forked from yuyang-shi/dsbm-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_dbdsb.py
29 lines (22 loc) · 1.16 KB
/
test_dbdsb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import torch
import hydra
import os
from bridge.trainer_dbdsb import IPF_DBDSB
from bridge.runners.config_getters import get_datasets, get_valid_test_datasets
from accelerate import Accelerator
def test(args):
accelerator = Accelerator(cpu=args.device == 'cpu', split_batches=True)
accelerator.print('Directory: ' + os.getcwd())
init_ds, final_ds, mean_final, var_final = get_datasets(args)
valid_ds, test_ds = get_valid_test_datasets(args)
final_cond_model = None
ipf = IPF_DBDSB(init_ds, final_ds, mean_final, var_final, args, accelerator=accelerator,
final_cond_model=final_cond_model, valid_ds=valid_ds, test_ds=test_ds)
accelerator.print(accelerator.state)
accelerator.print(ipf.net['b'])
accelerator.print('Number of parameters:', sum(p.numel() for p in ipf.net['b'].parameters() if p.requires_grad))
test_metrics = ipf.plot_and_test_step(ipf.step, ipf.checkpoint_it, "b", sampler='sde')
accelerator.print("SDE: ", test_metrics)
if args.test_ode_sampler:
test_metrics = ipf.plot_and_test_step(ipf.step, ipf.checkpoint_it, "b", sampler='ode')
accelerator.print("ODE: ", test_metrics)