forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunge_kutta_gills.py
90 lines (73 loc) · 2.42 KB
/
runge_kutta_gills.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
"""
Use the Runge-Kutta-Gill's method of order 4 to solve Ordinary Differential Equations.
https://www.geeksforgeeks.org/gills-4th-order-method-to-solve-differential-equations/
Author : Ravi Kumar
"""
from collections.abc import Callable
from math import sqrt
import numpy as np
def runge_kutta_gills(
func: Callable[[float, float], float],
x_initial: float,
y_initial: float,
step_size: float,
x_final: float,
) -> np.ndarray:
"""
Solve an Ordinary Differential Equations using Runge-Kutta-Gills Method of order 4.
args:
func: An ordinary differential equation (ODE) as function of x and y.
x_initial: The initial value of x.
y_initial: The initial value of y.
step_size: The increment value of x.
x_final: The final value of x.
Returns:
Solution of y at each nodal point
>>> def f(x, y):
... return (x-y)/2
>>> y = runge_kutta_gills(f, 0, 3, 0.2, 5)
>>> y[-1]
3.4104259225717537
>>> def f(x,y):
... return x
>>> y = runge_kutta_gills(f, -1, 0, 0.2, 0)
>>> y
array([ 0. , -0.18, -0.32, -0.42, -0.48, -0.5 ])
>>> def f(x, y):
... return x + y
>>> y = runge_kutta_gills(f, 0, 0, 0.2, -1)
Traceback (most recent call last):
...
ValueError: The final value of x must be greater than initial value of x.
>>> def f(x, y):
... return x
>>> y = runge_kutta_gills(f, -1, 0, -0.2, 0)
Traceback (most recent call last):
...
ValueError: Step size must be positive.
"""
if x_initial >= x_final:
raise ValueError(
"The final value of x must be greater than initial value of x."
)
if step_size <= 0:
raise ValueError("Step size must be positive.")
n = int((x_final - x_initial) / step_size)
y = np.zeros(n + 1)
y[0] = y_initial
for i in range(n):
k1 = step_size * func(x_initial, y[i])
k2 = step_size * func(x_initial + step_size / 2, y[i] + k1 / 2)
k3 = step_size * func(
x_initial + step_size / 2,
y[i] + (-0.5 + 1 / sqrt(2)) * k1 + (1 - 1 / sqrt(2)) * k2,
)
k4 = step_size * func(
x_initial + step_size, y[i] - (1 / sqrt(2)) * k2 + (1 + 1 / sqrt(2)) * k3
)
y[i + 1] = y[i] + (k1 + (2 - sqrt(2)) * k2 + (2 + sqrt(2)) * k3 + k4) / 6
x_initial += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod()