forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrod_cutting.py
209 lines (162 loc) · 5.8 KB
/
rod_cutting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
"""
This module provides two implementations for the rod-cutting problem:
1. A naive recursive implementation which has an exponential runtime
2. Two dynamic programming implementations which have quadratic runtime
The rod-cutting problem is the problem of finding the maximum possible revenue
obtainable from a rod of length ``n`` given a list of prices for each integral piece
of the rod. The maximum revenue can thus be obtained by cutting the rod and selling the
pieces separately or not cutting it at all if the price of it is the maximum obtainable.
"""
def naive_cut_rod_recursive(n: int, prices: list):
"""
Solves the rod-cutting problem via naively without using the benefit of dynamic
programming. The results is the same sub-problems are solved several times
leading to an exponential runtime
Runtime: O(2^n)
Arguments
-------
n: int, the length of the rod
prices: list, the prices for each piece of rod. ``p[i-i]`` is the
price for a rod of length ``i``
Returns
-------
The maximum revenue obtainable for a rod of length n given the list of prices
for each piece.
Examples
--------
>>> naive_cut_rod_recursive(4, [1, 5, 8, 9])
10
>>> naive_cut_rod_recursive(10, [1, 5, 8, 9, 10, 17, 17, 20, 24, 30])
30
"""
_enforce_args(n, prices)
if n == 0:
return 0
max_revue = float("-inf")
for i in range(1, n + 1):
max_revue = max(
max_revue, prices[i - 1] + naive_cut_rod_recursive(n - i, prices)
)
return max_revue
def top_down_cut_rod(n: int, prices: list):
"""
Constructs a top-down dynamic programming solution for the rod-cutting
problem via memoization. This function serves as a wrapper for
_top_down_cut_rod_recursive
Runtime: O(n^2)
Arguments
--------
n: int, the length of the rod
prices: list, the prices for each piece of rod. ``p[i-i]`` is the
price for a rod of length ``i``
Note
----
For convenience and because Python's lists using 0-indexing, length(max_rev) =
n + 1, to accommodate for the revenue obtainable from a rod of length 0.
Returns
-------
The maximum revenue obtainable for a rod of length n given the list of prices
for each piece.
Examples
-------
>>> top_down_cut_rod(4, [1, 5, 8, 9])
10
>>> top_down_cut_rod(10, [1, 5, 8, 9, 10, 17, 17, 20, 24, 30])
30
"""
_enforce_args(n, prices)
max_rev = [float("-inf") for _ in range(n + 1)]
return _top_down_cut_rod_recursive(n, prices, max_rev)
def _top_down_cut_rod_recursive(n: int, prices: list, max_rev: list):
"""
Constructs a top-down dynamic programming solution for the rod-cutting problem
via memoization.
Runtime: O(n^2)
Arguments
--------
n: int, the length of the rod
prices: list, the prices for each piece of rod. ``p[i-i]`` is the
price for a rod of length ``i``
max_rev: list, the computed maximum revenue for a piece of rod.
``max_rev[i]`` is the maximum revenue obtainable for a rod of length ``i``
Returns
-------
The maximum revenue obtainable for a rod of length n given the list of prices
for each piece.
"""
if max_rev[n] >= 0:
return max_rev[n]
elif n == 0:
return 0
else:
max_revenue = float("-inf")
for i in range(1, n + 1):
max_revenue = max(
max_revenue,
prices[i - 1] + _top_down_cut_rod_recursive(n - i, prices, max_rev),
)
max_rev[n] = max_revenue
return max_rev[n]
def bottom_up_cut_rod(n: int, prices: list):
"""
Constructs a bottom-up dynamic programming solution for the rod-cutting problem
Runtime: O(n^2)
Arguments
----------
n: int, the maximum length of the rod.
prices: list, the prices for each piece of rod. ``p[i-i]`` is the
price for a rod of length ``i``
Returns
-------
The maximum revenue obtainable from cutting a rod of length n given
the prices for each piece of rod p.
Examples
-------
>>> bottom_up_cut_rod(4, [1, 5, 8, 9])
10
>>> bottom_up_cut_rod(10, [1, 5, 8, 9, 10, 17, 17, 20, 24, 30])
30
"""
_enforce_args(n, prices)
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of
# length 0.
max_rev = [float("-inf") for _ in range(n + 1)]
max_rev[0] = 0
for i in range(1, n + 1):
max_revenue_i = max_rev[i]
for j in range(1, i + 1):
max_revenue_i = max(max_revenue_i, prices[j - 1] + max_rev[i - j])
max_rev[i] = max_revenue_i
return max_rev[n]
def _enforce_args(n: int, prices: list):
"""
Basic checks on the arguments to the rod-cutting algorithms
n: int, the length of the rod
prices: list, the price list for each piece of rod.
Throws ValueError:
if n is negative or there are fewer items in the price list than the length of
the rod
"""
if n < 0:
msg = f"n must be greater than or equal to 0. Got n = {n}"
raise ValueError(msg)
if n > len(prices):
msg = (
"Each integral piece of rod must have a corresponding price. "
f"Got n = {n} but length of prices = {len(prices)}"
)
raise ValueError(msg)
def main():
prices = [6, 10, 12, 15, 20, 23]
n = len(prices)
# the best revenue comes from cutting the rod into 6 pieces, each
# of length 1 resulting in a revenue of 6 * 6 = 36.
expected_max_revenue = 36
max_rev_top_down = top_down_cut_rod(n, prices)
max_rev_bottom_up = bottom_up_cut_rod(n, prices)
max_rev_naive = naive_cut_rod_recursive(n, prices)
assert expected_max_revenue == max_rev_top_down
assert max_rev_top_down == max_rev_bottom_up
assert max_rev_bottom_up == max_rev_naive
if __name__ == "__main__":
main()