-
Notifications
You must be signed in to change notification settings - Fork 6
/
Tutorial_2.2_MNIST_cnn.py
89 lines (68 loc) · 2.32 KB
/
Tutorial_2.2_MNIST_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
from __future__ import print_function
import os
import numpy as np
import tensorflow as tf
# prevent a single instance from claiming all memory
import tensorflow as tf
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.Session(config=config)
# start
np.random.seed(5005)
tf.set_random_seed(5005)
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Activation
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
from keras.backend.tensorflow_backend import set_session
from keras.layers.normalization import BatchNormalization
## GPU OPTIONS
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
set_session(tf.Session(config=config))
## PREPARE MNIST
batch_size = 128
num_classes = 10
epochs = 12
# input image dimensions
img_rows, img_cols = 28, 28
# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
## BUILD MODEL
cnn = Sequential()
cnn.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
cnn.add(Conv2D(64, (3, 3), activation='relu'))
cnn.add(MaxPooling2D(pool_size=(2, 2)))
cnn.add(Dropout(0.25))
cnn.add(Flatten())
cnn.add(Dense(128, activation='relu'))
cnn.add(Dropout(0.5))
cnn.add(Dense(num_classes, activation='softmax'))
cnn.compile(loss=keras.losses.categorical_crossentropy,
optimizer='adam',
metrics=['accuracy'])
## TRAIN
cnn.fit(x_train, y_train,
batch_size=batch_size,
epochs=5,
verbose=1,
validation_data=(x_test, y_test))