forked from AlphaGenes/tinyhouse
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProbMath.py
356 lines (274 loc) · 13.3 KB
/
ProbMath.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
from numba import jit
import numpy as np
import collections
def getGenotypesFromMaf(maf) :
nLoci = len(maf)
mafGenotypes = np.full((4, nLoci), .25, dtype = np.float32)
mafGenotypes[0,:] = (1-maf)**2
mafGenotypes[1,:] = maf*(1-maf)
mafGenotypes[2,:] = (1-maf)*maf
mafGenotypes[3,:] = maf**2
return mafGenotypes
def getGenotypeProbabilities_ind(ind, args = None, log = False):
if args is None:
error = 0.01
seqError = 0.001
sexChromFlag = False
else:
error = args.error
seqError = args.seqerror
sexChromFlag = getattr(args, "sexchrom", False) and ind.sex == 0 #This is the sex chromosome and the individual is male.
if ind.reads is not None:
nLoci = len(ind.reads[0])
if ind.genotypes is not None:
nLoci = len(ind.genotypes)
if not log:
return getGenotypeProbabilities(nLoci, ind.genotypes, ind.reads, error, seqError, sexChromFlag)
else:
return getGenotypeProbabilities_log(nLoci, ind.genotypes, ind.reads, error, seqError, sexChromFlag)
def getGenotypeProbabilities(nLoci, genotypes, reads, error = 0.01, seqError = 0.001, useSexChrom=False):
vals = np.full((4, nLoci), .25, dtype = np.float32)
if type(error) is float:
error = np.full(nLoci, error)
if type(seqError) is float:
seqError = np.full(nLoci, seqError)
errorMat = generateErrorMat(error)
if genotypes is not None:
setGenoProbsFromGenotypes(genotypes, errorMat, vals)
if reads is not None:
seqError = seqError
log1 = np.log(1-seqError)
log2 = np.log(.5)
loge = np.log(seqError)
valSeq = np.array([log1*reads[0] + loge*reads[1],
log2*reads[0] + log2*reads[1],
log2*reads[0] + log2*reads[1],
log1*reads[1] + loge*reads[0]])
maxVals = np.amax(valSeq, 0)
valSeq = valSeq - maxVals
valSeq = np.exp(valSeq)
vals *= valSeq
if useSexChrom:
#Recode so we only care about the two homozygous states, but they are coded as 0, 1.
vals[1,:] = vals[3,:]
vals[2,:] = 0
vals[3,:] = 0
return vals/np.sum(vals,0)
def getGenotypeProbabilities_log(nLoci, genotypes, reads, error = 0.01, seqError = 0.001, useSexChrom=False):
vals = np.full((4, nLoci), .25, dtype = np.float32)
if type(error) is float:
error = np.full(nLoci, error)
if type(seqError) is float:
seqError = np.full(nLoci, seqError)
errorMat = generateErrorMat(error)
if genotypes is not None:
setGenoProbsFromGenotypes(genotypes, errorMat, vals)
vals = np.log(vals)
if reads is not None:
log1 = np.log(1-seqError)
log2 = np.log(.5)
loge = np.log(seqError)
ref_reads = reads[0]
alt_reads = reads[1]
val_seq = np.full((4, nLoci), 0, dtype = np.float32)
val_seq[0,:] = log1*ref_reads + loge*alt_reads
val_seq[1,:] = log2*ref_reads + log2*alt_reads
val_seq[2,:] = log2*ref_reads + log2*alt_reads
val_seq[3,:] = loge*ref_reads + log1*alt_reads
vals += val_seq
output = np.full((4, nLoci), 0, dtype = np.float32)
apply_log_norm_1d(vals, output)
return output
@jit(nopython=True, nogil = True)
def apply_log_norm_1d(vals, output):
nLoci = vals.shape[-1]
for i in range(nLoci):
output[:,i] = log_norm_1D(vals[:, i])
@jit(nopython=True, nogil = True)
def log_norm_1D(mat):
log_exp_sum = 0
first = True
maxVal = 100
for a in range(4):
if mat[a] > maxVal or first:
maxVal = mat[a]
if first:
first = False
for a in range(4):
log_exp_sum += np.exp(mat[a] - maxVal)
return mat - (np.log(log_exp_sum) + maxVal)
def set_from_genotype_probs(ind, geno_probs = None, calling_threshold = 0.1, set_genotypes = False, set_dosages = False, set_haplotypes = False) :
# Check diploid geno_probs; not sure what to do for haploid except assume inbred?
if geno_probs.shape[0] == 2:
geno_probs = geno_probs/np.sum(geno_probs, axis = 0)
called_values = call_genotype_probs(geno_probs, calling_threshold)
# Assuming the individual is haploid
if set_dosages:
if ind.dosages is None:
ind.dosages = called_values.dosages.copy()
ind.dosages[:] = 2*called_values.dosages
if set_genotypes:
ind.genotypes[:] = 2*called_values.haplotypes
ind.genotypes[called_values.haplotypes == 9] = 9 # Correctly set missing loci.
if set_haplotypes:
ind.haplotypes[0][:] = called_values.haplotypes
ind.haplotypes[1][:] = called_values.haplotypes
if geno_probs.shape[0] == 4:
geno_probs = geno_probs/np.sum(geno_probs, axis = 0)
called_values = call_genotype_probs(geno_probs, calling_threshold)
if set_dosages:
if ind.dosages is None:
ind.dosages = called_values.dosages.copy()
ind.dosages[:] = called_values.dosages
if set_genotypes:
ind.genotypes[:] = called_values.genotypes
if set_haplotypes:
ind.haplotypes[0][:] = called_values.haplotypes[0]
ind.haplotypes[1][:] = called_values.haplotypes[1]
def call_genotype_probs(geno_probs, calling_threshold = 0.1) :
if geno_probs.shape[0] == 2:
# Haploid
HaploidValues = collections.namedtuple("HaploidValues", ["haplotypes", "dosages"])
dosages = geno_probs[1,:].copy()
haplotypes = call_matrix(geno_probs, calling_threshold)
return HaploidValues(dosages = dosages, haplotypes = haplotypes)
if geno_probs.shape[0] == 4:
# Diploid
DiploidValues = collections.namedtuple("DiploidValues", ["genotypes", "haplotypes", "dosages"])
dosages = geno_probs[1,:] + geno_probs[2,:] + 2*geno_probs[3,:]
# Collapse the two heterozygous states into one.
collapsed_hets = np.array([geno_probs[0,:], geno_probs[1,:] + geno_probs[2,:], geno_probs[3,:]], dtype=np.float32)
genotypes = call_matrix(collapsed_hets, calling_threshold)
# aa + aA, Aa + AA
haplotype_0 = np.array([geno_probs[0,:] + geno_probs[1,:], geno_probs[2,:] + geno_probs[3,:]], dtype=np.float32)
haplotype_1 = np.array([geno_probs[0,:] + geno_probs[2,:], geno_probs[1,:] + geno_probs[3,:]], dtype=np.float32)
haplotypes = (call_matrix(haplotype_0, calling_threshold), call_matrix(haplotype_1, calling_threshold))
return DiploidValues(dosages = dosages, haplotypes = haplotypes, genotypes = genotypes)
def call_matrix(matrix, threshold):
called_genotypes = np.argmax(matrix, axis = 0)
setMissing(called_genotypes, matrix, threshold)
return called_genotypes.astype(np.int8)
@jit(nopython=True)
def setMissing(calledGenotypes, matrix, threshold) :
nLoci = len(calledGenotypes)
for i in range(nLoci):
if matrix[calledGenotypes[i],i] < threshold:
calledGenotypes[i] = 9
@jit(nopython=True)
def setGenoProbsFromGenotypes(genotypes, errorMat, vals):
nLoci = len(genotypes)
for i in range(nLoci) :
if genotypes[i] != 9:
vals[:, i] = errorMat[genotypes[i], :, i]
def generateErrorMat(error) :
errorMat = np.array([[1-error, error/2, error/2, error/2],
[error/2, 1-error, 1-error, error/2],
[error/2, error/2, error/2, 1-error]], dtype = np.float32)
errorMat = errorMat/np.sum(errorMat, 1)[:,None]
return errorMat
def generateSegregationXXChrom(partial=False, e= 1e-06) :
paternalTransmission = np.array([ [1, 1, 0, 0],[0, 0, 1, 1]])
maternalTransmission = np.array([ [1, 0, 1, 0],[0, 1, 0, 1]])
fatherAlleleCoding = np.array([0, 0, 1, 1])
motherAlleleCoding = np.array([0, 1, 0, 1])
# ! fm fm fm fm
# !segregationOrder: pp, pm, mp, mm
segregationTensor = np.zeros((4, 4, 4, 4))
for segregation in range(4):
#Change so that father always passes on the maternal allele?
if(segregation == 0) :
father = maternalTransmission
mother = paternalTransmission
if(segregation == 1) :
father = maternalTransmission
mother = maternalTransmission
if(segregation == 2) :
father = maternalTransmission
mother = paternalTransmission
if(segregation == 3) :
father = maternalTransmission
mother = maternalTransmission
# !alleles: aa, aA, Aa, AA
for allele in range(4) :
segregationTensor[:, :, allele, segregation] = np.outer(father[fatherAlleleCoding[allele]], mother[motherAlleleCoding[allele]])
segregationTensor = segregationTensor*(1-e) + e/4 #trace has 4 times as many elements as it should since it has 4 internal reps.
segregationTensor = segregationTensor.astype(np.float32)
return(segregationTensor)
def generateSegregationXYChrom(partial=False, e= 1e-06) :
paternalTransmission = np.array([ [1, 1, 0, 0],[0, 0, 1, 1]])
maternalTransmission = np.array([ [1, 0, 1, 0],[0, 1, 0, 1]])
motherAlleleCoding = np.array([0, 1, 0, 1])
# ! fm fm fm fm
# !segregationOrder: pp, pm, mp, mm
#They don't get anything from the father -- father is always 0
segregationTensor = np.zeros((4, 4, 4, 4))
for segregation in range(4):
if(segregation == 0) :
mother = paternalTransmission
if(segregation == 1) :
mother = maternalTransmission
if(segregation == 2) :
mother = paternalTransmission
if(segregation == 3) :
mother = maternalTransmission
# !alleles: aa, aA, Aa, AA
for allele in range(4) :
for fatherAllele in range(4):
segregationTensor[fatherAllele, :, allele, segregation] = mother[motherAlleleCoding[allele]]
segregationTensor = segregationTensor*(1-e) + e/4 #trace has 4 times as many elements as it should since it has 4 internal reps.
segregationTensor = segregationTensor.astype(np.float32)
return(segregationTensor)
def generateSegregation(partial=False, e= 1e-06) :
paternalTransmission = np.array([ [1, 1, 0, 0],[0, 0, 1, 1]])
maternalTransmission = np.array([ [1, 0, 1, 0],[0, 1, 0, 1]])
fatherAlleleCoding = np.array([0, 0, 1, 1])
motherAlleleCoding = np.array([0, 1, 0, 1])
# ! fm fm fm fm
# !segregationOrder: pp, pm, mp, mm
segregationTensor = np.zeros((4, 4, 4, 4))
for segregation in range(4):
if(segregation == 0) :
father = paternalTransmission
mother = paternalTransmission
if(segregation == 1) :
father = paternalTransmission
mother = maternalTransmission
if(segregation == 2) :
father = maternalTransmission
mother = paternalTransmission
if(segregation == 3) :
father = maternalTransmission
mother = maternalTransmission
# !alleles: aa, aA, Aa, AA
for allele in range(4) :
segregationTensor[:, :, allele, segregation] = np.outer(father[fatherAlleleCoding[allele]], mother[motherAlleleCoding[allele]])
if partial : segregationTensor = np.mean(segregationTensor, 3)
segregationTensor = segregationTensor*(1-e) + e/4 #trace has 4 times as many elements as it should since it has 4 internal reps.
segregationTensor = segregationTensor.astype(np.float32)
return(segregationTensor)
# def generateErrorMat(error) :
# # errorMat = np.array([[1-error*3/4, error/4, error/4, error/4],
# # [error/4, .5-error/4, .5-error/4, error/4],
# # [error/4, error/4, error/4, 1-error*3/4]], dtype = np.float32)
# errorMat = np.array([[1-error*2/3, error/3, error/3, error/3],
# [error/3, 1-error*2/3, 1-error*2/3, error/3],
# [error/3, error/3, error/3, 1-error*2/3]], dtype = np.float32)
# errorMat = errorMat/np.sum(errorMat, 1)[:,None]
# return errorMat
## Not sure if below is ever used.
# def generateTransmission(error) :
# paternalTransmission = np.array([ [1-error, 1.-error, error, error],
# [error, error, 1-error, 1-error]])
# maternalTransmission = np.array([ [1.-error, error, 1.-error, error],
# [error, 1-error, error, 1-error]] )
# segregationTransmissionMatrix = np.zeros((4,4))
# segregationTransmissionMatrix[0,:] = paternalTransmission[0,:]
# segregationTransmissionMatrix[1,:] = paternalTransmission[0,:]
# segregationTransmissionMatrix[2,:] = paternalTransmission[1,:]
# segregationTransmissionMatrix[3,:] = paternalTransmission[1,:]
# segregationTransmissionMatrix[:,0] = segregationTransmissionMatrix[:,0] * maternalTransmission[0,:]
# segregationTransmissionMatrix[:,1] = segregationTransmissionMatrix[:,1] * maternalTransmission[1,:]
# segregationTransmissionMatrix[:,2] = segregationTransmissionMatrix[:,2] * maternalTransmission[0,:]
# segregationTransmissionMatrix[:,3] = segregationTransmissionMatrix[:,3] * maternalTransmission[1,:]
# segregationTransmissionMatrix = segregationTransmissionMatrix.astype(np.float32)
# return(segregationTransmissionMatrix)