-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathsimulate.php
61 lines (38 loc) · 1.42 KB
/
simulate.php
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
<?php
include __DIR__ . '/vendor/autoload.php';
use Rubix\ML\Loggers\Screen;
use Rubix\ML\Datasets\Labeled;
use Rubix\ML\Extractors\NDJSON;
use Rubix\ML\Datasets\Generators\Agglomerate;
use Rubix\ML\Datasets\Generators\Blob;
use Rubix\ML\Classifiers\KDNeighbors;
use Rubix\ML\CrossValidation\Reports\MulticlassBreakdown;
use Rubix\ML\Persisters\Filesystem;
ini_set('memory_limit', '-1');
$logger = new Screen();
$logger->info('Loading data into memory');
$dataset = Labeled::fromIterator(new NDJSON('dataset.ndjson'));
$blobs = [];
foreach ($dataset->describeByLabel() as $class => $dist) {
$means = $stddevs = [];
foreach ($dist as $stats) {
if ($stats['type'] === 'continuous') {
$means[] = $stats['mean'];
$stddevs[] = $stats['standard deviation'];
}
}
$blobs[$class] = new Blob($means, $stddevs);
}
$generator = new Agglomerate($blobs, [0.38, 0.62]);
$logger->info('Simulating original dataset');
[$training, $testing] = $generator->generate(10000)->stratifiedSplit(0.8);
$estimator = new KDNeighbors(3);
$logger->info('Training');
$estimator->train($training);
$logger->info('Making predictions');
$predictions = $estimator->predict($testing);
$report = new MulticlassBreakdown();
$results = $report->generate($predictions, $testing->labels());
echo $results;
$results->toJSON()->saveTo(new Filesystem('report.json'));
$logger->info('Report saved to report.json');