forked from ZeroZero19/HI-GAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_cell_filter_demo.py
226 lines (191 loc) · 9.42 KB
/
test_cell_filter_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import argparse
import json
from argparse import Namespace
from pprint import pprint
import matplotlib.pyplot as plt
import numpy as np
from torchvision import transforms
import torch
import torch.nn as nn
from models import UNet_D_cell, UNet_ND_cell, HI_GAN_cell
from model_n2n import N2N
from model_dncnn import DnCNN
from utils.data_loader import load_denoising_test_mix_flyv2, load_denoising_test_mix, fluore_to_tensor
from utils.metrics import cal_psnr, cal_ssim
from utils.misc import mkdirs, stitch_pathes, to_numpy, module_size
from utils.plot import plot_row
import cv2
import os
from shutil import copyfile
plt.switch_backend('agg')
parser = argparse.ArgumentParser()
parser.add_argument('-m', '--model', default='models/cell/hi_gan.pth', type=str, help='the model')
parser.add_argument('--net', type=str, default='HI_GAN', choices=['N2N', 'DnCNN','UNet_ND', 'UNet_D', 'HI_GAN'])
parser.add_argument('--batch-size', default=1, type=int, help='test batch size')
parser.add_argument('--data-root', default='testsets/cell', type=str, help='dir to dataset')
parser.add_argument('--out-dir', default='results/cell', type=str, help='dir to dataset')
parser.add_argument('--noise-levels', default=[1, 2, 4, 8, 16], type=str, help='dir to pre-trained model')
parser.add_argument('--image-types', type=str, default='all', choices=['fmd_test_mix', 'our_data', 'all'])
parser.add_argument('--no-cuda', action='store_true', default=False, help='use GPU or not, default using GPU')
parser.add_argument('--save_noi_clean', action='store_true', default=False, help='save_noi_clean')
parser.add_argument('--cuda', type=int, default=4, help='cuda number')
opt = parser.parse_args()
test_batch_size = opt.batch_size
test_seed = 13
cmap = 'inferno'
device = 'cpu' if opt.no_cuda else 'cuda'
noise_levels = opt.noise_levels
if opt.image_types == 'all':
image_types = ['fmd_test_mix', 'our_data']
else:
image_types = [opt.image_types]
out_dir = os.path.join(opt.out_dir,opt.image_types,opt.net)
mkdirs(out_dir)
if opt.net == 'N2N':
model = N2N(1, 1).to(device)
model.load_state_dict(torch.load('models/cell/n2n.pth'))
elif opt.net == 'DnCNN':
model = DnCNN(depth=17,
n_channels=64,
image_channels=1,
use_bnorm=True,
kernel_size=3).to(device)
model.load_state_dict(torch.load('models/cell/dncnn.pth'))
elif opt.net == 'UNet_ND':
model = UNet_ND_cell().to(device)
model = nn.DataParallel(model, list(range(opt.cuda)))
model.load_state_dict(torch.load('models/cell/unet_nd.pth'))
elif opt.net == 'UNet_D':
model = UNet_D_cell().to(device)
model = nn.DataParallel(model, list(range(opt.cuda)))
model.load_state_dict(torch.load('models/cell/unet_d.pth'))
elif opt.net == 'HI_GAN':
model0 = UNet_ND_cell().to(device)
model1 = UNet_D_cell().to(device)
model0 = nn.DataParallel(model0, list(range(opt.cuda)))
model1 = nn.DataParallel(model1, list(range(opt.cuda)))
model0.load_state_dict(torch.load('models/cell/unet_nd.pth'))
model1.load_state_dict(torch.load('models/cell/unet_d.pth'))
model0.eval()
model1.eval()
model = HI_GAN_cell().to(device)
model = nn.DataParallel(model, list(range(opt.cuda)))
model.load_state_dict(torch.load('models/cell/hi_gan.pth'))
model.eval()
def convert(x):
x = (x.transpose(1,2,0)+0.5)*255
return x.clip(0,255).astype('uint8')
logger = {}
four_crop = transforms.Compose([
transforms.FiveCrop(256),
transforms.Lambda(lambda crops: torch.stack([
fluore_to_tensor(crop) for crop in crops[:4]])),
transforms.Lambda(lambda x: x.float().div(255).sub(0.5))
])
for noise_level in noise_levels:
for image_type in image_types:
test_case_dir = out_dir + f'/noise{noise_level}_{image_type}/'
mkdirs(test_case_dir)
if image_type == 'fmd_test_mix':
n_plots = 12
test_loader = load_denoising_test_mix(opt.data_root,
batch_size=test_batch_size, noise_levels=[noise_level],
transform=four_crop, target_transform=four_crop,
patch_size=256)
elif image_type == 'our_data':
n_plots = 12
test_loader = load_denoising_test_mix_flyv2(opt.data_root,
batch_size=test_batch_size, noise_levels=[noise_level],
transform=four_crop, target_transform=four_crop,
patch_size=256)
# four crop
multiplier = 4
n_test_samples = len(test_loader.dataset) * multiplier
case = {'noise': noise_level,
'type': image_type,
'samples': n_test_samples,
}
pprint(case)
print('Start testing............')
psnr, ssim = 0., 0.
psnr_noi, ssim_noi = 0., 0.
out = {}
for batch_idx, (noisy, clean, path) in enumerate(test_loader):
name = os.path.basename(path[0])
noisy, clean = noisy.to(device), clean.to(device)
# fuse batch and four crop
noisy = noisy.view(-1, *noisy.shape[2:])
clean = clean.view(-1, *clean.shape[2:])
with torch.no_grad():
if opt.net == 'HI_GAN':
denoised0 = model0(noisy)
denoised1 = model1(noisy)
denoised = model(denoised0, denoised1)
else:
denoised = model(noisy)
psnr += cal_psnr(clean, denoised).sum().item()
ssim += cal_ssim(clean, denoised).sum()
psnr_noi += cal_psnr(clean, noisy).sum().item()
ssim_noi += cal_ssim(clean, noisy).sum()
# # correct = cal_psnr(clean, denoised).sum().item() >= cal_psnr(clean, denoised1).sum().item() >= cal_psnr(clean, denoised0).sum().item()
correct = cal_psnr(clean, denoised).sum().item() - cal_psnr(clean, denoised0).sum().item()
correct2 = cal_psnr(clean, denoised0).sum().item() - cal_psnr(clean, denoised1).sum().item()
if correct > 0 and correct2>0:
print('copyfile', path)
# os.rename(path,path.replace('.png','_%.2f_%.2f_ok.png'%(correct,correct2)))
path_dir = os.path.dirname(os.path.dirname(path[0]))
copyfile(path[0], path[0].replace(path_dir,'testsets/cell/demo'))
else:
print('BAD psnr', path)
# os.rename(path, path.replace('.png', '_%.2f_%.2f.png' % (correct, correct2)))
# print('REMOVE', path)
# os.remove(path)
if image_type == 'fmd_test_mix':
img_idx = -1
elif image_type == 'our_data' or image_type == 'fly_v2':
if 'Avg' in name:
img_idx = int(name.split('Avg')[1][:-4])
elif 'raw' in name:
img_idx = int(name.split('raw')[1][:-4])
else:
img_idx = int(name.split('_')[-1][:-4])
if img_idx<9:
fixed_denoised_stitched = stitch_pathes(to_numpy(denoised))
out[test_case_dir + name.replace('.png', '_dn.png')] = convert(fixed_denoised_stitched)
cv2.imwrite(test_case_dir + name.replace('.png', '_dn.png'), convert(fixed_denoised_stitched))
if opt.save_noi_clean:
fixed_noisy_stitched = stitch_pathes(to_numpy(noisy))
out[test_case_dir + name.replace('.png', '_noi.png')] = convert(fixed_noisy_stitched)
cv2.imwrite(test_case_dir + name.replace('.png', '_noi.png'), convert(fixed_noisy_stitched))
fixed_clean_stitched = stitch_pathes(to_numpy(clean))
out[test_case_dir + name.replace('.png', '_clean.png')] = convert(fixed_clean_stitched)
cv2.imwrite(test_case_dir + name.replace('.png', '_clean.png'), convert(fixed_clean_stitched))
files = out.keys()
if image_type == 'test_mix':
files_n = [i.split('_B_') for i in files if '_B_' in i]
for n in files_n:
r = out[n[0] + '_R_' + n[1]][:, :, 0]
g = out[n[0] + '_G_' + n[1]][:,:,0]
b = out[n[0] + '_B_' + n[1]][:, :, 0]
rgb = np.stack([b, g, r]).transpose(1, 2, 0)
cv2.imwrite(n[0] + '_RGB_' + n[1], rgb)
else:
files_n = [i.split('Green_') for i in files if 'Green_' in i]
for n in files_n[:5]:
r = out[n[0] + 'Red_' + n[1]][:, :, 0]
g = out[n[0] + 'Green_' + n[1]][:, :, 0]
b = out[n[0] + 'Magenta_' + n[1]][:, :, 0]
rgb = np.stack([b, g, r]).transpose(1, 2, 0)
cv2.imwrite(n[0] + 'RGB_' + n[1], rgb)
psnr = psnr / n_test_samples
ssim = ssim / n_test_samples
psnr_noi = psnr_noi / n_test_samples
ssim_noi = ssim_noi / n_test_samples
print('Noisy PSNR/SSIM: %.2f/%.4f'%(psnr_noi,ssim_noi))
result = {'psnr_dn': '%.2f'%psnr,
'ssim_dn': '%.4f'%ssim,}
case.update(result)
pprint(result)
logger.update({f'noise{noise_level}_{image_type}': case})
with open(out_dir + "/results_{}_{}.txt".format('cpu' if opt.no_cuda else 'gpu', image_type), 'w') as args_file:
json.dump(logger, args_file, indent=4)