-
Notifications
You must be signed in to change notification settings - Fork 7
/
estimateDepth.py
153 lines (129 loc) · 5.6 KB
/
estimateDepth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
"""This is a tensorflow tutorial that I have adapted for the CNN part of our project!"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import numpy as np
tf.logging.set_verbosity(tf.logging.INFO)
def cnn_model_fn(features, labels, mode):
print("printing to mark the start of an iteration")
"""Model function for CNN."""
# Input Layer
# Reshape X to 4-D tensor: [batch_size, width, height, channels]
# images are 28x28 pixels, and have one color channel
input_layer = tf.reshape(features["x"], [-1, 480, 640, 3])
# Convolutional Layer #1
# Computes 32 features using a 5x5 filter with ReLU activation.
# Padding is added to preserve width and height.
# Input Tensor Shape: [batch_size, 28, 28, 1]
# Output Tensor Shape: [batch_size, 28, 28, 8]
conv1 = tf.layers.conv2d(
inputs=input_layer,
filters=2,
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu)
# Pooling Layer #1
# First max pooling layer with a 2x2 filter and stride of 2
# Input Tensor Shape: [batch_size, 480, 640, 8]
# Output Tensor Shape: [batch_size, 240, 320, 8]
pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[4, 4], strides=4)
# Convolutional Layer #2
# Computes 64 features using a 5x5 filter.
# Padding is added to preserve width and height.
# Input Tensor Shape: [batch_size, 240, 320, 8]
# Output Tensor Shape: [batch_size, 240, 320, 16]
conv2 = tf.layers.conv2d(
inputs=pool1,
filters=4,
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu)
# Pooling Layer #2
# Second max pooling layer with a 2x2 filter and stride of 2
# Input Tensor Shape: [batch_size, 240, 320, 16]
# Output Tensor Shape: [batch_size, 120, 160, 16]
pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)
# Flatten tensor into a batch of vectors
# Input Tensor Shape: [batch_size, 120, 160, 16]
# Output Tensor Shape: [batch_size, 120 * 160 * 16]
pool2_flat = tf.reshape(pool2, [-1, 60 * 80 * 4])
# Dense Layer
# Densely connected layer with 1024 neurons
# Input Tensor Shape: [batch_size, 120 * 160 * 16]
# Output Tensor Shape: [batch_size, 120*160]
dense = tf.layers.dense(inputs=pool2_flat, units=128, activation=tf.nn.relu)
# Add dropout operation; 0.6 probability that element will be kept
dropout = tf.layers.dropout(
inputs=dense, rate=0.4, training=mode == tf.estimator.ModeKeys.TRAIN)
# Logits layer
# Input Tensor Shape: [batch_size, 19200]
# Output Tensor Shape: [batch_size, 19200]
logits = tf.layers.dense(inputs=dropout, units=307200)
predictions = {
# Generate predictions (for PREDICT and EVAL mode)
"classes": logits
#"classes": tf.argmax(input=logits, axis=1),
# Add `softmax_tensor` to the graph. It is used for PREDICT and by the
# `logging_hook`.
#"probabilities": tf.nn.softmax(logits, name="softmax_tensor")
}
if mode == tf.estimator.ModeKeys.PREDICT:
print(predictions)
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# Calculate Loss (for both TRAIN and EVAL modes)
#onehot_labels = tf.one_hot(indices=tf.cast(labels, tf.int32), depth=10) #honxestly this depth should be 10 but i dont care
print('i am printing here right before calculating losses')
#print(tf.cast(labels, tf.int32))
loss = tf.reduce_sum(tf.square(labels - logits))
# Configure the Training Op (for TRAIN mode)
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)
train_op = optimizer.minimize(
loss=loss,
global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)
# Add evaluation metrics (for EVAL mode)
eval_metric_ops = {
"accuracy": tf.metrics.accuracy(
labels=labels, predictions=predictions["classes"])}
print(predictions["classes"])
return tf.estimator.EstimatorSpec(
mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)
def main(unused_argv):
data = np.load('data/nyu_dataset_images.npy')
labels_data = np.load('data/nyu_dataset_depths.npy')
train_data = np.array([data[:, :, :, i] for i in range(20)], dtype='float32')
eval_data = np.array([data[:, :, :, i] for i in range(20, 30)], dtype='float32')
# train_labels = np.array([labels_data[:,:,i] for i in range(20)])
# eval_labels = np.array([labels_data[:,:,i] for i in range(20,30)])
train_labels = np.array([np.array(labels_data[:, :, i]).flatten() for i in range(20)]) # use these for flattened labels
eval_labels = np.array([np.array(labels_data[:, :, i]).flatten() for i in range(20, 30)])
# Create the Estimator
depth_classifier = tf.estimator.Estimator(
model_fn=cnn_model_fn, model_dir="/tmp/mnist_convnet_model")
# Set up logging for predictions
# Log the values in the "Softmax" tensor with label "probabilities"
#tensors_to_log = {"probabilities": "softmax_tensor"}
#logging_hook = tf.train.LoggingTensorHook(
#tensors=tensors_to_log, every_n_iter=50)
# Train the model
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": train_data},
y=train_labels,
batch_size=1,
num_epochs=None,
shuffle=True)
depth_classifier.train(
input_fn=train_input_fn,
steps=2)
# Evaluate the model and print results
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": eval_data},
y=eval_labels,
num_epochs=1,
shuffle=False)
eval_results = depth_classifier.evaluate(input_fn=eval_input_fn)
print(eval_results)
if __name__ == "__main__":
tf.app.run()