forked from lindawangg/COVID-Net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_risknet.py
306 lines (267 loc) · 14.1 KB
/
train_risknet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
"""Perform transfer-learning for offset stratification with a provided COVID-Net
From the trained weights of a COVID-Net for COVID-19 identification in radiographs,
this tool performs transfer learning to re-use these weights for stratification of
patient offset (# of days since symptoms began *)
Steps to use this:
1. follow instructions for building data dir with train & test subdirs
2. train your network with the train_tf.py script
3. run this script and pass the path to your trained network (defaults should suffice)
(*) FIXME: It seems that the definition of offset varies between data sources! (account for this)
TODO: Make this script more general so that it can be used to transfer learn for other applications
"""
import argparse
from collections import namedtuple
import cv2
import os
from typing import List, Tuple, Dict, Any
import numpy as np
import pandas as pd
from sklearn.metrics import confusion_matrix
import tensorflow as tf
from data import BalanceDataGenerator
# We will create a checkpoint which has initial values for these variables
VARS_TO_FORGET = [
'dense_3/kernel:0',
'dense_3/bias:0',
'dense_2/kernel:0',
'dense_2/bias:0',
'dense_1/kernel:0',
'dense_1/bias:0',
]
IMAGE_SHAPE = (224, 224, 3)
INPUT_TENSOR_NAME = "input_1:0"
OUTPUT_TENSOR_NAME = "dense_3/Softmax:0"
SAMPLE_WEIGHTS = "dense_3_sample_weights:0"
def get_parse_fn(num_classes: int, augment: bool = False):
def parse_function(imagepath: str, label: int):
"""Parse a single element of the stratification dataset"""
# TODO add augmentation here ideally
image_decoded = tf.image.resize_images(
tf.image.decode_jpeg(tf.io.read_file(imagepath), IMAGE_SHAPE[-1]), IMAGE_SHAPE[:2])
return (
tf.image.convert_image_dtype(image_decoded, dtype=tf.float32) / 255.0, # x
tf.one_hot(label, num_classes), # y
tf.convert_to_tensor(1.0, dtype=tf.float32), # sample_weights TODO: verify this is right
)
return parse_function
def parse_split(split_txt_path: str) -> Tuple[List[str], List[int]]:
"""Read the offsets for COVID patients based on the files in our split"""
# FIXME: ideally we should just store the offset in the split as well or read it from CSV by id.
# FIXME: we need to add pretrained weights + .txts for split with well-distributed offset.
files, labels = [], [],
for split_entry in open(split_txt_path).readlines():
_, image_file, diagnosis = split_entry.strip().split() # TODO: txts should just contain ids
if diagnosis == 'COVID-19':
patient = csv[csv["filename"] == image_file]
recorded_offset = patient['offset'].item()
if not np.isnan(recorded_offset):
offset = stratify(int(recorded_offset))
image_path = os.path.abspath(
os.path.join(args.chestxraydir, 'images', image_file))
assert os.path.exists(image_path), "Missing file {}".format(image_path)
files.append(image_path)
labels.append(offset)
return files, labels
def eval_net(sess: tf.Session, dataset_dict: Dict[str, Any], test_files: List[str],
test_labels: List[int]) -> None:
"""Evaluate the network"""
# Reset eval iterator
sess.run(dataset_dict['iterator'].initializer)
# Eval
preds, all_labels = [], []
num_evaled = 0
while True:
try:
images, labels, sample_weights = sess.run(dataset_dict['gn_op'])
pred = sess.run(
OUTPUT_TENSOR_NAME,
feed_dict={INPUT_TENSOR_NAME: images, SAMPLE_WEIGHTS: sample_weights}
)
preds.append(np.array(pred).argmax(axis=1))
num_evaled += len(pred)
all_labels.extend(np.array(labels).argmax(axis=1))
except tf.errors.OutOfRangeError:
print("\tevaluated {} images.".format(num_evaled))
break
matrix = confusion_matrix(all_labels, np.concatenate(preds)).astype('float')
per_class_acc = [
matrix[i,i]/np.sum(matrix[i,:]) if np.sum(matrix[i,:]) else 0 for i in range(len(matrix))
]
print("confusion matrix:\n{}\nper-class accuracies:\n{}".format(matrix, per_class_acc))
if __name__ == "__main__":
# Input args NOTE: the params here differ from thise in train_tf.py - we are fine-tuning
parser = argparse.ArgumentParser(description='COVIDNet-Risk Transfer Learning Script (offset).')
parser.add_argument('--classes', default=4, type=int,
help='Number of classes to stratify offset into.')
parser.add_argument('--stratification', type=int, nargs='+', default=[3, 5, 10],
help='Stratification points (days), i.e. "5 10" produces stratification of'
': 0o <-0c-> 5o <-1c-> 10o -2c-> via >= comparison (o=offset, c=class).')
parser.add_argument('--epochs', default=10, type=int,
help='Number of epochs (less since we\'re effectively fine-tuning).')
parser.add_argument('--lr', default=0.000002, type=float, help='Learning rate.')
parser.add_argument('--batch-size', default=8, type=int, help='Train batch-size')
parser.add_argument('--eval-batch-size', default=8, type=int, help='Eval batch-size')
parser.add_argument('--evaliterval', default=3, type=int,
help='# of epochs to train before running evaluation. NOTE: we only save'
'after evaluation. This can be disabled when more test data is available')
parser.add_argument('--input-weights-dir', default='models/COVIDNetv2', type=str,
help='Path to input folder containing a trained COVID-Netv2 checkpoint')
parser.add_argument('--input-meta-name', default='model.meta', type=str,
help='Name of meta file within <input-weights-dir>')
parser.add_argument('--outputdir', default='models/COVIDNet-Risk', type=str,
help='Path to output folder.')
parser.add_argument('--trainfile', default='train_COVIDx.txt', type=str,
help='Name of train file. NOTE: stock split is insufficient at this time.')
parser.add_argument('--testfile', default='test_COVIDx.txt', type=str,
help='Name of test file. NOTE: stock split is insufficient at this time.')
parser.add_argument('--name', default='COVIDNet-Risk', type=str,
help='Name of folder to store training checkpoints.')
parser.add_argument('--chestxraydir', default='../covid-chestxray-dataset', type=str,
help='Path to the chestxray images directory for COVID-19 patients.')
args = parser.parse_args()
# Check inputs
assert os.path.exists(args.input_weights_dir), "Missing file {}".format(args.input_weights_dir)
assert os.path.exists(os.path.join(args.input_weights_dir, args.input_meta_name)), \
"Missing file {}".format(args.input_meta_name)
# Format and define a stratification method based on our points
# TODO we could do a different amount of stratification but we have to add our own dense layers
assert len(args.stratification) == 3, "Must pass exactly 3 offset stratification points"
if args.stratification[0] != 0:
stratification = np.array([0, *args.stratification])
else:
stratification = np.array(args.stratification)
num_classes = len(stratification)
stratify = lambda offset: np.where(offset >= stratification)[0][-1]
# Read CSV of dataset
assert os.path.exists(args.chestxraydir), "please clone "\
"https://github.com/ieee8023/covid-chestxray-dataset and pass path to dir as --chestxraydir"
csv = pd.read_csv(os.path.join(args.chestxraydir, "metadata.csv"), nrows=None)
# Get the image filepaths and labels for training and testing split
train_files, train_labels = parse_split(args.trainfile)
assert len(train_files) >= 0 and len(train_files) == len(train_labels)
test_files, test_labels = parse_split(args.testfile)
assert len(test_files) >= 0 and len(test_labels) == len(test_files)
print("collected {} training and {} test cases for transfer-learning".format(
len(train_files), len(test_files)))
# Init augmentation fn - FIXME: we need a way to put this in a parse_fn for tf.data.dataset
# augmentation_fn = tf.keras.preprocessing.image.ImageDataGenerator(
# featurewise_center=False,
# featurewise_std_normalization=False,
# rotation_range=10,
# width_shift_range=0.1,
# height_shift_range=0.1,
# horizontal_flip=True,
# brightness_range=(0.9, 1.1),
# fill_mode='constant',
# cval=0.,
# )
# < define generator from augmentation_fn + cv loads? >
# dataset = tf.data.Dataset.from_generator(lambda: generator,
# output_types=(tf.float32, tf.float32, tf.float32),
# output_shapes=([batch_size, 224, 224, 3],
# [batch_size, 3],
# [batch_size]))
# Output path creation for this run with lr param in name
train_dir = os.path.join(args.outputdir, args.name + '-lr' + str(args.lr))
os.makedirs(args.outputdir, exist_ok=True)
os.makedirs(train_dir)
print('Output: ' + train_dir)
# Train
graph = tf.Graph()
with tf.Session(graph=graph) as sess:
# Import meta graph
tf.train.import_meta_graph(os.path.join(args.input_weights_dir, args.input_meta_name))
# Restore pre-trained vars which are not in our VARS_TO_FORGET list
restore_vars_list, init_vars_list = [], []
for var in graph.get_collection(tf.GraphKeys.GLOBAL_VARIABLES):
if var.name in VARS_TO_FORGET:
init_vars_list.append(var)
else:
restore_vars_list.append(var)
restore_saver = tf.train.Saver(var_list=restore_vars_list)
restore_saver.restore(sess, tf.train.latest_checkpoint(args.input_weights_dir))
existing_vars = sess.graph.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
# Get some I/O tensors
image_tensor = graph.get_tensor_by_name(INPUT_TENSOR_NAME)
labels_tensor = graph.get_tensor_by_name("dense_3_target:0")
sample_weights = graph.get_tensor_by_name(SAMPLE_WEIGHTS)
pred_tensor = graph.get_tensor_by_name("dense_3/MatMul:0")
# Define tf.datasets
datasets = {}
for is_training, files, labels in zip(
[True, False], [train_files, test_files], [train_labels, test_labels]):
dataset = tf.data.Dataset.from_tensor_slices((files, labels))
dataset = dataset.map(get_parse_fn(num_classes))
if is_training:
dataset = dataset.shuffle(15)
dataset = dataset.batch(args.batch_size if is_training else args.eval_batch_size)
if is_training:
dataset = dataset.repeat()
iterator = dataset.make_initializable_iterator()
datasets['train' if is_training else 'test'] = {
'dataset': dataset,
'iterator': iterator,
'gn_op': iterator.get_next(),
}
# Define loss and optimizer
loss_op = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits_v2(
logits=pred_tensor, labels=labels_tensor) * sample_weights
)
optimizer = tf.train.AdamOptimizer(learning_rate=args.lr)
train_op = optimizer.minimize(loss_op)
optim_vars = list(
set(sess.graph.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)) - set(existing_vars))
# Initialize the optimizer + dsi + vars in our VARS_TO_FORGET list
sess.run(tf.variables_initializer(optim_vars + init_vars_list))
# save base model
saver = tf.train.Saver()
saver.save(sess, os.path.join(train_dir, 'model'))
print('Saved pre-trained model with re-initialized output layers.')
print('Baseline eval:')
eval_net(sess, datasets['test'], test_files, test_labels)
# Training cycle
# TODO: we need a training method that we can re-use. below very similar to train_tf.py
# FIXME: we need to consider freezing vars for all but dense layers.
print('Transfer Learning Started.')
print('\ttrain samples: {}\n\ttest samples: {}\n\tstratification: {}\n'.format(
len(train_files), len(test_files), args.stratification))
sess.run(datasets['train']['iterator'].initializer)
num_batches = len(train_files) // args.batch_size
progbar = tf.keras.utils.Progbar(num_batches)
for epoch in range(args.epochs):
# Train
print("Fine-Tuning on 1 epoch = {} images.".format(len(train_files)))
for i in range(num_batches):
batch_x, batch_y, weights = sess.run(datasets['train']['gn_op'])
sess.run(
train_op,
feed_dict={
image_tensor: batch_x,
labels_tensor: batch_y,
sample_weights: weights,
}
)
progbar.update(i + 1)
# Evaluate + save
if epoch % args.evaliterval == 0:
pred = sess.run(pred_tensor, feed_dict={image_tensor:batch_x})
loss = sess.run(
loss_op,
feed_dict={
pred_tensor: pred,
labels_tensor: batch_y,
sample_weights: weights,
}
)
print("Epoch:", '%04d' % (epoch + 1), "Minibatch loss=", "{:.9f}".format(loss))
eval_net(sess, datasets['test'], test_files, test_labels)
saver.save(
sess,
os.path.join(train_dir, 'model'),
global_step=epoch + 1,
write_meta_graph=False
)
print('Saving checkpoint at epoch {}'.format(epoch + 1))
print("Transfer Learning Finished!\n\tcheckpoint: '{}'".format(train_dir))