-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathMotionEstimator.py
executable file
·92 lines (67 loc) · 2.67 KB
/
MotionEstimator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#!/usr/bin/env python
__version__ = '1.1'
__licence__ = 'FreeBSD License'
__author__ = 'Robert Gawron'
import sys
from PIL import Image
import math
import random
class MotionEstimator:
def __init__(self, a, b):
assert(a.size == b.size)
width, height = a.size
a = a.resize((width*2, height*2), Image.ANTIALIAS)
b = b.resize((width*2, height*2), Image.ANTIALIAS)
a = a.convert('P', palette=Image.ADAPTIVE, colors=2)
b = b.convert('P', palette=Image.ADAPTIVE, colors=2)
self.a = a
self.b = b
def offset(self):
frame = 20+ 3 # (number of collumns - 1) / 2
width, height = self.a.size
checked = 0
x_e, y_e = 0, 0
for offset in [1,2,3,4,5,6]:
for i in range(6+offset, width-6):
for j in range(6, height - 6):
if i < width-3 and i < height-3:
reference = 0
for (x, y) in self.offsets:
reference += self.a.getpixel((i + x, j + y))
if reference < 8 and reference > 3:
local_best_fit = self._get_pixel_offset(i, j)
if local_best_fit:
checked +=1
x_e += local_best_fit[0]
y_e += local_best_fit[1]
normalize = 2.1
#print checked, x_e*1.0/checked, y_e*1.0/checked
if checked == 0:
return 0, 0
return (x_e*normalize)/checked, (y_e*normalize)/checked
def _get_pixel_offset(self, x, y):
best_fit = (0,0)
first_check = True
smallest_difference = None
for (x_delta, y_delta) in self.offsets:
difference = 0
for (i, j) in self.offsets:
p1 = self.a.getpixel((x + i , y + j ))
p2 = self.b.getpixel((x + i + x_delta, y + j + y_delta))
difference += abs(p1 - p2)
if first_check or smallest_difference > difference:
first_check = False
smallest_difference = difference
if not first_check:
best_fit = (x_delta, y_delta)
return best_fit
offsets = ((0, 0), (1, 0), (2, 0),
(0, 1), (1, 1), (2, 1),
(0, 2), (1, 2), (2, 2))
if __name__=="__main__":
assert(len(sys.argv) == 3)
files = sys.argv[1], sys.argv[2]
images = map(Image.open, files)
estimator = MotionEstimator(images[0], images[1])
(x, y) = estimator.offset()
print("the offset between %s and %s is (%2d, %2d)" % (files[0], files[1], x, y))