forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinverse_of_matrix.py
155 lines (135 loc) · 5.94 KB
/
inverse_of_matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from __future__ import annotations
from decimal import Decimal
from numpy import array
def inverse_of_matrix(matrix: list[list[float]]) -> list[list[float]]:
"""
A matrix multiplied with its inverse gives the identity matrix.
This function finds the inverse of a 2x2 and 3x3 matrix.
If the determinant of a matrix is 0, its inverse does not exist.
Sources for fixing inaccurate float arithmetic:
https://stackoverflow.com/questions/6563058/how-do-i-use-accurate-float-arithmetic-in-python
https://docs.python.org/3/library/decimal.html
Doctests for 2x2
>>> inverse_of_matrix([[2, 5], [2, 0]])
[[0.0, 0.5], [0.2, -0.2]]
>>> inverse_of_matrix([[2.5, 5], [1, 2]])
Traceback (most recent call last):
...
ValueError: This matrix has no inverse.
>>> inverse_of_matrix([[12, -16], [-9, 0]])
[[0.0, -0.1111111111111111], [-0.0625, -0.08333333333333333]]
>>> inverse_of_matrix([[12, 3], [16, 8]])
[[0.16666666666666666, -0.0625], [-0.3333333333333333, 0.25]]
>>> inverse_of_matrix([[10, 5], [3, 2.5]])
[[0.25, -0.5], [-0.3, 1.0]]
Doctests for 3x3
>>> inverse_of_matrix([[2, 5, 7], [2, 0, 1], [1, 2, 3]])
[[2.0, 5.0, -4.0], [1.0, 1.0, -1.0], [-5.0, -12.0, 10.0]]
>>> inverse_of_matrix([[1, 2, 2], [1, 2, 2], [3, 2, -1]])
Traceback (most recent call last):
...
ValueError: This matrix has no inverse.
>>> inverse_of_matrix([[],[]])
Traceback (most recent call last):
...
ValueError: Please provide a matrix of size 2x2 or 3x3.
>>> inverse_of_matrix([[1, 2], [3, 4], [5, 6]])
Traceback (most recent call last):
...
ValueError: Please provide a matrix of size 2x2 or 3x3.
>>> inverse_of_matrix([[1, 2, 1], [0,3, 4]])
Traceback (most recent call last):
...
ValueError: Please provide a matrix of size 2x2 or 3x3.
>>> inverse_of_matrix([[1, 2, 3], [7, 8, 9], [7, 8, 9]])
Traceback (most recent call last):
...
ValueError: This matrix has no inverse.
>>> inverse_of_matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]
"""
d = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(matrix) == 2 and len(matrix[0]) == 2 and len(matrix[1]) == 2:
# Calculate the determinant of the matrix
determinant = float(
d(matrix[0][0]) * d(matrix[1][1]) - d(matrix[1][0]) * d(matrix[0][1])
)
if determinant == 0:
raise ValueError("This matrix has no inverse.")
# Creates a copy of the matrix with swapped positions of the elements
swapped_matrix = [[0.0, 0.0], [0.0, 0.0]]
swapped_matrix[0][0], swapped_matrix[1][1] = matrix[1][1], matrix[0][0]
swapped_matrix[1][0], swapped_matrix[0][1] = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [
[(float(d(n)) / determinant) or 0.0 for n in row] for row in swapped_matrix
]
elif (
len(matrix) == 3
and len(matrix[0]) == 3
and len(matrix[1]) == 3
and len(matrix[2]) == 3
):
# Calculate the determinant of the matrix using Sarrus rule
determinant = float(
(
(d(matrix[0][0]) * d(matrix[1][1]) * d(matrix[2][2]))
+ (d(matrix[0][1]) * d(matrix[1][2]) * d(matrix[2][0]))
+ (d(matrix[0][2]) * d(matrix[1][0]) * d(matrix[2][1]))
)
- (
(d(matrix[0][2]) * d(matrix[1][1]) * d(matrix[2][0]))
+ (d(matrix[0][1]) * d(matrix[1][0]) * d(matrix[2][2]))
+ (d(matrix[0][0]) * d(matrix[1][2]) * d(matrix[2][1]))
)
)
if determinant == 0:
raise ValueError("This matrix has no inverse.")
# Creating cofactor matrix
cofactor_matrix = [
[d(0.0), d(0.0), d(0.0)],
[d(0.0), d(0.0), d(0.0)],
[d(0.0), d(0.0), d(0.0)],
]
cofactor_matrix[0][0] = (d(matrix[1][1]) * d(matrix[2][2])) - (
d(matrix[1][2]) * d(matrix[2][1])
)
cofactor_matrix[0][1] = -(
(d(matrix[1][0]) * d(matrix[2][2])) - (d(matrix[1][2]) * d(matrix[2][0]))
)
cofactor_matrix[0][2] = (d(matrix[1][0]) * d(matrix[2][1])) - (
d(matrix[1][1]) * d(matrix[2][0])
)
cofactor_matrix[1][0] = -(
(d(matrix[0][1]) * d(matrix[2][2])) - (d(matrix[0][2]) * d(matrix[2][1]))
)
cofactor_matrix[1][1] = (d(matrix[0][0]) * d(matrix[2][2])) - (
d(matrix[0][2]) * d(matrix[2][0])
)
cofactor_matrix[1][2] = -(
(d(matrix[0][0]) * d(matrix[2][1])) - (d(matrix[0][1]) * d(matrix[2][0]))
)
cofactor_matrix[2][0] = (d(matrix[0][1]) * d(matrix[1][2])) - (
d(matrix[0][2]) * d(matrix[1][1])
)
cofactor_matrix[2][1] = -(
(d(matrix[0][0]) * d(matrix[1][2])) - (d(matrix[0][2]) * d(matrix[1][0]))
)
cofactor_matrix[2][2] = (d(matrix[0][0]) * d(matrix[1][1])) - (
d(matrix[0][1]) * d(matrix[1][0])
)
# Transpose the cofactor matrix (Adjoint matrix)
adjoint_matrix = array(cofactor_matrix)
for i in range(3):
for j in range(3):
adjoint_matrix[i][j] = cofactor_matrix[j][i]
# Inverse of the matrix using the formula (1/determinant) * adjoint matrix
inverse_matrix = array(cofactor_matrix)
for i in range(3):
for j in range(3):
inverse_matrix[i][j] /= d(determinant)
# Calculate the inverse of the matrix
return [[float(d(n)) or 0.0 for n in row] for row in inverse_matrix]
raise ValueError("Please provide a matrix of size 2x2 or 3x3.")