forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathautomatic_differentiation.py
328 lines (264 loc) · 10.1 KB
/
automatic_differentiation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
"""
Demonstration of the Automatic Differentiation (Reverse mode).
Reference: https://en.wikipedia.org/wiki/Automatic_differentiation
Author: Poojan Smart
Email: [email protected]
"""
from __future__ import annotations
from collections import defaultdict
from enum import Enum
from types import TracebackType
from typing import Any
import numpy as np
from typing_extensions import Self # noqa: UP035
class OpType(Enum):
"""
Class represents list of supported operations on Variable for gradient calculation.
"""
ADD = 0
SUB = 1
MUL = 2
DIV = 3
MATMUL = 4
POWER = 5
NOOP = 6
class Variable:
"""
Class represents n-dimensional object which is used to wrap numpy array on which
operations will be performed and the gradient will be calculated.
Examples:
>>> Variable(5.0)
Variable(5.0)
>>> Variable([5.0, 2.9])
Variable([5. 2.9])
>>> Variable([5.0, 2.9]) + Variable([1.0, 5.5])
Variable([6. 8.4])
>>> Variable([[8.0, 10.0]])
Variable([[ 8. 10.]])
"""
def __init__(self, value: Any) -> None:
self.value = np.array(value)
# pointers to the operations to which the Variable is input
self.param_to: list[Operation] = []
# pointer to the operation of which the Variable is output of
self.result_of: Operation = Operation(OpType.NOOP)
def __repr__(self) -> str:
return f"Variable({self.value})"
def to_ndarray(self) -> np.ndarray:
return self.value
def __add__(self, other: Variable) -> Variable:
result = Variable(self.value + other.value)
with GradientTracker() as tracker:
# if tracker is enabled, computation graph will be updated
if tracker.enabled:
tracker.append(OpType.ADD, params=[self, other], output=result)
return result
def __sub__(self, other: Variable) -> Variable:
result = Variable(self.value - other.value)
with GradientTracker() as tracker:
# if tracker is enabled, computation graph will be updated
if tracker.enabled:
tracker.append(OpType.SUB, params=[self, other], output=result)
return result
def __mul__(self, other: Variable) -> Variable:
result = Variable(self.value * other.value)
with GradientTracker() as tracker:
# if tracker is enabled, computation graph will be updated
if tracker.enabled:
tracker.append(OpType.MUL, params=[self, other], output=result)
return result
def __truediv__(self, other: Variable) -> Variable:
result = Variable(self.value / other.value)
with GradientTracker() as tracker:
# if tracker is enabled, computation graph will be updated
if tracker.enabled:
tracker.append(OpType.DIV, params=[self, other], output=result)
return result
def __matmul__(self, other: Variable) -> Variable:
result = Variable(self.value @ other.value)
with GradientTracker() as tracker:
# if tracker is enabled, computation graph will be updated
if tracker.enabled:
tracker.append(OpType.MATMUL, params=[self, other], output=result)
return result
def __pow__(self, power: int) -> Variable:
result = Variable(self.value**power)
with GradientTracker() as tracker:
# if tracker is enabled, computation graph will be updated
if tracker.enabled:
tracker.append(
OpType.POWER,
params=[self],
output=result,
other_params={"power": power},
)
return result
def add_param_to(self, param_to: Operation) -> None:
self.param_to.append(param_to)
def add_result_of(self, result_of: Operation) -> None:
self.result_of = result_of
class Operation:
"""
Class represents operation between single or two Variable objects.
Operation objects contains type of operation, pointers to input Variable
objects and pointer to resulting Variable from the operation.
"""
def __init__(
self,
op_type: OpType,
other_params: dict | None = None,
) -> None:
self.op_type = op_type
self.other_params = {} if other_params is None else other_params
def add_params(self, params: list[Variable]) -> None:
self.params = params
def add_output(self, output: Variable) -> None:
self.output = output
def __eq__(self, value) -> bool:
return self.op_type == value if isinstance(value, OpType) else False
class GradientTracker:
"""
Class contains methods to compute partial derivatives of Variable
based on the computation graph.
Examples:
>>> with GradientTracker() as tracker:
... a = Variable([2.0, 5.0])
... b = Variable([1.0, 2.0])
... m = Variable([1.0, 2.0])
... c = a + b
... d = a * b
... e = c / d
>>> tracker.gradient(e, a)
array([-0.25, -0.04])
>>> tracker.gradient(e, b)
array([-1. , -0.25])
>>> tracker.gradient(e, m) is None
True
>>> with GradientTracker() as tracker:
... a = Variable([[2.0, 5.0]])
... b = Variable([[1.0], [2.0]])
... c = a @ b
>>> tracker.gradient(c, a)
array([[1., 2.]])
>>> tracker.gradient(c, b)
array([[2.],
[5.]])
>>> with GradientTracker() as tracker:
... a = Variable([[2.0, 5.0]])
... b = a ** 3
>>> tracker.gradient(b, a)
array([[12., 75.]])
"""
instance = None
def __new__(cls) -> Self:
"""
Executes at the creation of class object and returns if
object is already created. This class follows singleton
design pattern.
"""
if cls.instance is None:
cls.instance = super().__new__(cls)
return cls.instance
def __init__(self) -> None:
self.enabled = False
def __enter__(self) -> Self:
self.enabled = True
return self
def __exit__(
self,
exc_type: type[BaseException] | None,
exc: BaseException | None,
traceback: TracebackType | None,
) -> None:
self.enabled = False
def append(
self,
op_type: OpType,
params: list[Variable],
output: Variable,
other_params: dict | None = None,
) -> None:
"""
Adds Operation object to the related Variable objects for
creating computational graph for calculating gradients.
Args:
op_type: Operation type
params: Input parameters to the operation
output: Output variable of the operation
"""
operation = Operation(op_type, other_params=other_params)
param_nodes = []
for param in params:
param.add_param_to(operation)
param_nodes.append(param)
output.add_result_of(operation)
operation.add_params(param_nodes)
operation.add_output(output)
def gradient(self, target: Variable, source: Variable) -> np.ndarray | None:
"""
Reverse accumulation of partial derivatives to calculate gradients
of target variable with respect to source variable.
Args:
target: target variable for which gradients are calculated.
source: source variable with respect to which the gradients are
calculated.
Returns:
Gradient of the source variable with respect to the target variable
"""
# partial derivatives with respect to target
partial_deriv = defaultdict(lambda: 0)
partial_deriv[target] = np.ones_like(target.to_ndarray())
# iterating through each operations in the computation graph
operation_queue = [target.result_of]
while len(operation_queue) > 0:
operation = operation_queue.pop()
for param in operation.params:
# as per the chain rule, multiplying partial derivatives
# of variables with respect to the target
dparam_doutput = self.derivative(param, operation)
dparam_dtarget = dparam_doutput * partial_deriv[operation.output]
partial_deriv[param] += dparam_dtarget
if param.result_of and param.result_of != OpType.NOOP:
operation_queue.append(param.result_of)
return partial_deriv.get(source)
def derivative(self, param: Variable, operation: Operation) -> np.ndarray:
"""
Compute the derivative of given operation/function
Args:
param: variable to be differentiated
operation: function performed on the input variable
Returns:
Derivative of input variable with respect to the output of
the operation
"""
params = operation.params
if operation == OpType.ADD:
return np.ones_like(params[0].to_ndarray(), dtype=np.float64)
if operation == OpType.SUB:
if params[0] == param:
return np.ones_like(params[0].to_ndarray(), dtype=np.float64)
return -np.ones_like(params[1].to_ndarray(), dtype=np.float64)
if operation == OpType.MUL:
return (
params[1].to_ndarray().T
if params[0] == param
else params[0].to_ndarray().T
)
if operation == OpType.DIV:
if params[0] == param:
return 1 / params[1].to_ndarray()
return -params[0].to_ndarray() / (params[1].to_ndarray() ** 2)
if operation == OpType.MATMUL:
return (
params[1].to_ndarray().T
if params[0] == param
else params[0].to_ndarray().T
)
if operation == OpType.POWER:
power = operation.other_params["power"]
return power * (params[0].to_ndarray() ** (power - 1))
err_msg = f"invalid operation type: {operation.op_type}"
raise ValueError(err_msg)
if __name__ == "__main__":
import doctest
doctest.testmod()