Skip to content

Latest commit

 

History

History
84 lines (64 loc) · 2.52 KB

custom_evaluation.md

File metadata and controls

84 lines (64 loc) · 2.52 KB

Custom Domain Evaluation

When standard benchmarks don't cover your specific needs, you can design custom evaluation tasks. This guide will help you create evaluation pipelines tailored to your domain.

Task Definition

  1. Evaluation Goals

    • Define what aspects of the model you want to evaluate
    • Identify specific capabilities or behaviors to measure
    • Consider both positive and negative test cases
  2. Data Requirements

    • Input format and structure
    • Expected output format
    • Edge cases and corner cases
    • Size of evaluation dataset needed
  3. Metrics Selection

    • Choose metrics that align with your goals
    • Consider both automated and human evaluation metrics
    • Plan for statistical significance

Implementation Guide

Creating a Custom Task

# Example of a custom LightEval task
from lighteval.tasks import Task

class CustomEvalTask(Task):
    def __init__(self):
        super().__init__(
            name="custom_task",
            version="0.0.1",
            metrics=["accuracy", "f1"],  # Your chosen metrics
            description="Description of your custom evaluation task"
        )
    
    def get_prompt(self, sample):
        # Format your input into a prompt
        return f"Question: {sample['question']}\nAnswer:"
    
    def process_response(self, response, ref):
        # Process model output and compare to reference
        return response.strip() == ref.strip()

Best Practices

  1. Documentation

    • Document task objectives and methodology
    • Provide clear examples of inputs and outputs
    • Explain metric calculations and thresholds
  2. Validation

    • Verify task correctness with small-scale tests
    • Include diverse test cases
    • Consider potential biases in your evaluation
  3. Maintenance

    • Plan for dataset updates
    • Monitor for metric drift
    • Keep evaluation code maintainable

Creating Evaluation Datasets

  1. Data Collection

    • Gather domain-specific examples
    • Include edge cases and common scenarios
    • Consider data privacy and licensing
  2. Annotation

    • Define clear annotation guidelines
    • Use tools like Argilla for efficient annotation
    • Ensure quality control measures
  3. Dataset Format

    • Structure data for easy processing
    • Include metadata and documentation
    • Version control your datasets

Next Steps

For a complete example of implementing a custom evaluation pipeline, see our domain evaluation project which demonstrates these principles in practice.