-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
46 lines (35 loc) · 1.05 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import torch
import numpy as np
def IoU(y_true, y_pred, thr=0.5):
y_pred[y_pred > 0.5] = 1
y_pred[y_pred < 0.5] = 0
I = (y_pred * y_true).sum()
U = np.count_nonzero((y_pred + y_true))
return I / U
class DiceCoeff(torch.nn.Module):
def __init__(self):
super(DiceCoeff, self).__init__()
def forward(self, input, target):
eps = 0.0001
inter = torch.dot(input, target)
union = torch.sum(input) + torch.sum(target) + eps
t = 1 - (2 * inter.float() + eps) / union.float()
return t
def dict_collate(batch):
ret = {}
elem = batch[0]
# label
label = []
for i in range(len(batch)):
label.append(batch[i]["label"])
label = torch.cat(label, dim=0)
ret["label"] = label
for k in elem.keys():
if k == "label":
continue
cur = []
for i in range(len(batch)):
cur.append(batch[i][k].unsqueeze(0))
cur = torch.cat(cur, dim=0)
ret[k] = cur
return ret