-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loader.py
181 lines (159 loc) · 7.17 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import json
import torch
import numpy as np
from torch.utils.data import DataLoader, Dataset
from utils.common_utils import sequence_padding
class ListDataset(Dataset):
def __init__(self, file_path=None, data=None, **kwargs):
self.kwargs = kwargs
if isinstance(file_path, (str, list)):
self.data = self.load_data(file_path)
elif isinstance(data, list):
self.data = data
else:
raise ValueError('The input args shall be str format file_path / list format dataset')
def __len__(self):
return len(self.data)
def __getitem__(self, index):
return self.data[index]
@staticmethod
def load_data(file_path):
return file_path
# 加载数据集
class MyDataset(ListDataset):
@staticmethod
def load_data(filename):
examples = []
with open(filename, encoding='utf-8') as f:
raw_examples = f.readlines()
# 这里是从json数据中的字典中获取
for i, item in enumerate(raw_examples):
# print(i,item)
item = json.loads(item)
text = item['text']
spo_list = item['spo_list']
labels = [] # [subject, predicate, object]
for spo in spo_list:
subject = spo['subject']
object = spo['object']
predicate = spo['predicate']
labels.append([subject, predicate, object])
examples.append((text, labels))
return examples
class Collate:
def __init__(self, max_len, tag2id, device, tokenizer):
self.maxlen = max_len
self.tag2id = tag2id
self.id2tag = {v:k for k,v in tag2id.items()}
self.device = device
self.tokenizer = tokenizer
def collate_fn(self, batch):
def search(pattern, sequence):
"""从sequence中寻找子串pattern
如果找到,返回第一个下标;否则返回-1。
"""
n = len(pattern)
for i in range(len(sequence)):
if sequence[i:i + n] == pattern:
return i
return -1
batch_head_labels = []
batch_tail_labels = []
batch_entity_labels = []
batch_token_ids = []
batch_attention_mask = []
batch_token_type_ids = []
callback = []
for i, (text, text_labels) in enumerate(batch):
if len(text) > self.maxlen - 2:
text = text[:self.maxlen - 2]
tokens = [i for i in text]
tokens = ['[CLS]'] + tokens + ['[SEP]']
spoes = set()
callback_text_labels = []
for s, p, o in text_labels:
p = self.tag2id[p]
s = [i for i in s]
o = [i for i in o]
s_idx = search(s, tokens) # 主体的头
o_idx = search(o, tokens) # 客体的头
if s_idx != -1 and o_idx != -1:
callback_text_labels.append(("".join(s), self.id2tag[p], "".join(o)))
spoes.add((s_idx, s_idx + len(s) - 1, p, o_idx, o_idx + len(o) - 1))
# print(text_labels)
# print(text)
# print(spoes)
# 构建标签
entity_labels = [set() for _ in range(2)] # [主体, 客体]
head_labels = [set() for _ in range(len(self.tag2id))] # 每个关系中主体和客体的头
tail_labels = [set() for _ in range(len(self.tag2id))] # 每个关系中主体和客体的尾
for sh, st, p, oh, ot in spoes:
entity_labels[0].add((sh, st))
entity_labels[1].add((oh, ot))
head_labels[p].add((sh, oh))
tail_labels[p].add((st, ot))
for label in entity_labels + head_labels + tail_labels:
if not label: # 至少要有一个标签
label.add((0, 0)) # 如果没有则用0填充
# entity_labels:(2, 1, 2) head_labels:(49, 1, 2) tail_labels:(49, 1, 2)
"""
对于entity_labels而言,第一个集合是主体,第二个集合是客体,使用pading补全到相同长度
[{(0, 2)}, {(21, 22), (5, 9)}]
[[[ 0 2]
[ 0 0]]
[[21 22]
[ 5 9]]]
[['九玄珠', '连载网站', '纵横中文网'], ['九玄珠', '作者', '龙马']]
"""
entity_labels = sequence_padding([list(l) for l in entity_labels]) # [subject/object=2, 实体个数, 实体起终点]
head_labels = sequence_padding([list(l) for l in head_labels]) # [关系个数, 该关系下subject/object配对数, subject/object起点]
tail_labels = sequence_padding([list(l) for l in tail_labels]) # [关系个数, 该关系下subject/object配对数, subject/object终点]
token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
batch_token_ids.append(token_ids) # 前面已经限制了长度
batch_attention_mask.append([1] * len(token_ids))
batch_token_type_ids.append([0] * len(token_ids))
batch_head_labels.append(head_labels)
batch_tail_labels.append(tail_labels)
batch_entity_labels.append(entity_labels)
callback.append((text, callback_text_labels))
batch_token_ids = torch.tensor(sequence_padding(batch_token_ids, length=self.maxlen), dtype=torch.long, device=self.device)
attention_mask = torch.tensor(sequence_padding(batch_attention_mask, length=self.maxlen), dtype=torch.long, device=self.device)
token_type_ids = torch.tensor(sequence_padding(batch_token_type_ids, length=self.maxlen), dtype=torch.long, device=self.device)
batch_head_labels = torch.tensor(sequence_padding(batch_head_labels, seq_dims=2), dtype=torch.float, device=self.device)
batch_tail_labels = torch.tensor(sequence_padding(batch_tail_labels, seq_dims=2), dtype=torch.float, device=self.device)
batch_entity_labels = torch.tensor(sequence_padding(batch_entity_labels, seq_dims=2), dtype=torch.float, device=self.device)
return batch_token_ids, attention_mask, token_type_ids, batch_head_labels, batch_tail_labels, batch_entity_labels, callback
if __name__ == "__main__":
from transformers import BertTokenizer
max_len = 256
tokenizer = BertTokenizer.from_pretrained('model_hub/chinese-bert-wwm-ext/vocab.txt')
train_dataset = MyDataset(file_path='data/ske/raw_data/train_data.json',
tokenizer=tokenizer,
max_len=max_len)
# print(train_dataset[0])
with open('data/ske/mid_data/predicates.json') as fp:
labels = json.load(fp)
id2tag = {}
tag2id = {}
for i,label in enumerate(labels):
id2tag[i] = label
tag2id[label] = i
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
collate = Collate(max_len=max_len, tag2id=tag2id, device=device, tokenizer=tokenizer)
# collate.collate_fn(train_dataset[:16])
batch_size = 2
train_dataset = train_dataset[:10]
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=False, collate_fn=collate.collate_fn)
"""
torch.Size([2, 256])
torch.Size([2, 256])
torch.Size([2, 256])
torch.Size([2, 49, 1, 2])
torch.Size([2, 49, 1, 2])
torch.Size([2, 2, 1, 2])
"""
for i, batch in enumerate(train_dataloader):
leng = len(batch) - 1
for j in range(leng):
print(batch[j].shape)
break