-
Notifications
You must be signed in to change notification settings - Fork 397
/
exponential search.c
71 lines (60 loc) · 1.46 KB
/
exponential search.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
// sorted array using Exponential search.
#include <stdio.h>
#include <time.h>
#include <math.h>
#define min
int binarySearch(int arr[], int, int, int);
// Returns position of first occurrence of
// x in array
int exponentialSearch(int arr[], int n, int x)
{
// If x is present at first location itself
if (arr[0] == x)
return 0;
// Find range for binary search by
// repeated doubling
int i = 1;
while (i < n && arr[i] <= x)
i = i*2;
// Call binary search for the found range.
return binarySearch(arr, i/2,
min(i, n-1), x);
}
// A recursive binary search function. It returns
// location of x in given array arr[l..r] is
// present, otherwise -1
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l)
{
int mid = l + (r - l)/2;
// If the element is present at the middle
// itself
if (arr[mid] == x)
return mid;
// If element is smaller than mid, then it
// can only be present n left subarray
if (arr[mid] > x)
return binarySearch(arr, l, mid-1, x);
// Else the element can only be present
// in right subarray
return binarySearch(arr, mid+1, r, x);
}
// We reach here when element is not present
// in array
return -1;
}
// Driver code
int main(void)
{
int arr[] = {2, 3, 4, 10, 40};
int n = sizeof(arr)/ sizeof(arr[0]);
int x = 10;
int result = exponentialSearch(arr, n, x);
(result == -1)? printf("Element is not
present in array")
: printf("Element is present
at index %d",
result);
return 0;
}