-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathlr_handson.Rmd
62 lines (52 loc) · 2.4 KB
/
lr_handson.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
title: "Linear Regression—From Data To Model"
author: "Ron Lee [email protected]"
date: "2018-11-1"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE,message = TRUE,warning = FALSE,cache = TRUE)
```
## Purpose of writing this markdown
#### For a long period of time, I have been applying machine learning algorithms to my data with the mature packages for 2 years,I can achieve the model I want but just with little trepidation,simply because I am just a algorithm user,not a person with self-implement capacity.
#### So from now on, I decide to implement those machine learning algorithms with raw R codes,in order to make a deeper understanding of them.Wish me good luck.
## Data preparation
#### Just like my last markdown, I am gonna use diamonds data set from ggplot2 package.Also this is for linear regression,so I need to remove those categorize variables
```{r}
library(tidyverse,quietly = T)
diamonds<-diamonds %>% select_if(is.numeric)
diamonds<-apply(diamonds,2,function(x){(x-min(x))/(max(x)-min(x))}) %>% as.data.frame()
glimpse(diamonds)
```
## Methods we are gonna use
### 1. Least square method
#### For the problem of multiple linear regression,the final expression is Y=Xβ+u,Y is response variable,X is the features,β is parameters and u is random error.
The final solution we want is β=(XTX)-1XTY(T means tranpose).
```{r}
ols<-function(y,x){
x<-as.matrix(x)
x<-cbind(intercept=1,x)
return(solve(t(x) %*% x) %*% t(x) %*% y)
}
ols(y=diamonds$price,x=diamonds %>% select(-price)) %>% print()
```
### 2. Gradient descent algorithm
#### Honestly speaking,formula Derivation is really not my strength,so I am gonna directly use the already-written formula to show you,here is the [link](https://www.jianshu.com/p/c7e642877b0e)
```{r}
gradient_descent<-function(x,y,theta,alpha,steps){
res<-rep(0,steps)
x<-cbind(intercept=1,as.matrix(x))
for(i in 1:steps){
theta<-theta - alpha * (t(x) %*% (x %*% theta - y))
res[i]<-sum((x %*% theta - y)^2)/2
}
return(list('theta'=theta,'res'=res))
}
tt<-rep(0,7)
result<-gradient_descent(x=diamonds %>% select(-price),y=diamonds$price,theta = tt,alpha = 0.000005,steps = 2000)
```
The result we get from the defined function contains two components,one is the theta, the other is error.Let's visualize them.
```{r}
plot(result$res)
print(result$theta)
```