opt_trial: optuna.Trial = None
) -> Tuple[dict, BasePolicy]:
train_envs = SubprocVectorEnv(
[
lambda: get_env(
number_of_agents=args.n_agents,
dynamic_graph=args.dynamic_graph
) for i in range(args.training_num)
]
)
test_envs = SubprocVectorEnv(
[
lambda: get_env(
number_of_agents=args.n_agents,
dynamic_graph=args.dynamic_graph,
is_testing=True
)
]
)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
masp_policy, optim, agents = get_agents(
args,
policy=masp_policy,
optim=optim
)
train_replay_buffer = PrioritizedVectorReplayBuffer(
args.buffer_size,
len(train_envs) * len(agents),
ignore_obs_next=True,
stack_num=args.obs_stacks,
alpha=args.alpha,
beta=args.beta
) if args.prio_buffer else VectorReplayBuffer(
args.buffer_size,
len(train_envs) * len(agents),
stack_num=args.obs_stacks,
ignore_obs_next=True
)
# collector
train_collector = MultiAgentCollector(
masp_policy,
train_envs,
train_replay_buffer,
exploration_noise=True,
number_of_agents=len(agents)
)
test_collector = MultiAgentCollector(
masp_policy,
test_envs,
VectorReplayBuffer(
args.buffer_size,
len(test_envs) * len(agents),
stack_num=args.obs_stacks,
ignore_obs_next=True
),
exploration_noise=False,
number_of_agents=len(agents)
)
# train_collector.collect(n_step=args.batch_size * args.training_num)
if not args.optimize:
# log
log_path = os.path.join(args.logdir, 'mpr', 'lstm_l_dgn')
logger = CustomLogger(project='dancing_bees', name=args.model_name)
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
logger.load(writer)
weights_path = os.path.join(args.logdir, "mpr", "lstm_l_dgn", "weights")
Path(weights_path).mkdir(parents=True, exist_ok=True)
def save_best_fn(pol):
weights_name = os.path.join(
f"{weights_path}", f"{args.model_name}_best.pth"
)
print(f"Saving {args.model_name} Best")
torch.save(
pol.policy.state_dict(), weights_name
)
def stop_fn(mean_rewards):
# test_reward: -4.84
return mean_rewards > -4.84
def train_fn(epoch, env_step):
decay_factor = (1 - pow(e, (
log(args.eps_train_final) / (
args.exploration_fraction * args.epoch * args.step_per_epoch))))
eps = max(args.eps_train * (1 - decay_factor) ** env_step,
args.eps_train_final)
masp_policy.policy.set_eps(eps)
if not args.optimize:
if env_step % 1000 == 0:
logger.write("train/env_step", env_step, {"train/eps": eps})
def test_fn(epoch, env_step):
masp_policy.policy.set_eps(args.eps_test)
def reward_metric(rews):
return rews.mean()
if not args.optimize:
# trainer
result = offpolicy_trainer(
masp_policy,
train_collector,
test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
step_per_collect=args.step_per_collect,
episode_per_test=args.test_num * args.n_agents,
batch_size=args.batch_size,
train_fn=train_fn,
test_fn=test_fn,
# reward_metric
# stop_fn=stop_fn,
update_per_step=args.update_per_step,
test_in_train=False,
save_best_fn=save_best_fn,
logger=logger
# resume_from_log=args.resume
)
else:
# optimizer
result = offpolicy_optimizer(
masp_policy,
train_collector,
test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
step_per_collect=args.step_per_collect,
episode_per_test=args.test_num * args.n_agents,
batch_size=args.batch_size,
train_fn=train_fn,
test_fn=test_fn,
# reward_metric
# stop_fn=stop_fn,
update_per_step=args.update_per_step,
test_in_train=False,
save_best_fn=save_best_fn,
trial=opt_trial
# resume_from_log=args.resume
)
print(f"Saving {args.model_name} last")
torch.save(
masp_policy.policy.state_dict(),
os.path.join(f"{weights_path}", f"{args.model_name}_last.pth")
)
return result, masp_policy
def load_policy(path, args, env):
# load from existing checkpoint
args.action_shape = 2
print(f"Loading agent under {path}")
if os.path.exists(path):
# model
# features
q_param = {"hidden_sizes": args.dueling_q_hidden_sizes}
v_param = {"hidden_sizes": args.dueling_v_hidden_sizes}
net = RecurrentLDGNNetwork(
NUMBER_OF_FEATURES,
args.hidden_emb,
args.action_shape,
args.num_heads,
device=args.device,
dueling_param=(q_param, v_param)
)
optim = torch.optim.Adam(
net.parameters(), lr=args.lr
)
policy = DQNPolicy(
net,
optim,
args.gamma,
args.n_step,
target_update_freq=args.target_update_freq
).to(args.device)
masp_policy, _, _, = get_agents(args, policy, optim)
masp_policy.policy.load_state_dict(torch.load(path))
print("Successfully restore policy and optim.")
return masp_policy
else:
print("Fail to restore policy and optim.")
exit(0)