-
Notifications
You must be signed in to change notification settings - Fork 21
/
rendezvous_experiments_Robotarium_main.m
280 lines (232 loc) · 13.5 KB
/
rendezvous_experiments_Robotarium_main.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
%% This is the main file to conduct experiments with several consensus control (rendezvous) algorithms of N robots in the Robotarium testbed
%Ramviyas Parasuraman, [email protected].
%clear all;
close all;
global sensing_range error_bearing error_distance uni_to_si_states si_to_uni_dyn G N desired_distance;
%% Number of robots
N=15; % Number of agents/robots
%% Choose your Rendezvous algorithm
% Newly Proposed Weighted Bearing Controllers
algorithm = 'weighted_bearing_consensus_using_RSS_and_DOA'; % It uses the DOA of RSS and the RSS form wireless nework measurements as control inputs
%algorithm = 'weighted_bearing_consensus_using_Range_and_Bearings'; % It uses both range and bearing measurements from any sensors as control inputs
% Coordinates based consensus (Rendezvous) algorithms - using relative position measurements
%algorithm = 'coordinates_based_rendezvous' ; % (Baseline) It relies on the full coordinates (relative positions) of neighbor robots
%algorithm = 'coordinates_based_connectivity_preserving_rendezvous' ; % It is similar to the above but uses weights (artificial potential fields)
%algorithm = 'coordinates_based_rendezvous_circumcenter' ; % It relies on the circumcenter of all coordinates (relative positions) of neighbor robots
% State of the Art (SOTA) Bearing-only consensus(Rendezvous) algorithms
%algorithm = 'bearing_only_rendezvous_using_all_bearings'; % It uses bearing measurements of all neighbor robots from each robot
%algorithm = 'bearing_only_rendezvous_using_min_and_max_bearings'; % It uses only the min and max bearings of neighbors from each robot
%algorithm = 'bearing_only_rendezvous_using_enclosing_circles'; % It uses bearing measurmeents and enclosing circles algorithm
% Other possible consensus controllers - both coordinates and bearings based controllers
%algorithm = 'bearing_only_rendezvous_using_average_bearing'; % It uses mean of neighbor bearings from each robot
%algorithm = 'coordinates_based_rendezvous_with_mean_velocity'; % It uses mean of all neighbor directions
%algorithm = 'coordinates_based_rendezvous_with_max_velocity'; % It uses the coordinate of farthest neighbor
%algorithm = 'coordinates_based_rendezvous_with_min_velocity'; % It uses the coordinate of the nearest neighbor
fH = str2func(algorithm); % function handle for the chosen rendezvous algorithm
%% Get Robotarium object used to communicate with the robots/simulator
rb = RobotariumBuilder();
% Build the Robotarium simulator object!
r = rb.set_number_of_agents(N).set_save_data(false).build();
figure_robotarium = figure(1); movegui('northeast'); movegui('onscreen');
%title('Rendezvous algorithm experimented in Robotarium testbed');
%% Experiment parameters
desired_distance = 0.1; % desired inter-agent distance range to realize stop condition
sensing_range = 0.8; % Sensing radius within which robot i detects robot j (same for all the robots)
error_bearing = 0.1; % Standard deviations of the bearing measurment error (radians)
error_distance = 0.1; % Standard deviations of the distance measurment error (m)
root_node = 5; % Set the root node robot where the rendezvous should occur (instead of a consensus point), if rendezvous_at_root flag is set/used below
desired_energy = 0.2; % (currently not used) desired value of the Lyapunov candidate energy function
safety_radius = 0.11; % Do NOT change this - set for Robotarium. It is the safety radius for collision avoidance between robots
dxmax = 0.075; % Do NOT change this - set for Robotarium. The maximum velocity of the GRITSbots robots (<=0.8m/s) (used if normalize_velocities is set/used below)
%% Flags to use specific parts of the code
collision_avoidance = 0; % To enable/disable barrier certificates
normalize_velocities = 1; % To normalize the velocities (recommended - Do NOT reset)
initial_positions_fixed = 1; % If set, then fixed initial positions (defined further down) will be used instead of random
update_network_topology = 1; % To enable/disable the update of connected graph (dynamically) in every iteration
rendezvous_at_root = 0; % If set, it will make all the robots rendezvou at a root node (defined below) instead of a common location
formation_control = 0; % If set, the robots will create a specified formation (shape) instead of rendezvous
% Flags for Plotting tools
plot_initial_graph = 0; % To plot initial connected graph
plot_dynamic_graph = 0; % To plot updated connected graph in every iteration
plot_robot_index = 1; % To enable/disable the display of robot index on top of each robot in the Robotarium figure
plot_robot_trajectory = 0; % To enable/disable the display of robot trajectory in the Robotarium figure
plot_robot_initialposition = 0; % To enable/disable the display of robot initial position in the Robotarium figure
make_movie = 0; % To create a movie using the Robotarium figure over the iterations
%% Formation control parameters (if formation_control flag is set)
% to replicate a P-like formation
b = floor(N/2);
c = N-floor(N/2);
angle = 0:(360/c):359;
target_x = 0.5*cos(pi)*ones(1,b) ;
target_y = 0:-1.4/(b-1):-1.4;
target_configuration = [[target_x,0.5*cos(angle*pi/180)];[target_y,0.5*sin(angle*pi/180)]];
% to replicate a circular formation
%angle = 0:(360/N):359;
%target_configuration = [0.5*cos(angle*pi/180);0.5*sin(angle*pi/180)];
%% Grab tools we need to convert from single-integrator to unicycle dynamics
%Gains for the transformation from single-integrator to unicycle dynamics
linearVelocityGain = 2; %1
angularVelocityGain = pi;
transformation_gain = 0.06;
% Gain for the diffeomorphism transformation between single-integrator and
% unicycle dynamics
[~, uni_to_si_states] = create_si_to_uni_mapping('ProjectionDistance', transformation_gain);
si_to_uni_dyn = create_si_to_uni_mapping2('LinearVelocityGain', linearVelocityGain, 'AngularVelocityLimit', angularVelocityGain);
% Single-integrator position controller
si_pos_controller = create_si_position_controller('XVelocityGain', 2, 'YVelocityGain', 2);
% Collision avoidance - barrier certificates
si_barrier_cert = create_si_barrier_certificate('SafetyRadius', safety_radius);
%% Initialize the robots to fixed positions (if initial_positions_fixed is set)
if(initial_positions_fixed == 1)
initial_positions(1,:) = r.poses(1,:) *2; % For random initial positions with wider distribution/coverage
initial_positions(2,:) = r.poses(2,:) *2; % For random initial positions with wider distribution/coverage
%initial_positions = [-0.2 -0.5 0.5 0.4 -0.1; 0.2 -0.4 -0.1 0.6 0.7]; % for N=5
%initial_positions = [0 0.4 0.5 0.4 -0.1 -0.3 -0.5 -0.7 0 1 -1 -1 0.3 -0.5 0.9; 0.3 0.9 1.1 -1 -0.2 -0.9 -0.3 -1 1.2 -1.2 0.2 -0.9 -0.4 0.6 1]; % N=15
%initial_positions = [0 0.4 0.5 0.6 -0.1 -0.3 -0.5 -0.7 0 0.8 -1.1 -1 0.3 -0.5 0.9 0.5 -0.5 -1 1 1.4; 0.3 0.9 1.1 -1 -0.2 -0.9 -0.3 -1 1.2 -1.2 0.2 -0.9 -0.4 0.6 1 0.5 1.3 1 -0.2 0.2]; % for N=20
r = initialize_robot_positions(r,N,initial_positions);
end
%% Finding the connected graph (Also checking if the initial interation/network graph is connected)
x = r.get_poses();
xi = uni_to_si_states(x);
r.step();
[L,G] = GetConnectedGraph(x(1:2,:),sensing_range); % Getting the initial connected Graph
if(length(find(eig(L) <=0.001)) > 1)
connection_status_initial = 0; % disconnected graph
disp('Initial graph has some disconnected components. For experiments, we need a connected graph. Please try again!');
return; % If it's a disconnected graph, then stop the script
end
%% Initiating connected graph figure window
if(plot_initial_graph == 1)
figure_graph = figure(2); plot(G); title('Initial Network/Interaction Topology');
xlim([-3 3]);
ylim([-3 3]);
movegui('northwest');
end
%% Experiment initialization
max_iterations = 1000; % the number of iterations for the experiment
% Initialize velocity vector for agents. Each agent expects a 2 x 1
% velocity vector containing the linear and angular velocity, respectively.
dxi = zeros(2, N);
previous_xi = xi; % A temporary variable to store the position values
distance_travelled = zeros(1,N); % total distance traveled by each robot - Performance evaluation metric
iteration_at_stopcondition = 0; % number of iteration at which the stop condition is reached
iteration_at_minenergy = 0; % number of iteration at which the energy function values is the minimum (less than a threshold)
energy = zeros(1,max_iterations); % The value of the Energy function which is sum of all distances between the connected nodes
mycols = jet(N); % To display colored trajectory for each robot (if plot_robot_trajectory is set)
fig_index = figure_robotarium;
fig_traj = figure_robotarium;
Movieframe(1:max_iterations) = gcf; % to be used in movie creation if make_movie flag is set/used
%% Display the robot's initial position trajectory in the Robotarium figure
if(plot_robot_initialposition == 1)
%fig_traj = set(0,'CurrentFigure',r.figure_handle);
for i=1:N
fig_traj = plot(x(1,i),x(2,i),'o','Color',mycols(i,:));
end
end
disp('Rendezvous process initiated - displaying the number of iterations');
%% Display the title text in the Robotarium figure
set(0,'CurrentFigure',r.figure_handle);
alg_string = regexprep(algorithm,'_',' ');
alg_string = regexprep(alg_string,'\s*.','${upper($0)}');
%alg_string = strcat('Algorithm: ',alg_string);
text(-1.4,1.4,alg_string,'FontSize',8,'Color','red','FontWeight','Bold', 'Interpreter', 'none');
%% Iteration starts here (for the previously specified number of iterations)
for t = 1:max_iterations
disp(t) % to display the iteration number
%stop_condition = 1; % This variable is to define the stop condition. If it's 1 - then stop the iteration/experiment
set(0,'CurrentFigure',r.figure_handle);
fig_iter = text(-1.4,-1.4,strcat('Iteration :',' ',num2str(t)),'FontSize',10,'Color','red','FontWeight','Bold');
% Retrieve the most recent poses from the Robotarium. The time delay is
% approximately 0.033 seconds in Robotarium
x = r.get_poses(); % Get unicycle coordinates (x,y,theta)
xi = uni_to_si_states(x); % convert the unicycle pose to SI units (x,y)
%% Formation control (if formation_control is set/used)
if(formation_control == 1)
xi = xi - target_configuration;
end
%% Display the robot's index on top of each robot in the Robotarium
if(plot_robot_index == 1)
for i=1:N
set(0,'CurrentFigure',r.figure_handle);
fig_index(i) = text(x(1,i),x(2,i)+0.04,num2str(i),'FontSize',6,'Color','red','FontWeight','Bold');
end
end
%% Display the robot's trajectory in the Robotarium figure
if(plot_robot_trajectory == 1)
for i=1:N
set(0,'CurrentFigure',r.figure_handle);
fig_traj(i) = plot(x(1,i),x(2,i),'.--','Color',mycols(i,:));
end
end
%% Update the connected tree dynamically
if (update_network_topology == 1)
[L,G] = GetConnectedGraph(x(1:2,:),sensing_range); % Finding the initial connected Graph
end
%% Consensus/Rendezvous Algorithm
[dxi,stop_condition,energy(t)] = fH(L,xi); % The rendezvous algorithm chosen in the beginning
%% Change the Rendezvous location (if need to rendezvou at a specific root node)
if(rendezvous_at_root == 1 && formation_control ~= 1) % It can work only for rendezvous and not for formation control
dxi(1,:) = dxi(1,:) - dxi(1,root_node);
dxi(2,:) = dxi(2,:) - dxi(2,root_node);
end
%% Plotting the connected graph
if(plot_dynamic_graph == 1)
set(0,'CurrentFigure',figure_graph);
plot(G); title('Dynamic Network Topology');
xlim([-3 3]);
ylim([-3 3]);
end
%% Normalizing the velocity limits
if(normalize_velocities == 1)
for i = 1:N
if norm(dxi(:,i)) > dxmax
dxi(:,i) = dxi(:,i)/norm(dxi(:,i))*dxmax;
end
end
end
%% Utilize barrier certificates for inter-robot collision avoidance
if(collision_avoidance == 1)
dxi = si_barrier_cert(dxi, x);
end
%% Transform the single-integrator to unicycle dynamics using the transformation we created earlier
dxu = si_to_uni_dyn(dxi, x);
%% Send/Set velocities to agents
r.set_velocities(1:N, dxu);
r.step(); % This function must be called to properly set the velocities and execute them
%% Performance evaluation metrics
% Calculate the distance travelled in each iteration
for i=1:N
distance_travelled(i) = distance_travelled(i) + norm(xi(:,i)-previous_xi(:,i));
end
previous_xi = xi;
%if (stop_condition == 1 && length(leaves) == N-1)
if ((stop_condition == 1) && (iteration_at_stopcondition == 0))
display('Stop condition (all inter-robot distances within 0.1m) reached ');
iteration_at_stopcondition = t;
end
if((energy(t) <= desired_energy) && (iteration_at_minenergy == 0))
display('Minimum energy condition (E<=0.2) reached');
iteration_at_minenergy = t;
end
%% Movie making
if(make_movie == 1)
set(0,'CurrentFigure',r.figure_handle);
Movieframe(t) = getframe(gcf);
end
%% Deleting unncessary figure/text handles
if(plot_robot_index == 1)
delete(fig_index); % delete the text objects (robot indices) on the Robotarium figure
end
delete(fig_iter);
end
% Closing the Robotarium object properly
r.call_at_scripts_end();
%% Movie making
if(make_movie == 1)
v = VideoWriter('robotarium_simulation_expoeriment.mp4','MPEG-4');
open(v);
writeVideo(v,Movieframe);
close(v);
end
%% Saving the final figure if needed
%print(figure_robotarium,'RobotariumFigure','-depsc');