forked from hhtyou/Compositional-GAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_AFN.py
39 lines (32 loc) · 1.06 KB
/
test_AFN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import time
from options.testAFN_options import TestOptions
from data.data_loader import CreateDataLoader
from models.models import create_model
from util.visualizer import Visualizer
import os
from util import html
opt = TestOptions().parse()
opt.dataset_mode = 'AFN'
opt.model = 'AFN'
opt.isTrain=False
opt.isPretrain = False
opt.phase = 'test'
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(data_loader)
print('#test images = %d' % dataset_size)
model = create_model(opt)
visualizer = Visualizer(opt)
total_steps = 0
web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch))
webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch))
for i, data in enumerate(dataset):
if i >= opt.how_many:
break
model.set_input(data)
model.test()
visuals = model.get_current_visuals()
img_path = model.get_image_paths()
print('process image... %s' % img_path)
visualizer.save_images(webpage, visuals, img_path)
webpage.save()